[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6111403A - Blade of multilayer structure for fluid reversion in rotary machine - Google Patents

Blade of multilayer structure for fluid reversion in rotary machine

Info

Publication number
JPS6111403A
JPS6111403A JP13116384A JP13116384A JPS6111403A JP S6111403 A JPS6111403 A JP S6111403A JP 13116384 A JP13116384 A JP 13116384A JP 13116384 A JP13116384 A JP 13116384A JP S6111403 A JPS6111403 A JP S6111403A
Authority
JP
Japan
Prior art keywords
blade
axial flow
flow turbine
turbine
moving blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13116384A
Other languages
Japanese (ja)
Inventor
Shigeo Tanaka
重穂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13116384A priority Critical patent/JPS6111403A/en
Publication of JPS6111403A publication Critical patent/JPS6111403A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/022Blade-carrying members, e.g. rotors with concentric rows of axial blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To decrease the axial length of a single-stage axial flow turbine, by forming a moving blade of this turbine to be multilayer, through a dividing plate. CONSTITUTION:A dividing plate 6 is set in a moving blade of a single-stage axial flow turbine, so as to make the moving blade multilayer 1, 1', working fluid is reversed at each of the layers 1, 1', and stationary blades 4, 4' are set on the upper stream of the layers 1, 1' respectively. The working fluid which flows in through an inlet (a), streams through the stationary blade 4, the moving blade 1, another stationary blade 4', and another moving blade 1' in due order, and is exhausted from an outlet (b). In this way, as the work of a two-stages axial flow turbine can be done by this single-stage axial flow turbine, the axial length can be decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気タービン、ガスタービン、送風機、圧縮
機等、回転機械の軸方向の長さを削減する技術分野で利
用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used in the technical field of reducing the axial length of rotating machines such as steam turbines, gas turbines, blowers, compressors, etc.

従来の技術 従来型の概要について、第8図より第11図に従って述
べる。
BACKGROUND ART An overview of the conventional type will be described with reference to FIGS. 8 to 11.

従来の3段軸流タービンの回転軸及び回転翼の構成例を
第8図に示す。
FIG. 8 shows an example of the configuration of the rotating shaft and rotor blades of a conventional three-stage axial flow turbine.

ここで、01,01/及びol”は回転翼を示、o2は
回転軸を示している。この例はタービンの場合であるが
、この例の場合、蒸気は第8図の左から矢印aの方向に
流れる。
Here, 01, 01/ and ol" indicate the rotor blades, and o2 indicates the rotation axis. This example is for a turbine, and in this example, the steam flows from the left of FIG. flows in the direction of

また、翼型は01のn−n断面、OIIのm−m断面、
01“のIV−IV断面をそれぞれ第9図〜第11図の
如(、同様の断面を示しており、同図でLo、L2、L
3は揚力を生み出す方向を示している。
In addition, the airfoil is the nn cross section of 01, the mm cross section of OII,
The IV-IV cross section of 01" is shown in FIGS. 9 to 11, respectively.
3 indicates the direction in which lift is generated.

蒸気が第8図の左から矢印aの方向に流れると翼断面に
揚力が作用し、タービン軸が第8図のθ方向に回転し、
熱エネルギが回転エネルギに変換される。この場合、蒸
気が図の左から矢印の方向に流れる構造としているため
、タービンは図のX方向に長い構造をならざるを得ない
。用途如何によっては、X方向長さが長い事が欠点とな
る事がある。
When steam flows from the left in Figure 8 in the direction of arrow a, a lift force acts on the blade cross section, causing the turbine shaft to rotate in the θ direction in Figure 8.
Thermal energy is converted into rotational energy. In this case, since the structure is such that steam flows from the left in the figure in the direction of the arrow, the turbine has to have a long structure in the X direction of the figure. Depending on the application, the long length in the X direction may be a disadvantage.

発明が解決しようとする問題点 本発明は、以上述べたような構造の回転機械において、
多段軸流機械の軸方向(第8図のX方向)長さを削減す
ること、また、軸方向にコンパクトな軸流回転機械を実
現することにある。
Problems to be Solved by the Invention The present invention provides a rotating machine having the structure as described above.
The object of the present invention is to reduce the length in the axial direction (X direction in FIG. 8) of a multistage axial flow machine, and to realize an axial flow rotary machine that is compact in the axial direction.

問題点を解決するための手段 本発明は、上述の問題点を解決するために、次のような
手段を採っている。すなわち、単段の軸流タービンの動
翼をそれぞれ仕切板を介して多層に形成し、一層毎に動
翼の上流側に静翼を形成し、かつ、一層毎に作動流体を
反転せしめるようケーシングな形成する。
Means for Solving the Problems The present invention takes the following measures in order to solve the above-mentioned problems. In other words, the rotor blades of a single-stage axial flow turbine are formed into multiple layers with partition plates interposed between them, and the stator blades are formed on the upstream side of the rotor blades in each layer, and the casing is designed so that the working fluid is reversed in each layer. form.

作用 以上述べた手段によれば、したがって、軸方向のコンパ
クトな軸流回転機械が実現出来る。
Effect: According to the means described above, it is therefore possible to realize an axial flow rotary machine that is compact in the axial direction.

実施例 次に、本発明の第1実施例を第1図〜第3図、第2実施
例を第4図〜第7図を参照して詳述する。
Embodiment Next, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3, and a second embodiment will be described in detail with reference to FIGS. 4 to 7.

第1図の断面図において、動翼1は回転軸2に単段に形
成され、動翼lの上部に、さらに仕切板6を介して第2
の動翼1/が設けられている。
In the cross-sectional view of FIG.
A rotor blade 1/ is provided.

4は静翼で、上記動翼1の上流に流路な形成するケーシ
ング3.3′間に配されている。
Reference numeral 4 denotes a stationary blade, which is arranged between casings 3 and 3' forming a flow path upstream of the rotor blade 1.

3“は駆動流体が反転するように形成されたケーシング
、上記第2の動翼1/の上流側にはケーシング3“に固
着された第2の静翼4/が設けられている。
3'' is a casing formed so that the driving fluid is reversed, and a second stationary blade 4/ fixed to the casing 3'' is provided upstream of the second rotor blade 1/.

第2図、第3図は第1図におけるv−V、Vl−■線の
断面を示し、図下力の矢印は蒸気流れ方向を示す。
FIGS. 2 and 3 show cross sections taken along lines v-V and Vl-■ in FIG. 1, and the arrows at the bottom of the figures indicate the direction of steam flow.

蒸気はビ)から導入され、矢印5.5′、5“の如く反
転させて(ロ)に排出される。その間、静翼4、動翼1
、静翼4′、動翼1′の順に第2図、第3図に示す如(
、蒸気が流れ、第2図のLl、第3図のり、/に示す揚
力を生み出し、回転軸2を回転させる。
Steam is introduced from B), reversed as shown by arrows 5, 5' and 5'', and discharged to B).
, stator blade 4', and rotor blade 1' as shown in FIGS. 2 and 3 in this order (
, steam flows and generates the lift shown in Ll in FIG. 2 and Nori in FIG.

つまり、第1図に示す単段2層流タービンで、軸流2段
タービン並の仕事をさせる事が出来る。
In other words, the single-stage, two-layer flow turbine shown in FIG. 1 can perform work comparable to that of an axial-flow two-stage turbine.

また、第1図の6は2層流間の仕切り板となっている。Further, 6 in FIG. 1 is a partition plate between the two laminar flows.

これによって、軸方向のコンパクトな軸流回転機械が実
現できる。
This makes it possible to realize an axial flow rotary machine that is compact in the axial direction.

また、反転構造であるため、スラストアンバラン2が小
さいのでスラストベアリング負荷が小さくてすむ利点が
ある。
Further, since it is an inverted structure, the thrust unbalance 2 is small, so there is an advantage that the thrust bearing load can be small.

次に第2実施例について第4図〜第7図により記述する
Next, a second embodiment will be described with reference to FIGS. 4 to 7.

第4図の断面図に示した第2実施例は、上述の第1実施
例の2層に形成された動翼6.1′の上に、さらに第3
層目の動翼1”を仕切板6′を介して積み重ねたもので
、動翼1“の上流側には、動翼1/を通過した後の作動
流体をさらに反転させるようにケーシング3“を形成し
、同ケーシング3“に第3の静翼4”を配し、その後流
に上記動翼l“か位置している。
The second embodiment shown in the sectional view in FIG.
Layered rotor blades 1'' are stacked with partition plates 6' interposed therebetween, and a casing 3'' is provided on the upstream side of the rotor blades 1'' to further reverse the working fluid after passing through the rotor blades 1/. A third stationary blade 4'' is disposed in the casing 3'', and the rotor blade l'' is located downstream thereof.

第5図〜第7図は第4図の断面■−■、■−■、IK−
■に対応して図示したものである。
Figures 5 to 7 are cross sections of Figure 4.■-■, ■-■, IK-
This diagram corresponds to (2).

蒸気は、ヒ)から導入され、矢印5.5/、5”、51
の如(反転させて(vl)に排出される。その間、静翼
4、動翼1、静翼4/、動翼1/、静翼4′′、動翼1
”の順に第5図〜第7図に示す如く蒸気が流れ、第5図
のL□、第6図のL工′、第7図のL0′に示す揚力を
回転動翼に発生させ、回転軸2を回転させる。
Steam is introduced from A) and arrows 5.5/, 5”, 51
It is reversed and discharged as shown in (vl). Meanwhile, the stator blades 4, rotor blades 1, stator blades 4/, rotor blades 1/, stator blades 4'', rotor blades 1
The steam flows in the order shown in Figures 5 to 7, generating lift on the rotating rotor blades as shown in L□ in Figure 5, L in Figure 6, and L0 in Figure 7, causing the rotor to rotate. Rotate shaft 2.

つまり、第4図に示す単段3層流タービンで軸流3段タ
ービン並の仕事をさせることが出来る。なお、第4図で
6.61は3層流の各層間仕切板となっている。
In other words, the single-stage three-layer flow turbine shown in FIG. 4 can perform the same work as the three-stage axial flow turbine. In addition, 6.61 in FIG. 4 is a partition plate between each layer of the three-layer flow.

第3実施例については、図示しないが、第1図、第4図
から容易に想像出来る4層以上の任意の多層軸流タービ
ンも考えられる。
Regarding the third embodiment, although not shown, any multilayer axial flow turbine having four or more layers, which can be easily imagined from FIGS. 1 and 4, is also considered.

なお、上述中で多層構造具とは、2層以上、任意の数の
層状構造物を全て含むものとする。
In addition, in the above description, the multilayer structure includes all layered structures of two or more layers and any number of layers.

発明の効果 以上述べた構成によれば、第1図の単段2層流タービン
、第4図の単段3層流タービンで軸流2段あるいは3段
タービン並の仕事をさせることが可能となり、多段軸流
機械の軸方向の長さを削減でき、軸方向のコンパクトな
回転機械が実現できる。
Effects of the Invention According to the configuration described above, the single-stage two-layer flow turbine shown in FIG. 1 and the single-stage three-layer flow turbine shown in FIG. 4 can perform the same work as an axial flow two-stage or three-stage turbine. , the axial length of a multistage axial flow machine can be reduced, and a rotating machine that is compact in the axial direction can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図より第3図は本発明の第1実施例を示し、第1図
は構成を示す断面図、第2図は第1図の■−V線断面図
、第3図は第1図のM−■線の断面図、第4図より第7
図は第2実施例を示し、第4図は構成を示す断面図、第
5図は第4図の■−■線の断面図、第6図は第4図の■
−■線の断面図、第7図は第4図のIX−IX線の断面
図、第8図は従来のタービン回転軸及び回転翼の構成を
示す側面図、第9図は第8図の■−■線の断面図、第1
0図は第8図の■−■線の断面図、第11図は第8図の
IV−IV線の断面図である。 1.1’、1”・・動翼、2・・回転軸、3,3’。 3“鳴・ケーシング、4 、4’ 、 4“・・静翼、
5 、5’。 5“・・蒸気流れ方向、6.6’・・仕切板。 第1図 1.1′・・動W 2・・回#軸 第2図 V−V断面図 1−■−祈曲面 図4図 ■−YIIIC竹而図 第8図 第面図  第10図  第11図 n−:rx@hV      NN−11r[ll−f
f断+Ml第7図 バ\TK@?fD図
1 to 3 show the first embodiment of the present invention, FIG. 1 is a sectional view showing the structure, FIG. 2 is a sectional view taken along the line ■-V of FIG. 1, and FIG. A cross-sectional view of line M-■ from Fig. 4.
The figures show the second embodiment, FIG. 4 is a sectional view showing the structure, FIG. 5 is a sectional view taken along the line ■-■ in FIG. 4, and FIG.
7 is a sectional view taken along the line IX-IX in FIG. Cross section of ■-■ line, 1st
0 is a cross-sectional view taken along the line ■--■ in FIG. 8, and FIG. 11 is a cross-sectional view taken along the line IV--IV in FIG. 1.1', 1"...Rotating blade, 2...Rotating shaft, 3,3'. 3"Sound/Casing, 4, 4', 4"...Stator blade,
5, 5'. 5"... Steam flow direction, 6.6'... Partition plate. Fig. 1 1.1'... Motion W 2... Rotation # axis Fig. 2 V-V sectional view 1-■- Prayer surface drawing 4 Figure ■ - YIIIC Bamboo Figure 8 Front view Figure 10 Figure 11 n-: rx@hV NN-11r[ll-f
f cutting + Ml Figure 7 Ba\TK@? fD diagram

Claims (1)

【特許請求の範囲】[Claims] 単段の軸流タービンの動翼をそれぞれ仕切板を介して多
層に形成し、一層毎に動翼の上流側に静翼を形成し、か
つ、一層毎に作動流体を反転せしめるようケーシングを
形成した、回転機械の流体反転多層構造翼。
The rotor blades of a single-stage axial flow turbine are formed into multiple layers with partition plates interposed between each rotor blade, a stationary blade is formed on the upstream side of the rotor blade in each layer, and a casing is formed in each layer to reverse the working fluid. A fluid-inverted multilayer blade for rotating machinery.
JP13116384A 1984-06-27 1984-06-27 Blade of multilayer structure for fluid reversion in rotary machine Pending JPS6111403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13116384A JPS6111403A (en) 1984-06-27 1984-06-27 Blade of multilayer structure for fluid reversion in rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13116384A JPS6111403A (en) 1984-06-27 1984-06-27 Blade of multilayer structure for fluid reversion in rotary machine

Publications (1)

Publication Number Publication Date
JPS6111403A true JPS6111403A (en) 1986-01-18

Family

ID=15051474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13116384A Pending JPS6111403A (en) 1984-06-27 1984-06-27 Blade of multilayer structure for fluid reversion in rotary machine

Country Status (1)

Country Link
JP (1) JPS6111403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161103A (en) * 1988-12-13 1990-06-21 Shin Murata Turbine
FR3015566A1 (en) * 2013-12-23 2015-06-26 Snecma TURBOMACHINE WITH DOUBLE AXIAL TURBINE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161103A (en) * 1988-12-13 1990-06-21 Shin Murata Turbine
FR3015566A1 (en) * 2013-12-23 2015-06-26 Snecma TURBOMACHINE WITH DOUBLE AXIAL TURBINE

Similar Documents

Publication Publication Date Title
JP4241937B2 (en) Steam turbine and steam turbine blades
SE512384C2 (en) Component for a gas turbine
IT8323050A1 (en) MULTI-STAGE CENTRIFUGAL IMPELLER
JP6692635B2 (en) Connectable thread groove spacer and vacuum pump
US3292899A (en) Energy transfer machine
JPS6111403A (en) Blade of multilayer structure for fluid reversion in rotary machine
US3286984A (en) Rotary turbine
US2823894A (en) Air-cooled turbine buckets
JPH0553955B2 (en)
US760776A (en) Fluid-viscosity motor or turbine.
JPS6196103A (en) Multi-layered bucket of rotary machine
JP2560658Y2 (en) Composite gas bearing
JPS644041B2 (en)
JPH01190990A (en) Vacuum pump
JPH0278787A (en) Regenerative type turbo-machine
JP2627437B2 (en) Compound vacuum pump
JPH0454203A (en) Turbine rotor blade and turbine cascade
JPS62195495A (en) Axial flow compressor
JP2536571B2 (en) Eddy current type turbo machine
JP2000110771A (en) Turbo molecular pump
JPS61142391A (en) Multistage centrifugal pump
JP2628351B2 (en) Compound molecular pump
JPH03206398A (en) Axial flow blower
JPS60116896A (en) Vacuum pump
JP2004060626A (en) Multistage swirl type fluid machine