JPH0454203A - Turbine rotor blade and turbine cascade - Google Patents
Turbine rotor blade and turbine cascadeInfo
- Publication number
- JPH0454203A JPH0454203A JP16290390A JP16290390A JPH0454203A JP H0454203 A JPH0454203 A JP H0454203A JP 16290390 A JP16290390 A JP 16290390A JP 16290390 A JP16290390 A JP 16290390A JP H0454203 A JPH0454203 A JP H0454203A
- Authority
- JP
- Japan
- Prior art keywords
- rotor blade
- angle
- blade
- turbine
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 239000012530 fluid Substances 0.000 abstract description 19
- 230000003068 static effect Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は軸流タービンのタービン動翼に係り、特にター
ビン動翼において発生するエネルギ損失を低減し、ター
ビン性能を向上し得るタービン動翼に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a turbine rotor blade of an axial flow turbine, and in particular, to reducing energy loss occurring in the turbine rotor blade and improving turbine performance. The present invention relates to turbine rotor blades obtained.
(従来の技術) 近年5発電プラントの運転経済性を改善し。(Conventional technology) In recent years, the operating economics of five power plants have been improved.
発電効率の改善を図るためにタービン性能の向上を図る
ことが重要な課題となっている。Improving turbine performance has become an important issue in order to improve power generation efficiency.
一般に軸流タービンは、第4図に示すように、静翼外輪
1と静翼内輪2によって固定された静翼3と、回転軸4
に固定された動翼5によって段落が形成され、この段落
を軸方向に一段落または複数段落組み合せることにより
構成される。In general, an axial flow turbine consists of a stator blade 3 fixed by a stator blade outer ring 1 and a stator blade inner ring 2, and a rotating shaft 4, as shown in FIG.
A stage is formed by the rotor blades 5 fixed to the rotor blades 5, and the stage is constructed by combining one stage or a plurality of stages in the axial direction.
タービン性能向上を図るには、上記のように構成された
タービン段落において内部エネルギ損失を極力低減する
ことが重要である。タービン段落における内部エネルギ
損失には、静・動翼内にて発生する翼形損失、二次流れ
損失、漏洩損失などがある。従来は、有力な段落性能の
向上策として、特にアスペクト比が小さく静翼高さが低
い場合には静翼における二次流れ損失の低減が行なわれ
てきた。二次流れ損失の発生機構を第5図を参照して説
明する。第5図は第4図に示す静翼3を静翼3出口から
観察した斜視図である。作動流体は、隣接する静翼3a
、3b間の翼間流路を流れるときに。In order to improve turbine performance, it is important to reduce internal energy loss as much as possible in the turbine stage configured as described above. Internal energy losses in the turbine stage include airfoil loss, secondary flow loss, leakage loss, etc. occurring within the static and rotor blades. Conventionally, an effective measure to improve stage performance has been to reduce secondary flow loss in stator vanes, especially when the aspect ratio is small and the stator vane height is low. The mechanism of secondary flow loss generation will be explained with reference to FIG. FIG. 5 is a perspective view of the stator vane 3 shown in FIG. 4, observed from the exit of the stator vane 3. The working fluid flows through the adjacent stationary blades 3a.
, 3b when flowing through the interblade flow path.
流路中で円弧状に曲げられて流れる。このとき静翼3a
の背面6から腹面7方向に遠心力を生じ、この遠心力と
静圧とが平衡しているため、腹面7における静圧が高く
なり、一方背面6においては作動流体の流速が大きいた
め静圧が低い。そのため、流路内では腹面7側から背面
6側に圧力勾配を生じる。この圧力勾配は静翼外輪1と
静翼内軸2の周壁面上に形成される流速のおそい層、す
なわち境界層においても同様である。It flows in an arc shape in the flow path. At this time, the stationary blade 3a
A centrifugal force is generated from the back surface 6 toward the ventral surface 7, and this centrifugal force and static pressure are in balance, so the static pressure on the ventral surface 7 is high, while on the back surface 6, the flow velocity of the working fluid is high, so the static pressure is low. Therefore, a pressure gradient is generated in the flow path from the ventral surface 7 side to the back surface 6 side. This pressure gradient is the same in the slow flow layer, that is, the boundary layer, formed on the peripheral wall surfaces of the stator blade outer ring 1 and the stator blade inner shaft 2.
ところが、境界層付近においては流速が小さく、作用す
る遠心力も小さいため、腹面7側から背面6側への圧力
勾配に抗しきれずに腹面7側から背面6側へ向かう流れ
、すなわち二次流れ8が生じる。そして、この二次流れ
8は静翼3aの背面6側に衝突して巻上がり、静翼3a
の内軸2側および外軸1側の両接合端において、それぞ
れ二次流れ渦9a、9bを発生する。かくして作動流体
が保有するエネルギは、二次流れ渦9a、9bを形成す
るためにその一部が散逸し二次流れ損失となる。However, near the boundary layer, the flow velocity is low and the centrifugal force acting is also small, so the flow from the ventral surface 7 side to the back surface 6 side cannot resist the pressure gradient from the ventral surface 7 side to the back surface 6 side, that is, the secondary flow 8 occurs. Then, this secondary flow 8 collides with the back surface 6 side of the stator blade 3a and is rolled up.
Secondary flow vortices 9a and 9b are generated at both joint ends on the inner shaft 2 side and the outer shaft 1 side, respectively. In this way, the energy held by the working fluid is partially dissipated to form secondary flow vortices 9a and 9b, resulting in secondary flow loss.
ところで、一般的な動翼の設計法を第6図と第7図を参
照して説明する。第6図は第4図に示すA−A断面部で
あり、第7図は第4図に示す動翼のR−R断面、P−P
断面、T−T断面の重ね合せ図である。By the way, a general rotor blade design method will be explained with reference to FIGS. 6 and 7. FIG. 6 is a cross-sectional view taken along the line A-A shown in FIG. 4, and FIG.
It is a superimposed view of a cross section and a T-T cross section.
動翼の設計法として、動翼根元部直径と動翼先端部直径
との比(ボス比)が比較的小さい場合には動翼平均径上
で翼形を設計し半径方向に−様な翼列を積み重ねること
により動翼を形成する。しかしながら、ボス比が大きく
なると作動流体の流速及び流れ角度の半径方向分布を考
慮した三次元設計が行なわれる。三次元設計法は、まず
、いくつかの任意の半径方向断面にて二次元翼形を設計
し、これらを半径方向に積み重ねることにより三次元翼
形を形成する。第6図に示す二次元断面形状で考えると
、静翼3から流出した作動流体はα度の角度、および流
速Cを持つ。さらに、この静翼3から流出した作動流体
は、動翼4が回漸軸と共に周速Uにて回転しているため
に、相対流入角度βにて動翼4内に流入する。二次元断
面上における翼形は上述の相対流入角βに合せた形の翼
形となるよう設計される。それを、各々の任意の半径断
面にて設計を行なうと第7図に示すように動翼根元部断
面であるR−R断面より動翼先端部断面T−T断面へ向
って相対流入角度β1Rからβ、Tへと連続的に大きく
なるため、動翼形状はそれに合せたそれぞれの翼形とな
る。この翼形を半径方向に連続的に積み重ねることによ
り三次元形状が形成される。As a design method for rotor blades, when the ratio of the rotor blade root diameter to the rotor blade tip diameter (boss ratio) is relatively small, the airfoil shape is designed on the average diameter of the rotor blade, and the blade is shaped in the radial direction. The rows are stacked to form moving blades. However, as the boss ratio increases, a three-dimensional design takes into account the flow velocity and radial distribution of the flow angle of the working fluid. In the three-dimensional design method, first, a two-dimensional airfoil is designed with several arbitrary radial cross sections, and a three-dimensional airfoil is formed by stacking these pieces in the radial direction. Considering the two-dimensional cross-sectional shape shown in FIG. 6, the working fluid flowing out from the stationary blade 3 has an angle of α degree and a flow velocity C. Furthermore, since the rotor blade 4 is rotating at the circumferential speed U together with the rotation axis, the working fluid flowing out from the stationary blade 3 flows into the rotor blade 4 at a relative inflow angle β. The airfoil shape on the two-dimensional cross section is designed to match the above-mentioned relative inflow angle β. If this is designed at each arbitrary radius cross section, as shown in Fig. 7, the relative inflow angle β1R is from the R-R cross section, which is the rotor blade root cross section, to the rotor blade tip cross section T-T cross section. Since it increases continuously from β to T, the rotor blade shape becomes a corresponding airfoil shape. A three-dimensional shape is formed by stacking these airfoils successively in the radial direction.
前述した静翼の二次流れ損失を低減する静翼と三次元設
計の動翼との組み合せによりタービン性能向上を達成し
た例が特開平1−106903号公報に開示されている
。第8図はその従来例を示す静翼を軸方向下流側より見
た断面図である。これによれば、静翼3の両接合端部に
おける軸線を直線上に形成し、かつ上記軸線がタービン
回転中心を通る基準線に対して静翼3の腹面方向に傾斜
するように接合端を接合するとともに、静翼3の中間部
における軸線は腹面方向に彎曲するように形成した構成
となっている。このように静翼3を構成することにより
第9図に示すように子午平面から観察した流線は、静翼
外輪1および静翼内軸2近傍において半径方向に偏位し
ている。この流線の偏位は静翼外輪1および静翼内輪2
近傍の作動流体が流壁面に押圧されることを意味する。Japanese Patent Laid-Open No. 1-106903 discloses an example in which turbine performance is improved by combining a stator vane that reduces the secondary flow loss of the stator vane described above and a three-dimensionally designed rotor blade. FIG. 8 is a cross-sectional view of a stationary blade of a conventional example, viewed from the downstream side in the axial direction. According to this, the axes at both joint ends of the stator blade 3 are formed on a straight line, and the joint ends are formed so that the axis line is inclined toward the ventral surface of the stator blade 3 with respect to a reference line passing through the turbine rotation center. In addition to being joined, the stator blade 3 is configured such that its axis at the intermediate portion is curved in the ventral direction. By configuring the stator blade 3 in this way, the streamlines observed from the meridian plane are deviated in the radial direction near the stator blade outer ring 1 and the stator blade inner axis 2, as shown in FIG. The deviation of this streamline is the stator blade outer ring 1 and the stator blade inner ring 2.
This means that the nearby working fluid is pressed against the flow wall surface.
そのため、両壁面上における境界層の発達が抑止され二
次流れ渦の生成が防止される6
上記特許公報によれば、第8図に示している静翼3の両
接合端における軸線と基準線との傾斜角度θによりター
ビン段落効率が変化することを示している。それを第1
0図に示す。この図は縦軸に静翼軸線が基準線を向いた
(θ=O)タービン段落との効率比(ηb/ηa)、横
軸に静翼の両接合端における軸線と基準線との傾斜角度
θを取っている。第10図に示すように傾斜角度θには
タービン段落効率が最大となる最適な角度θ1ガ存在し
、かつタービン段落効率を向とさせている。Therefore, the development of boundary layers on both wall surfaces is suppressed, and the generation of secondary flow vortices is prevented.6 According to the above patent publication, the axis and reference line at both joint ends of the stationary blade 3 shown in FIG. This shows that the turbine stage efficiency changes depending on the inclination angle θ. that's the first
Shown in Figure 0. In this figure, the vertical axis shows the efficiency ratio (ηb/ηa) of the turbine stage with the stator blade axis facing the reference line (θ=O), and the horizontal axis shows the inclination angle between the axis and the reference line at both joint ends of the stator blade. θ is taken. As shown in FIG. 10, there is an optimum angle θ1 of inclination angle θ at which the turbine stage efficiency is maximized, and the turbine stage efficiency is directed.
(発明が解決しようとする課題)
静翼単体の性述を把握する為に、実験により全圧損失を
計測することが一般的に行なわれている。従来例である
静翼の傾斜角度θを変化させた場合の静翼の全圧損失を
第11図に示す。(Problems to be Solved by the Invention) In order to understand the characteristics of a single stator vane, it is common practice to measure the total pressure loss through experiments. FIG. 11 shows the total pressure loss of the stator vane when the inclination angle θ of the stator vane is changed in a conventional example.
これによれば、タービン段落効率が最高となる傾斜角度
θ□と比較して、傾斜角度が大きいθ2で全圧損失が小
さい。つまり、静翼単体の性能としては傾斜角度の大き
い方がより良いことを示している。それにもかかわらず
、第10図に示すように、タービン段落効率比で見れば
静翼傾斜角度θ2の場合は段落性能が劣っている。According to this, compared to the inclination angle θ□ at which the turbine stage efficiency is the highest, the total pressure loss is smaller at the inclination angle θ2, which is larger. In other words, the performance of the stator vane alone is shown to be better as the inclination angle is larger. Nevertheless, as shown in FIG. 10, when looking at the turbine stage efficiency ratio, the stage performance is poor when the stator blade inclination angle is θ2.
上記、静翼単体における性能と静翼、動翼が一対となっ
た場合の段落性能とが異なる原因を第12図、第13図
を参照して説明する。第12図は縦軸に翼高さ、横軸に
相対流入角度βをとり、動翼と静翼の相対流入、流出角
度の相違を示した図である。The reason why the performance of a single stator vane differs from the stage performance when a stator vane and rotor blade are combined will be explained with reference to FIGS. 12 and 13. FIG. 12 is a diagram showing the difference in the relative inflow and outflow angles between the moving blade and the stationary blade, with the vertical axis representing the blade height and the horizontal axis representing the relative inflow angle β.
これによれば、従来三次元設計による動翼入口部角度β
1と傾斜角度θ2を用いた場合の、静翼より流出した作
動流体の相対流高角度β2は、翼高さ中央部近傍におい
て大きな差となっている。この角度の差は動翼における
翼形損失に大きな影響を与える。静翼、動翼にかかわら
ず、設計された買入口部角度に対して実際の作動流体の
流入角が相違すると翼形損失が増大することは一般的に
知られている。特に動翼は先端部が尖角であるため、静
翼と比較して顕著な増加となる。第13図に上述の流入
角度の相違による動翼の翼形損失の増加を示す。静翼と
動翼の相対流出角度と動翼入口部角度の相違がない場合
の翼形損内失は、「従来三次元設計による動翼の翼形損
失」として−点鎖線で示されている。ところが、静翼傾
斜角度θ2を用いた場合の動翼の翼形損失は、実線で示
すように翼高さ中央部近傍を中心に大幅に増大している
。According to this, the rotor blade inlet angle β according to the conventional three-dimensional design
1 and the inclination angle θ2, the relative flow height angle β2 of the working fluid flowing out from the stationary blade has a large difference near the center of the blade height. This angular difference has a large effect on the airfoil loss in the rotor blade. Regardless of whether the blade is a stator vane or a rotor blade, it is generally known that airfoil shape loss increases if the actual working fluid inflow angle differs from the designed intake port angle. In particular, since the moving blade has a pointed tip, this is a significant increase compared to the stationary blade. FIG. 13 shows the increase in airfoil loss of the rotor blade due to the above-mentioned difference in inlet angle. The airfoil loss internal loss when there is no difference in the relative outflow angle of the stator blade and rotor blade and the rotor blade inlet angle is shown by the dotted chain line as ``airfoil loss of the rotor blade by conventional three-dimensional design.'' . However, when the stator blade inclination angle θ2 is used, the airfoil loss of the rotor blade increases significantly around the center of the blade height, as shown by the solid line.
図中、斜線で示している面積分が動翼全体における損失
増加分である。その為、傾斜角度θ2を持つ静翼は静翼
単体性能で優れているにもかかわらず、動翼における翼
形損失が増大し段落性能が低下する問題点があった。In the figure, the area indicated by diagonal lines is the increased loss in the entire rotor blade. Therefore, although the stator blade having the inclination angle θ2 has excellent performance as a single stator blade, there is a problem in that the airfoil loss in the rotor blade increases and the stage performance deteriorates.
本発明は上記問題点を解決するためになされたものであ
り、動翼における翼形損失を低減しタービン性能を向上
し得るタービン動翼を提供することを目的とする。The present invention has been made to solve the above problems, and an object of the present invention is to provide a turbine rotor blade that can reduce airfoil loss in the rotor blade and improve turbine performance.
(課題を解決するための手段)
上記目的を達成するため本発明は、動翼において、傾斜
角度θを持つ静翼の作動流体相対流出角度に合せ、動翼
入口部角度を動翼根本部分より動翼中央部分へ連続的に
減少させ、動翼中央部分より動翼先端部分へは連続的に
増大するように形成したことを特徴とする。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a rotor blade with an inlet angle of the rotor blade, which is adjusted to the relative outflow angle of the working fluid of the stator blade having an inclination angle θ, from the base portion of the rotor blade. It is characterized by being formed so that it decreases continuously toward the center of the rotor blade, and continuously increases from the center of the rotor blade to the tip of the rotor blade.
(作 用)
上記構成のタービン動翼によれば、傾斜角θを持つ静翼
の作動流体相対流高角度に合せ、動翼入口部角度を動翼
根本部分より動翼中央部分へ連続的に減少させ、動翼中
央部分より動翼先端部へは連続的に増大させることによ
り、傾斜角θを持つ静翼の作動流体相対流出角に動翼の
入口部角度を合せることが可能となる。これにより、こ
れまでの作動流体の相対流出角と動翼入口部角度の相違
により発生していた動翼での翼形損失が減少する。(Function) According to the turbine rotor blade having the above configuration, the rotor blade inlet angle is continuously adjusted from the root portion of the rotor blade to the center portion of the rotor blade in accordance with the working fluid relative flow height angle of the stator blade having the inclination angle θ. By decreasing the angle and continuously increasing it from the central part of the rotor blade to the tip of the rotor blade, it becomes possible to match the inlet angle of the rotor blade to the relative outflow angle of the working fluid of the stationary blade having an inclination angle θ. As a result, the airfoil loss in the rotor blade, which has conventionally occurred due to the difference between the relative outflow angle of the working fluid and the rotor blade inlet angle, is reduced.
上記のように本発明によれば、動翼における翼形損失が
減少しタービン性能を大幅に向上させることができる。As described above, according to the present invention, airfoil loss in the rotor blades is reduced and turbine performance can be significantly improved.
(実施例)
次に本発明の一実施例について、添付図面第1図ないし
第3図を参照して説明する。(Embodiment) Next, an embodiment of the present invention will be described with reference to the accompanying drawings FIGS. 1 to 3.
本発明によるタービン動翼を、第4図に示す従来例のタ
ービン段落と同様に動翼4根元部断面(R−R断面)、
動翼4中央部断面(P−P断面)および動翼4先端部断
面(T−T断面)において説明する。本発明のタービン
動翼各所面を重ね合せた図が第1図である。本実施例に
係るタービン動翼は、静翼より流出する作動流体の相対
流出角に合せて動翼中央部断面(P−P断面)の動翼入
口部角度を、図中、破線で示す従来の動翼中央部角度β
1Pより減少させたβxPとし、動翼根元部断面(R−
R断面)および動翼先端部断面化においては、従来と同
等の動翼入口部角度βIRI β□Pから構成されてい
る。The turbine rotor blade according to the present invention has a rotor blade 4 root section (R-R cross section) similar to the conventional turbine stage shown in FIG.
The description will be given using a cross section at the center of the rotor blade 4 (PP cross section) and a cross section at the tip of the rotor blade 4 (T-T cross section). FIG. 1 is a diagram in which various surfaces of the turbine rotor blade of the present invention are superimposed. In the turbine rotor blade according to this embodiment, the rotor blade inlet angle of the rotor blade center cross section (P-P cross section) is adjusted according to the relative outflow angle of the working fluid flowing out from the stator blade, as shown by the broken line in the figure. The rotor blade center angle β
βxP is decreased from 1P, and the rotor blade root cross section (R-
The rotor blade inlet angle βIRI β□P is the same as the conventional rotor blade inlet angle (R cross section) and rotor blade tip cross section.
第2図に本発明による翼高さ方向の動翼入口部角度分布
を示す。本発明による動翼入口部角度β: を実線、従
来三次元設計による動翼入口部角度β、を−点鎖線で示
す。本発明による動翼入口部角度β:は動翼根本部より
動翼中央部へ向って、連続的、かつ、滑らかに減少させ
、動翼中央部より動翼先端へ向って、連続的、かつ、滑
らかに増大する構成となっている。FIG. 2 shows the rotor blade inlet angle distribution in the blade height direction according to the present invention. The rotor blade inlet angle β according to the present invention is shown by a solid line, and the rotor blade inlet angle β according to the conventional three-dimensional design is shown by a dashed line. According to the present invention, the rotor blade inlet angle β: decreases continuously and smoothly from the root of the rotor blade toward the center of the rotor blade, and decreases continuously and smoothly from the center of the rotor blade toward the tip of the rotor blade. , has a structure that increases smoothly.
本実施例に係るタービン動翼において静翼より流出した
作動流体の相対流8角とタービン動翼入口部角度は一致
し、作動流体の相対流出角と動翼入口部角度の相違によ
る動翼での翼形損失の増加を解消することができる。In the turbine rotor blade according to this embodiment, the relative flow angle of the working fluid flowing out from the stator blade matches the turbine rotor blade inlet angle, and the rotor blade is caused by the difference between the relative flow angle of the working fluid and the rotor blade inlet angle. The increase in airfoil loss can be eliminated.
この動翼での損失増加を解消したタービン段落において
は、第3図に示す様に、静翼単体が優れているθ2を用
いた場合、従来段来と比較して大幅に段落効率が向上で
きる。In a turbine stage that eliminates this increase in loss in rotor blades, as shown in Figure 3, when using θ2, which is superior to a single stationary blade, the stage efficiency can be significantly improved compared to conventional stages. .
以上説明したように、本発明による動翼を用いることに
より1段落効率が大幅に向上しタービン性能の向上を図
ることができる。As explained above, by using the rotor blade according to the present invention, the one-stage efficiency can be significantly improved and the turbine performance can be improved.
第1図は本発明に係るタービン動翼の一実施例を示すタ
ービン断面重ね合せ図、第2図は本発明による動翼の流
入角分布図、第3図は本発明による動翼を用いた段落と
従来段落を比較した効率グラフ、第4図は従来タービン
段落通路部所面図、第5図は従来のタービン静翼の構造
を示す斜視図、第6図は静・動翼断面図、第7図は従来
動翼断面重ね合せ図、第8図は従来静翼を出口側より見
た断面図、第9図は従来段落における作動流体流線を示
す断面図、第10図は従来例におけるタービン効率比グ
ラフ、第11図は傾斜角度θと静翼全圧損失の関係を示
すグラフ、第12図は従来例における静・動翼の相対流
入(出)角度の関係を示すグラフ、第13図は従来の動
翼における翼形損失と翼高さの関係を示すグラフである
。
■・・・静翼外軸、 2・・・静翼内輪3・・・
静翼 4・・・回転軸5・・・動翼
6・・静翼背側7・・・静翼腹側 8
・・・二次流れ9a、b・・・二次流れ渦
代理人 弁理士 則 近 憲 佑
第1図
第
図
へ−b、X鄭倣戟鉦
第
図
ノ
第
図
第
図
ワ
O
θl
θ2
仲14両斥
θCtLe3.)
第
図
W−跳ζ A1! ヤノFig. 1 is a superimposed cross-sectional view of a turbine showing an embodiment of a turbine rotor blade according to the present invention, Fig. 2 is an inflow angle distribution diagram of a rotor blade according to the present invention, and Fig. 3 is a diagram showing an inflow angle distribution diagram of a rotor blade according to the present invention. An efficiency graph comparing the stage and conventional stage, Fig. 4 is a top view of a conventional turbine stage passage, Fig. 5 is a perspective view showing the structure of a conventional turbine stationary blade, Fig. 6 is a sectional view of the stationary and rotor blades, Fig. 7 is a cross-sectional view of a conventional rotor blade, Fig. 8 is a sectional view of a conventional stator blade viewed from the outlet side, Fig. 9 is a sectional view showing working fluid streamlines in a conventional stage, and Fig. 10 is a conventional example. 11 is a graph showing the relationship between the inclination angle θ and the total pressure loss of the stator blade. FIG. FIG. 13 is a graph showing the relationship between airfoil loss and blade height in a conventional rotor blade. ■...Stator blade outer shaft, 2...Stator blade inner ring 3...
Stationary blade 4... Rotating shaft 5... Moving blade
6. Stator blade dorsal side 7... Stator blade ventral side 8
...Secondary flow 9a, b...Secondary flow vortex agent Patent attorney Nori Ken Yu Chika Go to Figure 1-b, 14 Ryoho θCtLe3. ) Figure W-Jump ζ A1! Yano
Claims (2)
て、動翼入口部角度を動翼根元部分より動翼中央部分へ
連続的に減少させ、動翼中央部分より動翼先端部分へは
連続的に増大させるよう形成したことを特徴とするター
ビン動翼。(1) In the turbine rotor blades that make up the axial turbine stage, the rotor blade inlet angle is continuously decreased from the rotor blade root portion to the rotor blade center portion, and continuously decreased from the rotor blade center portion to the rotor blade tip portion. A turbine rotor blade characterized in that it is formed so as to increase in size.
に複数配列した静翼と、これらの静翼からの相対流出角
度に合わせた傾斜角度をもってその静翼の下流側に周方
向に複数配列した動翼とを有する軸流タービンのタービ
ン段落。(2) A plurality of stator vanes arranged in the circumferential direction with a predetermined inclination angle with respect to the radial direction, and a plurality of stator vanes arranged in the circumferential direction downstream of the stator vanes with an inclination angle that matches the relative outflow angle from these stator vanes. A turbine stage of an axial flow turbine having rotor blades.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16290390A JPH0454203A (en) | 1990-06-22 | 1990-06-22 | Turbine rotor blade and turbine cascade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16290390A JPH0454203A (en) | 1990-06-22 | 1990-06-22 | Turbine rotor blade and turbine cascade |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0454203A true JPH0454203A (en) | 1992-02-21 |
Family
ID=15763426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16290390A Pending JPH0454203A (en) | 1990-06-22 | 1990-06-22 | Turbine rotor blade and turbine cascade |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0454203A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5342170A (en) * | 1992-08-29 | 1994-08-30 | Asea Brown Boveri Ltd. | Axial-flow turbine |
EP1057969A2 (en) * | 1999-06-03 | 2000-12-06 | Ebara Corporation | Turbine blading |
JP2011524490A (en) * | 2008-07-04 | 2011-09-01 | マン・ディーゼル・アンド・ターボ・エスイー | Cascade for fluid engine and fluid engine having such cascade |
US9221209B2 (en) | 2011-01-14 | 2015-12-29 | The Procter & Gamble Company | Process for the manufacture of a container |
US9346200B2 (en) | 2011-01-14 | 2016-05-24 | The Procter & Gamble Company | Closure for a container |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5799211A (en) * | 1980-12-12 | 1982-06-19 | Toshiba Corp | Axial flow turbine |
JPH01106903A (en) * | 1987-10-21 | 1989-04-24 | Toshiba Corp | Turbine nozzle |
-
1990
- 1990-06-22 JP JP16290390A patent/JPH0454203A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5799211A (en) * | 1980-12-12 | 1982-06-19 | Toshiba Corp | Axial flow turbine |
JPH01106903A (en) * | 1987-10-21 | 1989-04-24 | Toshiba Corp | Turbine nozzle |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5342170A (en) * | 1992-08-29 | 1994-08-30 | Asea Brown Boveri Ltd. | Axial-flow turbine |
EP1057969A2 (en) * | 1999-06-03 | 2000-12-06 | Ebara Corporation | Turbine blading |
EP1057969A3 (en) * | 1999-06-03 | 2002-11-27 | Ebara Corporation | Turbine blading |
KR100802121B1 (en) * | 1999-06-03 | 2008-02-11 | 가부시키가이샤 에바라 세이사꾸쇼 | Turbine device |
JP2011524490A (en) * | 2008-07-04 | 2011-09-01 | マン・ディーゼル・アンド・ターボ・エスイー | Cascade for fluid engine and fluid engine having such cascade |
US9221209B2 (en) | 2011-01-14 | 2015-12-29 | The Procter & Gamble Company | Process for the manufacture of a container |
US9346200B2 (en) | 2011-01-14 | 2016-05-24 | The Procter & Gamble Company | Closure for a container |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100489276C (en) | Axial flow turbine | |
US6126394A (en) | Turbine nozzle and moving blade of axial-flow turbine | |
JP5909057B2 (en) | Turbine nozzle with contoured band | |
US9039357B2 (en) | Seal assembly including grooves in a radially outwardly facing side of a platform in a gas turbine engine | |
ES2381488T3 (en) | A circumferential row of aerodynamic plane members of a turbomachine | |
JP5727519B2 (en) | Vanelet of diffuser of centrifugal compressor | |
US9181816B2 (en) | Seal assembly including grooves in an aft facing side of a platform in a gas turbine engine | |
JP6514644B2 (en) | Structure and method for forcibly coupling the flow fields of adjacent wing elements of a turbomachine, and turbomachine incorporating the same | |
US20040115044A1 (en) | Vane wheel for radial turbine | |
JPS5990797A (en) | Centrifugal compressor and compression method | |
US2915279A (en) | Cooling of turbine blades | |
KR20180054661A (en) | A high-strength turbomachine impeller, a turbomachine including the impeller, and a manufacturing method | |
JPH02115596A (en) | Radial flow rotor | |
JPH04262002A (en) | Stationary blade structure for steam turbine | |
US20140286760A1 (en) | Seal assembly including grooves in an inner shroud in a gas turbine engine | |
JP2017082784A (en) | Compressor incorporating splitters | |
WO2015050676A1 (en) | Seal assembly including grooves in an aft facing side of a platform in a gas turbine engine | |
JPS6133968B2 (en) | ||
JPH0454203A (en) | Turbine rotor blade and turbine cascade | |
JP7161419B2 (en) | Method for manufacturing centrifugal rotating machine, and centrifugal rotating machine | |
JPH0478803B2 (en) | ||
JP2004263679A (en) | Axial flow turbine | |
JPH01163404A (en) | Axial turbine nozzle | |
JP7297534B2 (en) | rotary machine | |
US11236758B2 (en) | Impeller and rotary machine |