[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS607358A - Room temperature operating type gas sensor - Google Patents

Room temperature operating type gas sensor

Info

Publication number
JPS607358A
JPS607358A JP58114320A JP11432083A JPS607358A JP S607358 A JPS607358 A JP S607358A JP 58114320 A JP58114320 A JP 58114320A JP 11432083 A JP11432083 A JP 11432083A JP S607358 A JPS607358 A JP S607358A
Authority
JP
Japan
Prior art keywords
electrode
gas
platinum
air
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58114320A
Other languages
Japanese (ja)
Inventor
Tetsuo Seiyama
清山 哲郎
Noboru Yamazoe
山添 「のぼる」
Norio Miura
則雄 三浦
Hozumi Nita
二田 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP58114320A priority Critical patent/JPS607358A/en
Publication of JPS607358A publication Critical patent/JPS607358A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To eliminate the usage of a reference gas and detect a small quantity of hydrogen or carbon monoxide quickly and simply at room temperature by a method wherein a platinum detective electrode is provided to one side of a proton conductive solid and a corresponding silver electrode is provided to another side. CONSTITUTION:Platinum black 9 is applied on one side of a proton conductor 1 disc such as zirconium oxide in a circular shape with a prescribed diameter and silver powder 10 is applied on another side in the same way and pressed to adhere thereon. On a periphery of the disc a platinum wire 8 is wound as a platinum/air electrode which shows a constant potential as an external reference electrode. The same gas is let flow with the same flow speed on both electrodes in a cell. The silver electrode 10 is inactive against hydrogen and carbon monoxide in the air upto a certain concentration so that it can be used as a solid reference electrode. Therefore, the usage of a reference gas is eliminated and a small quantity of hydrogen or carbon monoxide in the air can be detected quickly and simply.

Description

【発明の詳細な説明】 た常温作動型ガスセン料に関するものである。[Detailed description of the invention] The present invention relates to a gas sensor that operates at room temperature.

特に、本発明は室温空気中で微量の水素および一酸化炭
素を電位差的に検知するに役立ち、しかもメタンおよび
プロパンに不活性な常温作動型ガスセンサーに関するも
のである。
In particular, the present invention relates to a cold-operating gas sensor useful for detecting trace amounts of hydrogen and carbon monoxide potentiometrically in room-temperature air, yet inert to methane and propane.

一般に固体電解質ガスセンザーは通常、ガルバニ−電池
: 〔対照ガス、対照電極/固体電解質/感知電極、被検ガ
ス〕の起電力( EMF, E )を利用している。
In general, solid electrolyte gas sensors usually utilize the electromotive force (EMF, E) of a galvanic cell: [reference gas, reference electrode/solid electrolyte/sensing electrode, test gas].

この種のガスセンサーは主として高温度の酸素、ハロゲ
ン、水素、SoXlNoX等の検知に利用されている。
This type of gas sensor is mainly used to detect high-temperature oxygen, halogen, hydrogen, SoXlNoX, and the like.

特に、固体電解質酸素ガスセンサーは工業用バーナおよ
び自動車エンジン用の排ガス制御系統に実用的に使用さ
れている。
In particular, solid electrolyte oxygen gas sensors are in practical use in industrial burners and exhaust gas control systems for automobile engines.

これらの固体電解質型センサーは、低温ではイオン導電
性が低下するため比較的高温例えば約3〔)0〜700
℃の温度において作動しなければならない欠点があった
Since the ionic conductivity of these solid electrolyte sensors decreases at low temperatures, they can be used at relatively high temperatures, e.g.
It had the disadvantage that it had to operate at temperatures of .

他方、プロトン導電性固体電解質、例えばリン酸ジルコ
ニウム( zr (HPO4 )2 ・nH2O )、
ドデカモリブデンリ7 酸( H, Mo.2PO4。
On the other hand, proton-conducting solid electrolytes, such as zirconium phosphate (zr (HPO4)2 .nH2O),
Dodecamolybdenyl heptacid (H, Mo.2PO4.

−nH2O)、アンチ% y酸( Sb2O, ・nH
2O)、H”− % ンモリロナイト(H−montm
orillonite)、H−Yゼオライトおよび固体
高分子電解質膜(ナフィオンI![) (Nafron
膜・デュポン社商標名)が常温における比較的高いプロ
トン伝導度を示すことが報告されている。か\るプロト
ン導電体を用いることによシ室温において空気中の微量
の水素および一酸化炭素の検出が可能となることを本発
明者らは見出している[電気化学、第50巻、P 85
8(1982)]。
-nH2O), anti%y acid (Sb2O, ・nH
2O), H”-% montmorillonite (H-montm
orillonite), H-Y zeolite and solid polymer electrolyte membrane (Nafion I! [) (Nafron
It has been reported that the membrane (trade name of DuPont) exhibits relatively high proton conductivity at room temperature. The present inventors have discovered that it is possible to detect trace amounts of hydrogen and carbon monoxide in the air at room temperature by using such a proton conductor [Electrochemistry, Vol. 50, p. 85
8 (1982)].

ただし上記のプロトン導電体を用いるガスセンサーは、
第1図に示す如き構造である。
However, the gas sensor using the above proton conductor,
The structure is as shown in FIG.

すなわち、プロトン導電体1としてナフィオン膜(厚さ
0.18M)あるいは厚さ2−3胴のディスクに加圧成
型した無機イオン交換体を用い、この両面に貴金属電極
2.4を直径10咽の円形状に圧着、蒸着るるいは無電
解メッキによp取p付け、一方を対極2、他方を検知極
4とした。これに左右よシO−リング3をはさんでガラ
ス管(内径20t+o++)で締めつけて気密性を保ち
、さらに、金線製のバネ6を先端に付けた鋼管(外径8
鴫)7で両極を左右よシ押えた構造とした。この鋼管は
ガス導入管およびリード管7として用いた。
That is, a Nafion membrane (thickness: 0.18M) or an inorganic ion exchanger pressure-molded into a disk with a thickness of 2 to 3 mm is used as the proton conductor 1, and noble metal electrodes 2.4 with a diameter of 10 mm are placed on both sides of the proton conductor 1. They were attached in a circular shape by pressure bonding, vapor deposition or electroless plating, and one side was used as the counter electrode 2 and the other as the detection electrode 4. A glass tube (inner diameter 20t+o++) is placed between the left and right O-rings 3 and tightened to maintain airtightness, and a steel tube (outer diameter 8
(Shizu) 7 has a structure in which both poles are pressed to the left and right. This steel pipe was used as a gas introduction pipe and a lead pipe 7.

センサー作動時には検知極側に被検ガスと空気との混合
ガスを、また対極側には空気だけをそれぞれ9Qcc/
minの流速で流した。
When the sensor is activated, a mixed gas of the gas to be detected and air is applied to the detection electrode side, and only air is applied to the opposite electrode side at 9Qcc/each.
It was flowed at a flow rate of min.

また、特開昭53−115293号公報には高分子固体
電解質イオン交換膜を用いた空気流中の選択されたガス
成分の濃度を検出する自己加湿式電気化学的ガス感知装
置が記載されている。
Furthermore, JP-A-53-115293 describes a self-humidifying electrochemical gas sensing device that detects the concentration of selected gas components in an air stream using a polymer solid electrolyte ion exchange membrane. .

これらのプロトン導電体型ガスセンサーは第1図に示す
如くプロトン導電体によって、検知するガス室と対照室
とを区分した構造であってガスセンサーの構造は複雑か
つ大型のものKなシ、ガスセンサーとしての実用性に乏
しかった。
As shown in Figure 1, these proton conductor type gas sensors have a structure in which a detection gas chamber and a control chamber are separated by a proton conductor, and the structure of the gas sensor is complex and large. It lacked practicality.

本発明のガスセンサーはプロトン導電体をかいして一方
側に白金極の検知極を使用し、他方側に電極の対極を使
用することによシ対照ガスの使用を不要にした常温作動
型ガスセンサーであって、室温、空気中で少量の水素ま
たは一酸化炭素を迅速かつ簡便に検知することができる
The gas sensor of the present invention uses a proton conductor and uses a platinum detection electrode on one side and a counter electrode on the other side, thereby eliminating the need for a reference gas. A sensor that can quickly and easily detect small amounts of hydrogen or carbon monoxide in the air at room temperature.

本発明のガスセンサーはガルバニ−セル(対照電極):
空気、Pt(又はAg ) /プロトン固体導電体/P
t%被検ガス(感知電極)よシなる。
The gas sensor of the present invention has a galvanic cell (reference electrode):
Air, Pt (or Ag) / Proton solid conductor / P
t% of the gas to be detected (sensing electrode).

本発明のセンサーは水素および一酸化炭素に対して応答
速度が速く、シかも高感度を示す一方CH4、C8H,
に対しては不活性である。
The sensor of the present invention has a fast response speed and high sensitivity for hydrogen and carbon monoxide, while CH4, C8H,
It is inactive against.

ガス検知機構は後述するように感知用白金電極における
混成電位を利用している。銀電極は被検ガスに対して不
活性であることが判明したため、これを対照極として使
用することによって対照ガス(空気)から被検ガスを分
離する必要がない、J\型化したセンサーの製造が可能
になった。本発明のセンサーは小型(φ4 tan X
 t 8 ttH)で、約1ケ月の期間満足すべき安定
性を示して作動した。
The gas detection mechanism utilizes a mixed potential at a sensing platinum electrode, as described below. Since the silver electrode was found to be inert to the test gas, by using it as a control electrode, it was possible to create a J\-type sensor, which eliminates the need to separate the test gas from the reference gas (air). Manufacture is now possible. The sensor of the present invention is small (φ4 tan
t 8 ttH) and operated with satisfactory stability for a period of approximately one month.

ことに、センサーの作動機構について説明する。本発明
の水素センサーへの適用を考えた場合、空気中の微量水
素に対して次の電位挙動を起す。
In particular, the operating mechanism of the sensor will be explained. When considering the application of the present invention to a hydrogen sensor, the following potential behavior occurs with respect to trace amounts of hydrogen in the air.

空気中の酸素の電気化学的還元反応(1)と微量に存在
する水素の酸化反応(2)との両反応が検知極において
同時に起るため一種の局部電池が形成される。
Since both the electrochemical reduction reaction (1) of oxygen in the air and the oxidation reaction (2) of hydrogen present in trace amounts occur simultaneously at the sensing electrode, a type of local battery is formed.

’/202+2H++2e −+ H20(11H2−
+ 2H++26 (21 画反応の電流値が等しくなる電位、すなわち混成電位に
よって検知極の電位が決定されると考えることができる
。第2図に示す典型的な内部分極曲線において式(1)
に対する分極曲線と式(2) K対する分極曲線との交
点が混成電位(E、、、)を示している。
'/202+2H++2e −+ H20(11H2−
+ 2H++26 (21 It can be considered that the potential of the sensing electrode is determined by the potential at which the current value of the image reaction becomes equal, that is, the hybrid potential. In the typical internal polarization curve shown in Fig. 2, Equation (1)
The intersection of the polarization curve for K and the polarization curve for K in equation (2) indicates the hybrid potential (E, , , ).

一方空気だけを流している対極は式(1)の反応の平衝
電位(E(1) )を示しているため検知極の電位(E
S)はIEM−E、Iであたえられる。
On the other hand, the counter electrode through which only air is flowing shows the equilibrium potential (E(1)) of the reaction of equation (1), so the potential of the sensing electrode (E
S) is given by IEM-E, I.

従ってlEs1は式(1)の電極反応のいわば過電圧に
相肖し、その分極曲線は式(3)のターフエル式(’p
afel)であたえられるはずであるが、これは実測に
よシ確認された。
Therefore, lEs1 corresponds to the so-called overvoltage of the electrode reaction in equation (1), and its polarization curve is the Terfel equation ('p
afel), but this was confirmed by actual measurements.

lEsI=lE(M)−E(1)l=a+b%+(1)
 (3)i(2)”= kCH! (4) IE 1−=a+b+Jja、tcH!(5)一方式(
2)の反応は水素濃度が低いためガス拡散律速となシ、
分極曲線には限界電流があられれ、その電流値(i(2
))は式(4)の如く水素濃度(CH2:)に比例する
と考えられるが、この点もはy実験的に確認された。混
成電位(EM)では1(1)=’(2)であるので式(
5)が得られる。
lEsI=lE(M)-E(1)l=a+b%+(1)
(3) i(2)”= kCH! (4) IE 1−=a+b+Jja, tcH! (5) One-way equation (
The reaction 2) is rate-limited by gas diffusion because the hydrogen concentration is low;
There is a limiting current in the polarization curve, and its current value (i(2
)) is considered to be proportional to the hydrogen concentration (CH2:) as shown in equation (4), and this point was also experimentally confirmed. In the mixed potential (EM), 1(1)='(2), so the formula (
5) is obtained.

l Esl =a’ −1−b k’l CH,(6)
(a、 b、 kXa’は定数を表わす)従ってIF5
1は水素濃度の対数に比例し、その傾きは式(1)の分
極曲線の傾き、すなわちターンエルスロープ(Tafe
l 5lope ) (b)と一致することになる。実
際に本発明のセンサーの検知極での式(1)の反応の分
極曲線を測定したところ(b)の値として100〜】3
omV/decadeを得ておシ、これは第3図に示す
検知極電位と2%以下の水素濃度の対数との関係を示す
直線における傾斜約140mV/decadeに近似し
ている。
l Esl =a' -1-b k'l CH, (6)
(a, b, kXa' represent constants) Therefore, IF5
1 is proportional to the logarithm of the hydrogen concentration, and its slope is the slope of the polarization curve in equation (1), that is, the turnel slope (Tafe
l 5lope ) (b). When we actually measured the polarization curve of the reaction of formula (1) at the sensing electrode of the sensor of the present invention, the value of (b) was 100~]3
omV/decade is obtained, which approximates the slope of about 140 mV/decade in the straight line showing the relationship between the sensing electrode potential and the logarithm of the hydrogen concentration of 2% or less shown in FIG.

本発明のガスセンサーの構造を第4図に示す。The structure of the gas sensor of the present invention is shown in FIG.

第4図において、プロトン導電体1としてリン酸ジルコ
ニウムを用いた。これに結合剤としてテフロン粉末を6
0重量%混合し2500イスクの片面に白金黒9を、他
方の面罠銀粉末10を直径8鰭の円形状に塗シ圧着した
In FIG. 4, zirconium phosphate was used as the proton conductor 1. Add Teflon powder to this as a binder.
Platinum black 9 was mixed on one side of 2500 isks, and trap silver powder 10 was applied on the other side in a circular shape with a diameter of 8 fins and pressed.

またディスクの外周に白金線を巻きつけて白金/空気電
極として一定の電位を示す外部参照電極とした。
A platinum wire was also wound around the outer periphery of the disk to serve as a platinum/air electrode and an external reference electrode exhibiting a constant potential.

セルの内部には両極とも同じガスを90cc/分の速度
で流通し、空気から被検ガスへの切シ換えは四方コック
を用い、両極側において同時に実施した。被検ガスを流
通したときのセンサーの応答は外部参照電極に対する銀
電極訃よび白金電極の電位変化を2台のエレクトロメー
ターを用いて同時測定により行った。
The same gas was passed through the cell at both poles at a rate of 90 cc/min, and switching from air to the test gas was performed simultaneously at both poles using a four-way cock. The response of the sensor when the test gas was passed was determined by simultaneously measuring potential changes of the silver electrode and the platinum electrode with respect to an external reference electrode using two electrometers.

なお、センサー特性の実用的な測定は第5図に示す回路
によって行うことができる。被検ガスとして空気中に2
000 pImの水素を含むガスを用いたときの銀電極
および白金電極の電位変化を第6図に示した。第6図よ
り白金電極は被検ガスにより速やかに電位が変化するの
に対し、銀電極では電位は全く変化しないことがわかっ
た。また被検ガス中の水素濃度をかえて両電極の水素濃
度依存性を調べた。
Incidentally, practical measurement of the sensor characteristics can be carried out using the circuit shown in FIG. 2 in the air as the test gas
FIG. 6 shows potential changes of the silver electrode and the platinum electrode when a gas containing hydrogen of 000 pIm was used. From FIG. 6, it was found that the potential of the platinum electrode changes rapidly depending on the gas to be detected, whereas the potential of the silver electrode does not change at all. We also investigated the hydrogen concentration dependence of both electrodes by changing the hydrogen concentration in the sample gas.

白金電極の方は145 mV / decade ty
)濃度依存性を示しているのに対して銀電極の方は殆ん
ど変化していない。
145 mV/decade ty for platinum electrode
) shows concentration dependence, whereas the silver electrode shows almost no change.

従って銀電極は空気中の水素濃度が1%程度までは固体
対照電極として使用できる。
Therefore, the silver electrode can be used as a solid reference electrode up to a hydrogen concentration of about 1% in the air.

以上にのべた如く、本発明のセンサーでは対照電極とし
て銀を極を用いることによって対照ガスと被検カスとの
分離が不必要となり、センザー素子全体を被検ガスにさ
らすことができるため素子の簡素化および小型化が可能
となる。これが本発明の特徴の一つである。
As mentioned above, in the sensor of the present invention, by using a silver pole as the reference electrode, there is no need to separate the reference gas from the sample gas, and the entire sensor element can be exposed to the sample gas. Simplification and miniaturization are possible. This is one of the features of the present invention.

また銀電極の代わシに金電極又は炭素電極を用いた場合
でもはソ同様な結果が得られた。
Similar results were obtained when a gold electrode or a carbon electrode was used instead of a silver electrode.

本発明のガスセンサーの他の改良型は板状又は筒状の絶
縁基体の表面に対向して一方側に白金ペーストの印刷を
施すかまたは白金線を巻き付けたものを検知極とし、他
方側に銀ペーストの印刷を施すかまたは銀線を巻き付け
たものを対極とし、該両電極と接触するようにプロトン
導電性固体電解質で上記両電極を徨った常温作動型ガス
センサーである。
Another improved type of gas sensor of the present invention has a plate-shaped or cylindrical insulating substrate, on one side of which is printed with platinum paste or wrapped with platinum wire, as the detection electrode, and on the other side. This is a room-temperature-operating gas sensor in which a counter electrode is printed with silver paste or wrapped with silver wire, and a proton-conductive solid electrolyte is placed between the two electrodes so as to be in contact with the two electrodes.

本発明の小型化したガスセンサー素子の他の実施前a!
は第7図に示した。
Another implementation of the miniaturized gas sensor element of the present invention a!
is shown in Figure 7.

亮7図において、大きさ直径2鰭×長さ8鰭のアルミナ
管に銀a(どちらも直径0.31m)を4wnの間隔で
2巻き程度巻きつけ、そのうえからプロトン導電体のペ
ーストv厚さ0.5調程度に塗り、室温で乾燥させたも
のである。
In Figure Ryo 7, silver a (both diameter 0.31 m) is wrapped around 2 turns at an interval of 4wn around an alumina tube of size 2 fins in diameter x 8 fins in length, and then a proton conductor paste v thickness is applied. It was applied to about 0.5 tone and dried at room temperature.

ペー ス) は!Jン酸ジルコニウム(Zr(PO4)
z・nH2O)とテフロン水性分散液(テフロン粉末6
0重量%含む)とを1:1(容量)で混合して線ったも
のである。
Pace) Ha! Zirconium phosphate (Zr(PO4)
z・nH2O) and Teflon aqueous dispersion (Teflon powder 6
(containing 0% by weight) at a ratio of 1:1 (volume).

従って、素子を乾燥した状態ではテフロン粉末を30重
量%程度含んでいることになる。
Therefore, in a dry state, the element contains about 30% by weight of Teflon powder.

テフロン粉末を添加する目的は素子の機械的強度を増す
ためでセンサーの%性には何等影響をあたえない。セン
サー特性の測定法は第4図に示す素子の場合と同様であ
った。被検ガス中の水素濃度をかえて両電極電位の水素
濃度依存性を第8図に示した。また第9図では空気中の
水素濃度が8001JJ)mおよび2oooppmの被
検ガスについての応答曲線を示している。応答感度の9
0%に達するに要する時間(応答時I′i:1j)Vi
前者の場合約40秒、後者の場合約20秒でめった。更
に本発明のセンサーの感度(EMF) ’((第10図
に示した。
The purpose of adding Teflon powder is to increase the mechanical strength of the element, and it does not affect the % performance of the sensor in any way. The method for measuring sensor characteristics was the same as for the device shown in FIG. FIG. 8 shows the hydrogen concentration dependence of both electrode potentials while changing the hydrogen concentration in the test gas. Further, FIG. 9 shows response curves for test gases with hydrogen concentrations in the air of 8001 JJ)m and 200 ppm. Response sensitivity 9
Time required to reach 0% (response time I'i: 1j) Vi
In the former case, it took about 40 seconds, and in the latter case, it took about 20 seconds. Furthermore, the sensitivity (EMF) of the sensor of the present invention (shown in FIG. 10).

第10図において、本発明のセンサーの感度(EMF)
 O水素濃度依存性(3o o ppm 〜to。
In FIG. 10, the sensitivity (EMF) of the sensor of the present invention
O hydrogen concentration dependence (3 o ppm ~to.

%)を曲線(A)に示し、被検ガス中の水素濃度が90
%減少するまでの時間(応答時間)を曲線CB)に示し
た。応答感度と被検ガス中の水素濃度とは300 pp
mから1%までははy直線関係忙あることがわかった。
%) is shown in curve (A), and the hydrogen concentration in the test gas is 90%.
The time until the percentage decrease (response time) is shown in curve CB). The response sensitivity and hydrogen concentration in the test gas are 300 pp.
It was found that there is a y-linear relationship from m to 1%.

一方、応答時間は水素濃度が低くなるに従って長くなる
傾向にある。
On the other hand, the response time tends to increase as the hydrogen concentration decreases.

本発明のガスセンサーの長期安定試験結果は第11図に
示した。空気中の水素濃度が2oooppmの場合、お
よび1.3%(容量)の場合のEMF /rnVの値は
約1ケ月間安定でしかも再現性がよかった。
The long-term stability test results of the gas sensor of the present invention are shown in FIG. The EMF/rnV values when the hydrogen concentration in the air was 2oooppm and 1.3% (volume) were stable for about one month and had good reproducibility.

〔旧本発明のガスセンサー全一酸化炭素に適用した場合 本発明のガスセンサーを一酸化炭素に適用した場合の応
答曲線を第12図に示した。被検ガスとして空気中に1
201)pmの一酸化炭素を含むガスを使用した。応答
は迅速でしかも検知電極電位は第13図に示す如く一酸
化炭素濃度の対数値に比例する。これは被検ガスとして
水素ガスを使用した場合と同様でらった。
[When the gas sensor of the present invention is applied to total carbon monoxide The response curve when the gas sensor of the present invention is applied to carbon monoxide is shown in FIG. 12. 1 in the air as the test gas
201) A gas containing pm of carbon monoxide was used. The response is rapid and the sensing electrode potential is proportional to the logarithm of the carbon monoxide concentration, as shown in FIG. This was similar to when hydrogen gas was used as the test gas.

混成電極電位は式(2)および(7)によって決定され
ると考える。
We consider that the hybrid electrode potential is determined by equations (2) and (7).

Co + H2O→Co2+21 +28 (71この
ガスセンサーは空気中のメタン(1500ppm )お
よびプロパン(7000pI)m ) K対して不活性
である。本発明のガスセンサーによって空気中に存在す
る水素または一酸化炭素全選択的に検知することができ
る。
Co + H2O → Co2+21 +28 (71 This gas sensor is inert to methane (1500 ppm) and propane (7000 pI) m ) K in air. The gas sensor of the present invention can selectively detect hydrogen or carbon monoxide present in the air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプロトン導電体を用いたガスセンサーの
構造を示す図、 第2図は典型的な内部分極曲線を示す図、第3図は検知
極電位と被検ガス中の水素濃度との関係を示す図、 第4図は本発明のガスセンサーの構造を示す図、 第5図はセンサー特性の実用的な測定回路図、 第6図は本発明のガスセンサーの電位変化を示す図、 第7図は本発明の改良型ガスセンサーの構造を示す図、 第8図は被検ガス中の水素濃度依存性を示す図、 第9図は被検ガス中の水素濃度と応答時間との関係を示
す図、 第10図の曲fi!Aは被検ガス中の水素濃度依存性を
示し、曲線Bは被検ガス中の水素濃度に対する応答時間
を示す図、 第11図は本発明のガスセンサーの長期安定試験結果を
示す図、 第12図は本発明のガスセンサーによる被検ガス中の一
酸化炭素に対する応答曲線を示す図、 第13図は被検ガス中の一酸化炭素濃度に対する感応電
極電位を示す図である。 第1図、第4図、vJ7図において、 1・・・プロトン導電体、2・・・白金対極、3・・・
O−リング、4・・・検知極(白金極)、5・・・ガラ
ス管、6・・・金製スプリング、7・・・銅管、8・・
・外部参照電極(白金香気)、9・・・検知極(白金極
)、10・・・対極(電極)、11・・・銀線、 12
・・・白金線、13・・・アルミナ管、 1斗・・・プロトン導電体とテフロン粉末との混合物。 代理人 三 宅 正 夫 他2名 第 2 図 Hl 1= I(2) しogi 第 3 図 H2濃 g (voL ’/6) 第 4 図 第 5 図 第 6 図 第 7 図 第 8 図 H2J 度/ppm 第9図 時間(分) 第 10 図
Figure 1 shows the structure of a gas sensor using a conventional proton conductor, Figure 2 shows a typical internal polarization curve, and Figure 3 shows the relationship between the sensing electrode potential and the hydrogen concentration in the sample gas. FIG. 4 is a diagram showing the structure of the gas sensor of the present invention. FIG. 5 is a circuit diagram for practical measurement of sensor characteristics. FIG. 6 is a diagram showing potential changes of the gas sensor of the present invention. , Fig. 7 is a diagram showing the structure of the improved gas sensor of the present invention, Fig. 8 is a diagram showing the dependence of hydrogen concentration in the test gas, and Fig. 9 is a diagram showing the hydrogen concentration in the test gas and the response time. Figure 10 shows the relationship between the songs fi! Curve A shows the hydrogen concentration dependence in the test gas, curve B shows the response time to the hydrogen concentration in the test gas, FIG. 11 shows the long-term stability test results of the gas sensor of the present invention, FIG. 12 is a diagram showing the response curve of the gas sensor of the present invention to carbon monoxide in the test gas, and FIG. 13 is a diagram showing the sensitive electrode potential with respect to the carbon monoxide concentration in the test gas. In Figures 1, 4, and vJ7, 1... proton conductor, 2... platinum counter electrode, 3...
O-ring, 4...Detection electrode (platinum electrode), 5...Glass tube, 6...Gold spring, 7...Copper tube, 8...
・External reference electrode (platinum scent), 9... Sensing electrode (platinum electrode), 10... Counter electrode (electrode), 11... Silver wire, 12
...Platinum wire, 13...Alumina tube, 1D...Mixture of proton conductor and Teflon powder. Agent Masao Miyake and 2 others Fig. 2 Hl 1= I (2) Shiogi Fig. 3 H2 concentration g (voL '/6) Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. H2J degree /ppm Figure 9 Time (minutes) Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1) プロトン導電性固体電解質をかいして一方側全
検知極とし、他方側を対極とし、検知極として白金極全
使用し、対極として電極を使用することを特徴とする常
温作動型ガスセンサー。
(1) A room-temperature-operating gas sensor characterized by using a proton conductive solid electrolyte to serve as a full detection electrode on one side, a counter electrode on the other side, a platinum electrode as the detection electrode, and an electrode as the counter electrode. .
(2)板状または筒状の絶縁基体の表面に対向して一方
側に白金電極を設け、他方側に銀電極金膜け、該両電極
と接触するようにプロトン導電性固体電解質で上記両電
極を覆うことを特徴とする常温作動型ガスセンサ0
(2) A platinum electrode is provided on one side facing the surface of a plate-shaped or cylindrical insulating substrate, a silver electrode is covered with a gold film on the other side, and a proton-conductive solid electrolyte is placed in contact with both electrodes. Room temperature operating type gas sensor 0 characterized by covering electrodes
JP58114320A 1983-06-27 1983-06-27 Room temperature operating type gas sensor Pending JPS607358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58114320A JPS607358A (en) 1983-06-27 1983-06-27 Room temperature operating type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58114320A JPS607358A (en) 1983-06-27 1983-06-27 Room temperature operating type gas sensor

Publications (1)

Publication Number Publication Date
JPS607358A true JPS607358A (en) 1985-01-16

Family

ID=14634889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114320A Pending JPS607358A (en) 1983-06-27 1983-06-27 Room temperature operating type gas sensor

Country Status (1)

Country Link
JP (1) JPS607358A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172256A (en) * 1986-01-27 1987-07-29 Figaro Eng Inc Apparatus for detecting proton conductor gas
US4718991A (en) * 1986-01-27 1988-01-12 Figaro Engineering Inc. Proton conductor gas sensor and method of detecting gas using proton conductor gas sensor
JPS6367562A (en) * 1986-09-10 1988-03-26 Tokuyama Soda Co Ltd Dissolved oxygen sensor
JPH01221655A (en) * 1988-03-01 1989-09-05 Hitachi Ltd Method and instrument for measuring hydrogen concentration by using fuel battery
US8097136B2 (en) 2004-02-19 2012-01-17 Niigata Tlo Corporation Hydrogen gas sensor
JP2017044576A (en) * 2015-08-26 2017-03-02 国立研究開発法人産業技術総合研究所 Gas sensor and method of detecting gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172256A (en) * 1986-01-27 1987-07-29 Figaro Eng Inc Apparatus for detecting proton conductor gas
US4718991A (en) * 1986-01-27 1988-01-12 Figaro Engineering Inc. Proton conductor gas sensor and method of detecting gas using proton conductor gas sensor
JPS6367562A (en) * 1986-09-10 1988-03-26 Tokuyama Soda Co Ltd Dissolved oxygen sensor
JPH01221655A (en) * 1988-03-01 1989-09-05 Hitachi Ltd Method and instrument for measuring hydrogen concentration by using fuel battery
US8097136B2 (en) 2004-02-19 2012-01-17 Niigata Tlo Corporation Hydrogen gas sensor
JP2017044576A (en) * 2015-08-26 2017-03-02 国立研究開発法人産業技術総合研究所 Gas sensor and method of detecting gas

Similar Documents

Publication Publication Date Title
JP3090479B2 (en) Gas sensor
US5573648A (en) Gas sensor based on protonic conductive membranes
US4227984A (en) Potentiostated, three-electrode, solid polymer electrolyte (SPE) gas sensor having highly invariant background current characteristics with temperature during zero-air operation
JP2004219405A (en) Gas sensor
Miura et al. An improved type of proton conductor sensor sensitive to H2 and CO at room temperature
JPS607358A (en) Room temperature operating type gas sensor
Samec et al. Solid‐state hydrogen sensor based on a solid‐polymer electrolyte
JPH0640092B2 (en) Humidity measurement method
JPH0131586B2 (en)
US4973395A (en) Humidified high sensitivity oxygen detector
JP3449642B2 (en) Carbon monoxide sensor
CA2260563C (en) Hydrogen sensor using a solid hydrogen ion conducting electrolyte
JP4465677B2 (en) Hydrogen gas detector
Miyazaki et al. A new potential‐type humidity sensor using EMD‐based manganese oxides as a solid electrolyte
JP4308223B2 (en) Gas sensor for ammonia, ammonia detection method
JPS63231258A (en) Sensor
JPS58143263A (en) Gas sensor
JP3387611B2 (en) CO gas sensor and CO gas detection method
RU2053506C1 (en) Solid electrolyte sensor for gas analysis
GB1597413A (en) Gas sensors
JPH03287061A (en) Gaseous hydrogen sensor element
JP2001153837A (en) Gas concentration detector and gas concentration measuring method
JP4996171B2 (en) Hydrogen gas sensor
CA1114021A (en) Potentiostated, three-electrode, solid polymer electrolyte (spe) gas sensor having highly invariant background current characteristics with temperature during zero-air operation
KR20240145699A (en) Formaldehyde gas sensor and measuring system operating at room temperature