[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5991358A - Nitrous gas sensor - Google Patents

Nitrous gas sensor

Info

Publication number
JPS5991358A
JPS5991358A JP57200894A JP20089482A JPS5991358A JP S5991358 A JPS5991358 A JP S5991358A JP 57200894 A JP57200894 A JP 57200894A JP 20089482 A JP20089482 A JP 20089482A JP S5991358 A JPS5991358 A JP S5991358A
Authority
JP
Japan
Prior art keywords
laughing gas
gas sensor
nitrous gas
sensor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57200894A
Other languages
Japanese (ja)
Other versions
JPH0226741B2 (en
Inventor
Kenji Kunihara
健二 国原
Tomio Sugiyama
富夫 杉山
Yoshikazu Hirose
広瀬 善和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP57200894A priority Critical patent/JPS5991358A/en
Publication of JPS5991358A publication Critical patent/JPS5991358A/en
Publication of JPH0226741B2 publication Critical patent/JPH0226741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enable the continuous measurement of nitrous gas and to contrive to reduce cost, by combining an oxygen ion conductive solid electrolyte and a nitrous gas decomposition catalyst. CONSTITUTION:After porous platinum electrodes 2 are baked to both surfaces of a zirconia disc 1, platinum lead wires 3 are attached to said electrodes 2 and a nitrous gas decomposition catalyst 4 is subsequently baked to the single surface of the disc 1 to obtain a nitrous gas sensor. When a gaseous mixture is prepared by mixing gas containing oxygen in predetermined concn. and nitrous gas and flowed to the nitrous gas sensor, electromotive force is generated in the nitrous gas sensor by the difference of oxygen concn. The concn. of the nitrous gas in the gaseous mixture can be calculated from said electromotive force.

Description

【発明の詳細な説明】 この発明は麻酔ガスなどに含まれている笑気(亜酸化窒
素:N、0)の濃度を測定するための新月。
[Detailed Description of the Invention] This invention is a new moon for measuring the concentration of laughing gas (nitrous oxide: N, 0) contained in anesthetic gas, etc.

なセンサに関するものである。この44jiのセンサに
は優れた精度応答性、安定性を有するこさの他に安価で
あることが望まれている。
This is related to a sensor. The 44ji sensor is desired to have excellent accuracy, response, and stability, as well as to be inexpensive.

この種の従来技術として、赤外線式笑気分析計あるいは
ガスクロマトグラフィーが知られている。
As this type of conventional technology, an infrared laughing gas analyzer or gas chromatography is known.

しかし、いずれも高価であり、さらにカスクロマトグラ
フィーには連続測定が出来ないという欠めがある。
However, both methods are expensive, and gas chromatography has the disadvantage of not being able to perform continuous measurements.

この発明は、上述の欠点を除去しで、連続測定可能でか
つ安価な笑気センサを4ノー供することを目的とする。
The object of the present invention is to eliminate the above-mentioned drawbacks and provide a laughing gas sensor that is capable of continuous measurement and is inexpensive.

現在、多くの病院で全身麻酔あるいは棺神鎮静を目的に
麻酔カスが使用されている。この麻酔ガスさして、一般
に笑気を含むガスが用いられているが、目的、患者の容
態に応じて笑気の濃度を10〜30 vo1%の範囲で
変化させて(酸素あるいは空気を用いて混合調整する)
使用しでいる。混合調整後の麻酔カス中の笑気濃度は、
赤外線式笑気分析計あるいはガスクロマトグラフィー等
を用いて測定することが可能であるが、いずれも高価で
あるため使用されていないのが実情である。
Currently, anesthetic scum is used in many hospitals for the purpose of general anesthesia or sedation. This anesthetic gas is generally a gas containing laughing gas, but depending on the purpose and patient's condition, the concentration of laughing gas can be varied in the range of 10 to 30 vol. (mixed with oxygen or air). adjust)
Already used. The concentration of laughing gas in the anesthesia scum after mixing is:
It is possible to measure using an infrared laughing gas analyzer or gas chromatography, but the reality is that they are not used because they are expensive.

本発明者らは、上記目的等に利用可能な安価な笑気セン
サを開発することを目的に櫨々の検討を重ねた結果、酸
素イオン導電性固体電解質と笑気分解触媒とを組み合わ
せることによって、安価でかつ優れた性能を有する笑気
センサが得られることを見い出した。
The inventors of the present invention have conducted extensive studies with the aim of developing an inexpensive laughing gas sensor that can be used for the above purposes. It was discovered that a laughing gas sensor that is inexpensive and has excellent performance can be obtained.

以下実施例をあげて、本発明の自答を具体的に説明する
The advantages of the present invention will be specifically explained below with reference to Examples.

実施例1゜ l)笑気センサ(1)の作製 第1図に示す、直径6.4mm、厚みが1,5門の形状
を有する8、 0 mo1%のイツトリアで安定化され
たジルコニア円板1の両面に内径4閉の多孔ノI(白金
電極(厚み:約3μn1)2を焼(=Jりた後%内径0
.2門の白金リード線3を取り付ける。次に、ジルコニ
ア円板の片面に笑気分解触媒4を焼(;Jけて笑気セン
サを得る。笑気分解触媒は約50TT?/gの比表面積
を有する酸化コバル) (Co3U、)に適当量のシリ
カゾルを加えて粘度調整したものをシート状に成形し、
120°0で乾燥後、空気中で500”0,2時間焼成
する。得られた触媒シートを破砕して200〜325メ
ツシユに整粒したものに、適当量のシリカゾルを加えて
ペースト状にする。
Example 1゜l) Preparation of laughing gas sensor (1) A zirconia disk stabilized with 8.0 mo1% ittria having a diameter of 6.4 mm and a thickness of 1.5 gates as shown in Fig. 1. After firing (=J) a porous hole I (platinum electrode (thickness: approx. 3 μm)) with an inner diameter of 4 on both sides of 1, the inner diameter was 0.
.. Attach the two platinum lead wires 3. Next, a laughing gas decomposition catalyst 4 is burned on one side of the zirconia disk to obtain a laughing gas sensor.The laughing gas decomposition catalyst is cobal oxide (Co3U, ) having a specific surface area of about 50TT?/g. Add an appropriate amount of silica sol to adjust the viscosity and form it into a sheet.
After drying at 120°0, it is fired in air for 500"0.2 hours. The obtained catalyst sheet is crushed and sized into 200-325 meshes, and an appropriate amount of silica sol is added to make it into a paste. .

次に、ペーストをジルコニア円板の片面に約03鴫の厚
さで塗付した後、空気中5 (10’(J 、 2時間
の条件で焼付けて笑気センサ(1)を得た。
Next, the paste was applied to one side of a zirconia disk to a thickness of about 0.3 mm, and then baked in air for 10 minutes (J, 2 hours) to obtain a laughing gas sensor (1).

2)性能評価装置 上述の方法で作製した笑気センサ(1)を第2図に示し
た装置を用いて性能評価を行なった。
2) Performance Evaluation Apparatus The performance of the laughing gas sensor (1) produced by the method described above was evaluated using the apparatus shown in FIG.

ヒータ5を持つ゛電気炉6中に挿入された石英製反応管
(中心部内径10 mm ) 7の中心部にアルミナ製
の絶縁管8に固定された笑気センサ9がくるように、シ
リコーンゴム栓lOを用いて管8を管7内にセットする
。白金リード線3は絶縁管8の先端部で無機接着剤10
によって固定、シールされている。
Silicone rubber was placed so that the laughing gas sensor 9 fixed to the alumina insulating tube 8 was placed in the center of the quartz reaction tube (center inner diameter 10 mm) inserted into the electric furnace 6 with the heater 5. Set tube 8 into tube 7 using stopper lO. The platinum lead wire 3 is coated with an inorganic adhesive 10 at the tip of the insulating tube 8.
Fixed and sealed by.

測定カスは、笑気および空気を市販の標準ガス発生機(
第2図では省略されている)を用いて所定の笑気濃度に
なるように混合したものを、流量0.5t/dの条件で
反応管人口11よりハニカム状のコージェライト製整流
層12を経て笑気センサ部へ導入し、反応管出口13よ
り系外へ排気する。熱電対14を用いてセンサ部9の温
度を監視しつつ、発生した起電力を市販のディジタル・
マルチメータ15を用いて測定した。
The measurement residue is laughing gas and air using a commercially available standard gas generator (
A honeycomb-shaped cordierite rectifying layer 12 is passed through the reaction tube 11 at a flow rate of 0.5 t/d. The gas is then introduced into the laughing gas sensor section and exhausted to the outside of the system through the reaction tube outlet 13. While monitoring the temperature of the sensor section 9 using the thermocouple 14, the generated electromotive force is measured using a commercially available digital
Measurement was performed using a multimeter 15.

第1表 センサ起電力R” (m V )は、いずれも笑気分子
91C触媒を焼付けた電極側が正となる。これより、火
気分解触媒を焼付けた電極側で笑気(N20 )が触媒
によって反応(11のように分解され、生成したj゛1
!素により両市極間に酸素濃度差か生じ、両電極間に起
電力が発生したものと考えられる。
The sensor electromotive force R'' (mV) in Table 1 is positive on the electrode side where the laughing gas molecule 91C catalyst is baked.From this, it can be seen that laughing gas (N20) is catalyzed on the electrode side where the fire decomposition catalyst is baked. Reaction (j゛1 produced by decomposition as in 11
! It is thought that this caused a difference in oxygen concentration between the two electrodes, and an electromotive force was generated between the two electrodes.

N、0→N、 −1−1/202・・ ・・・・・・・
・・・・・ +11いま、酸素濃度1ooyvo1%を
含むカス(本実施例のように空気を用いる吉きはy=0
.209)と1()OvO1%笑気を混合し、笑気濃度
] 00x vo1%の混合ガス(例えば麻酔ガス)を
作り、それを笑気センサ部へ流ずと仮定する。このとき
、笑気分解触媒がコーティングされていないセンサ電極
面における酸素濃度は笑気分解反応N、0→N2+1/
20tが全く進行しないとすると、100y(1−x)
vo1%とIJる。父、笑気分解触媒をコーティングし
たセンサ電極面での酸素濃度は、笑気分解反応が触媒層
で児全に進行し、かつ生成した酸素の拡散による希釈が
全く起こらないと仮定すると 上述の機構による酸素濃度差によって、笑気センサの起
電力Et(mV)が発生すると考えると、一般によく知
られたネルンストの式より次式が成立する。
N, 0→N, -1-1/202・・・・・・・・・・
・・・・・・ +11 Now, dregs containing 1% oxygen concentration (if air is used as in this example, y=0
.. 209) and 1()OvO1% laughing gas are mixed to create a mixed gas (for example, anesthetic gas) with a laughing gas concentration of 00x vo1%, and it is assumed that the mixed gas is not flowed to the laughing gas sensor section. At this time, the oxygen concentration on the sensor electrode surface that is not coated with the laughing gas decomposition catalyst is the laughing gas decomposition reaction N, 0→N2+1/
If 20t does not progress at all, then 100y(1-x)
vo1% and IJru. The oxygen concentration at the sensor electrode surface coated with a laughing gas decomposition catalyst is determined by the mechanism described above, assuming that the laughing gas decomposition reaction proceeds completely in the catalyst layer and that no dilution occurs due to diffusion of the generated oxygen. Considering that the electromotive force Et (mV) of the laughing gas sensor is generated due to the oxygen concentration difference caused by , the following equation is established from the generally well-known Nernst equation.

y(] −x )+0.5y 但しTはセンサ温度(0K)である。y(]-x)+0.5y However, T is the sensor temperature (0K).

(21式において、希釈ガス(麻酔ガスのときは空気又
は酸素)中の酸素濃度Y (X l 00 vat%)
は既知(未知の場合には、事前に何らかの方法により求
めておけばよい)であるから、(2)式を用いてセンサ
起′tw j]hi ’より混合ガス(被測定カス)中
の一更−気濃度x(X100vo1%)を求めることが
できる。
(In formula 21, oxygen concentration Y (X l 00 vat%) in diluent gas (air or oxygen in the case of anesthesia gas)
is known (if unknown, it can be determined in advance by some method), so using equation (2), the sensor current 'tw j]hi' can be used to calculate The fresh air concentration x (X100vo1%) can be determined.

以上が、本発明による笑気センサの動作原理であるが、
実際には触媒がコーディングされていlまいセンサ電極
面での笑気の分解、触媒層内゛Cの1賃素の拡散による
希釈などのため、(2)式が正確には成立しない。実際
に得られたI!ンサ起’rlj力H”(mV)を(3)
式のように表わすと、H’F価試験結果より、1糸数に
は都合のよいことに殆んど笑気濃度X(刈0(lν()
1%)に依存せず、定数(但し温度に依イrする)と見
lませることがわかる。
The above is the operating principle of the laughing gas sensor according to the present invention.
In reality, the formula (2) does not hold true because the catalyst is not coated and the laughing gas decomposes on the sensor electrode surface, and dilution occurs due to the diffusion of C in the catalyst layer. I actually got it! The force H” (mV) (3)
Expressed as the formula, the H'F value test results show that for one thread number, most of the laughing gas concentration
1%) and can be regarded as a constant (however, it depends on the temperature).

ff”(rnV)=kEt(mV)=・ ・・ −・・
・  f、il以下に、本実施例で得られた結果(第1
表)について、もう少し肝細に考某する。希釈カスとし
て空気(Y =(1,209)を用いているから%(2
1式よ次に(4)式を(5)式のように変形し、新しく
導入した係数ff(X)の笑気#度x(XIO(1vo
1%)に対する依存性を求めると、第2表に示ずような
結果が得られる。
ff”(rnV)=kEt(mV)=・・・−・・
・The results obtained in this example (first
Table) will be considered in more detail. Since air (Y = (1,209)) is used as the dilution residue, %(2
From Equation 1, next, transform Equation (4) into Equation (5), and calculate the newly introduced coefficient ff(X) with laughing gas # degree x(XIO(1vo
1%), the results shown in Table 2 are obtained.

H(mV)=α (X)・X・T・・・・・・・・・・
・・・・(5)第2表 第2表より、係数αt(X)は、希釈カスさして空気を
用いたときは驚くべきことに広い笑気濃度範囲で笑気濃
度およびセンサ温度に飲らない定数(〜4.OX l 
(1″lりと見なせることがわかる。次に(5)=αm
(x)・x@T  ・・・・・・・・・・・・・・・(
6)但しα”(x):にα (x)である。
H (mV) = α (X)・X・T・・・・・・・・・・
...(5) Table 2 From Table 2, the coefficient αt(X) is surprisingly dependent on the laughing gas concentration and sensor temperature over a wide range of laughing gas concentrations when air is used instead of the diluted scum. constant (~4.OX l
(You can see that it can be considered as 1″l. Next, (5) = αm
(x)・x@T ・・・・・・・・・・・・・・・(
6) However, α''(x): is α(x).

前述したように、実測起電力Emに対して、にはセンサ
温度に依存するため、α”(X)は表示とは異なり、笑
気濃度には殆んど依存せず(α (x)がXに殆んど依
存しないため)、逆にセンサ温度に依存する。第1表の
測定結果を用いて、本実施例の場合の係数α”(X)を
求めると、第3表のようになり、前述の考察(αfn(
x)、ずなわぢkはXに依存せず、温度に依存する)を
古確認することができる。
As mentioned above, for the actually measured electromotive force Em, since it depends on the sensor temperature, α''(X) differs from the display and hardly depends on the laughing gas concentration (α(x) (because it hardly depends on , and the above consideration (αfn(
x), zunawajik does not depend on X, but depends on temperature) can be paleoconfirmed.

第  3  表 αIr1(X)の七ン→ノ゛温度依存性をα (X)と
の比(−k)の形で示したのが第3図である。なお図中
、45(1’0,550γ:、 Fi50’Q、 75
0’Q、 850℃ 。
Table 3 FIG. 3 shows the temperature dependence of αIr1(X) in the form of a ratio (-k) to α(X). In the figure, 45(1'0,550γ:, Fi50'Q, 75
0'Q, 850℃.

95C)”Cの温度条件のところに線分が引いであるが
、それぞれ%温度におけるに値の実験条件内でのバラツ
キの範囲を示している。500°C付近より低温側でα
”(X)が小さくなっているのは、触媒層での笑気の分
解効率が低くなることおよび安定化ジルコニアの酸素イ
オン導電性が低くなること等によるものと考えられる。
A line segment is drawn at the temperature condition of 95C)"C, which indicates the range of variation within the experimental conditions of the value at % temperature. On the lower temperature side from around 500°C, α
The reason why (X) is small is considered to be due to a decrease in the decomposition efficiency of laughing gas in the catalyst layer and a decrease in oxygen ion conductivity of the stabilized zirconia.

又850℃付近より高温側でα1n(X)が小さくなっ
ているのは、笑気分解触媒を焼き付けていないセンサ電
極表面あるいは整流層などでの笑気の分解が無視できな
くなるためと考えられる。
The reason why α1n(X) is smaller on the high temperature side than around 850° C. is considered to be because the decomposition of laughing gas on the sensor electrode surface or the rectifying layer on which the laughing gas decomposition catalyst is not baked cannot be ignored.

以上のように、約450゛C〜100 (1’Cの任意
の温度で、笑気1tIj度x(×100vo1%)に対
するセンサ起電力Fr”ov関係を事m口こ求めておけ
ば、逆4こセンナ起重1力Emを測定することにより笑
気び4度x(X100vol % )を得ることができ
る。又本実施例で示したように希釈カスとして空気を用
いた場合には、温度一定の条件で使用ずれば、広い笑気
4毀度範囲でα”(X)がほぼ定数と見なせるため、任
意の笑気濃度に対するセンサ起電力より定数α”(X)
を求め、あとは(6)式を利用することもできる。
As mentioned above, if we find the sensor electromotive force Fr"ov relation to laughing gas 1tIj degree By measuring the 1 force Em of the 4-piece senna, it is possible to obtain 4 degrees x (X100 vol %) of laughing air.Also, when air is used as the dilution residue as shown in this example, the temperature If used under certain conditions, α''(X) can be considered to be almost a constant over a wide range of 4 degrees of laughing gas, so the constant α''(X) can be calculated from the sensor electromotive force for any laughing nitrogen concentration.
After that, you can also use equation (6).

実施例2 の片面に約200 m’/ gの比表面積を有するrI
l化ニッケルを焼付けて笑気センサ(2)を作製した。
Example 2 rI with a specific surface area of about 200 m'/g on one side of
A laughing gas sensor (2) was manufactured by baking nickel chloride.

2)性能評価装置 実施例1と同じ装置9条件で性能訂価試j・−;を行っ
た。但し、この場合には整流層を11vり除いて測定を
行った。
2) Performance evaluation device A performance evaluation test was conducted under the same device conditions as in Example 1. However, in this case, the measurement was performed with 11V removed from the rectifying layer.

第  4  表 測定結果を実施例1と同様の方法で整理し、センサ起電
力の理論値からのずれを(6)式に示したα門X)のα
t(X)に対する比(=k)として示したのが第4図で
ある。第4図における各線分は、第3図におけるそれと
同一の意味を持つ。
The measurement results in Table 4 are organized in the same manner as in Example 1, and the deviation of the sensor electromotive force from the theoretical value is calculated by α of α gate X) shown in equation (6).
FIG. 4 shows the ratio (=k) to t(X). Each line segment in FIG. 4 has the same meaning as in FIG. 3.

実施例3 1)笑気センサ(31の作製 実施例1と同様の方法で笑気センサ(3)を作製した。Example 3 1) Fabrication of laughing gas sensor (31) A laughing gas sensor (3) was produced in the same manner as in Example 1.

但し、本実施例では以下のようにして触媒のコープイン
クを行った。約150rI?/gの比表面積を有する市
販の球状(5ψ)活性アルミナ押体を破砕して150〜
250メツシユに整粒したものに、0.5瓢の厚さで塗
付した後、空気中80 (1’02時間の条件で焼き付
けを行なう。次に2wt%白金(pt)を含有する垣化
白金酸(11,PtCl、l)水溶液に浸した後、乾燥
し、更に水素気流中で5 +111 ’(3+2時間の
環元処理を行ない、P t/ A ’ 2 ’J s 
W!l!11’lのコーティングを行なった。
However, in this example, the catalyst was coated in the following manner. About 150rI? A commercially available spherical (5ψ) activated alumina extrusion having a specific surface area of 150 ~
After applying it to a thickness of 0.5 gourd on the sized 250 mesh, it was baked in air for 1'02 hours.Next, a coating containing 2 wt% platinum (pt) was applied. After soaking in an aqueous solution of platinic acid (11, PtCl, l), it was dried, and further subjected to a ring treatment for 5 + 111' (3 + 2 hours) in a hydrogen stream, resulting in Pt/A'2'J s
W! l! 11'l of coating was applied.

2)性能評価装置 実施例1と同じ装置1条件で性能評価試1験を行なった
。但し、整流層は取り除き、測定カス?A0.1゜はx
、ot7−の条件で測定を行った。
2) Performance evaluation device One performance evaluation test was conducted under the same device conditions as in Example 1. However, the rectifying layer is removed and the measurement waste is removed. A0.1° is x
, ot7- conditions.

第  5  表 測定結果を実施例1と同様の方法で整理し、センサ起電
力の理論値からのずれを(6)式に示したα1(X)の
α (X)に対する比(=k)として示したのが第5図
である。
The measurement results in Table 5 are summarized in the same manner as in Example 1, and the deviation of the sensor electromotive force from the theoretical value is expressed as the ratio (=k) of α1(X) to α(X) shown in equation (6). This is shown in FIG.

第3図〜第5図を比較すると分かるように、笑気センサ
(1)〜(3)はいずれも類似した特性を有している。
As can be seen by comparing FIGS. 3 to 5, laughing gas sensors (1) to (3) all have similar characteristics.

笑気上21月1)〜(3)の間の特性の差は、オゾン分
解触媒の種類、触媒層の厚さ、触媒層の細孔構造、整流
層の有無等の違いに依るものと考えられるが、その差は
小さい。
The differences in characteristics between 1) and (3) are thought to be due to differences in the type of ozone decomposition catalyst, the thickness of the catalyst layer, the pore structure of the catalyst layer, the presence or absence of a rectifying layer, etc. However, the difference is small.

なお、以上の実施例では、ペーストの焼付りにより電極
を形成しているが、例えば、無tIロ1Jイメッキ法、
スパッタリング法により形成しても差支えない。また、
一方の電極面上へ触媒をコーティングしているが、触媒
の機能から見て必ずしも直接コーティングする必要はな
く、板状の触媒を′電極面上に押し付けても良いし、第
6図に示すように触媒4が電極面2を完全に覆わないよ
うにしても良いことも明らかである。
In the above embodiments, the electrodes are formed by baking the paste, but for example, the electrodes are formed by baking the paste.
It may be formed by a sputtering method. Also,
The catalyst is coated on one electrode surface, but considering the function of the catalyst, it is not necessarily necessary to coat it directly; a plate-shaped catalyst may be pressed onto the electrode surface, or as shown in Figure 6. It is also clear that the catalyst 4 may not completely cover the electrode surface 2.

さらにまた、以上の実施例ては一対の電極を酸素イオン
導電体の相対する面にそれぞれ設けたが、第7図に示す
ように、酸素イオン、!7IT[(体の同一71畳面上
に相互に間隔をおいて二ヶの屯4@ 2 、2を設置し
1片一方のtk極を笑気分解触媒4て偵−)ような構造
のものも、笑気セン゛す“としヱ回寺の1走能を有する
ことは明らかである。
Furthermore, in the above embodiment, a pair of electrodes were provided on opposing surfaces of the oxygen ion conductor, but as shown in FIG. 7, oxygen ions! 7IT [(Two tubes 4 @ 2, 2 are installed at a distance from each other on the same 71-tatami surface of the body, and one tk pole of each is connected to a laughing gas decomposition catalyst 4.) It is clear that he also has the ability to sense laughing gas and has the ability to run on his own.

以上、実施例で述べてきたように、このQ明によればデ
ィスク状の安定化ジルコニアの画商に多孔質の貴金属電
極およびリード線をJimリイ;」CJた後、一方の電
極上に笑気分解触媒5をコープインクした@便な構造の
素子を用いることによって、気相中の笑気濃度を両電極
面間の酸素濃IW差によって発生ずる起電力より求める
ことが出来、目的とすいたが、板状1円筒状あるいは試
験管形等の形状の安定化ジルコニアを用いても同様の効
果が得られるこさは明白である。又、安定化ジルコニア
の代わりに他の酸素イオン導電性固体可解質、例えば酸
化エルビウム(KvtOs )で安定化された酸化ビス
マス(”zOs)等を用いても同様の効果が得られるこ
さも明白である。
As described above in the examples, according to this method, porous noble metal electrodes and lead wires are attached to a disk-shaped stabilized zirconia art dealer; after CJ, laughing gas is placed on one electrode. By using an element with a convenient structure in which the decomposition catalyst 5 is coated, the concentration of laughing gas in the gas phase can be determined from the electromotive force generated by the difference in oxygen concentration IW between the two electrode surfaces, and this can achieve the desired goal. However, it is clear that similar effects can be obtained by using stabilized zirconia in the shape of a plate, cylinder, or test tube. It is also clear that similar effects can be obtained by using other oxygen ion conductive solid solutes, such as bismuth oxide (zOs) stabilized with erbium oxide (KvtOs), instead of stabilized zirconia. It is.

’t4M材料としては、実施例で示した白金が電極油性
あるいは化学的安定性等の点より最も好ましいが、それ
以外にロジウム、パラジウム、金あるいは銀などを用い
ることができる。
As the 't4M material, platinum shown in the examples is most preferred from the viewpoint of electrode oiliness and chemical stability, but rhodium, palladium, gold, silver, etc. can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

鳩1図は本発明一実施例の断面図、粛2図はセンサの性
能i′ヒ価装置Kの断面図、第3〜5図はそれてれ性能
計画結果を示す線図、第6図、fJ7図はそれぞれ本発
明の他の実施例を示すケI[面図である01° ジルコ
ニア円板、2 ′α極、3 ・IJ −1糾。 4・笑気分解触媒。
Figure 1 is a cross-sectional view of one embodiment of the present invention, Figure 2 is a cross-sectional view of the sensor performance i' high value device K, Figures 3 to 5 are line diagrams showing the results of deviation performance planning, and Figure 6. , fJ7 respectively show other embodiments of the present invention. 4. Laughing gas decomposition catalyst.

Claims (1)

【特許請求の範囲】 】)所望の形状を有する酸素イオン導屯性固体電解質の
表面上に相互に間隔をおいて2個の電極を設けるととも
に一方の電極表面を笑気分解触媒で測定ガス中の笑気濃
度を求めることを特徴とする笑気センサ。 2、特許請求の範囲第1項記載のセンサにおいて、上記
酸素イオン導電性固体電解質の異なる表面上にそれぞれ
電極をそなえたことを特徴とする笑気センサ。 3)特許請求の範囲第1項または第2項記載のセンサに
おいて、上記酸素イオン導電性固体電解質として、イツ
トリア、カルシアあるいはマグネジ゛アのいずれかによ
り安定化されたジルコニアを用いることを特徴とする笑
気センサ。 4)特許請求の範囲第1項ないし第3項のいずれかに記
載のセンサにおいて、上記電極として、白金、ロジウム
、パラジウム、銀あるいは金などの貴金属を用いること
を特徴とする笑気センサ。 5)特許請求の範囲第3項記載のセンサにおいて−、4
50〜1000℃、より好ましくは500〜850 ’
Oの温度範囲で使用することを特徴とする笑気セン1ノ
[Claims] ]) Two electrodes are provided at a distance from each other on the surface of an oxygen ion-conducting solid electrolyte having a desired shape, and one electrode surface is immersed in a measuring gas using a laughing gas decomposition catalyst. A laughing gas sensor characterized by determining the concentration of laughing gas. 2. A laughing gas sensor according to claim 1, characterized in that electrodes are provided on different surfaces of the oxygen ion conductive solid electrolyte. 3) The sensor according to claim 1 or 2, characterized in that the oxygen ion conductive solid electrolyte is made of zirconia stabilized with any one of yttoria, calcia, or magnesia. Laughing gas sensor. 4) A laughing gas sensor according to any one of claims 1 to 3, characterized in that the electrode is made of a noble metal such as platinum, rhodium, palladium, silver, or gold. 5) In the sensor according to claim 3 -, 4
50-1000℃, more preferably 500-850'
Laughing gas sensor 1 is characterized by being used in the temperature range of 0.
JP57200894A 1982-11-16 1982-11-16 Nitrous gas sensor Granted JPS5991358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200894A JPS5991358A (en) 1982-11-16 1982-11-16 Nitrous gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200894A JPS5991358A (en) 1982-11-16 1982-11-16 Nitrous gas sensor

Publications (2)

Publication Number Publication Date
JPS5991358A true JPS5991358A (en) 1984-05-26
JPH0226741B2 JPH0226741B2 (en) 1990-06-12

Family

ID=16432018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200894A Granted JPS5991358A (en) 1982-11-16 1982-11-16 Nitrous gas sensor

Country Status (1)

Country Link
JP (1) JPS5991358A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241751A2 (en) * 1986-03-27 1987-10-21 ROTH-Technik GmbH & Co. Forschung für Automobil- und Umwelttechnik Method of continuously monitoring the gaseous constituents of a gas mixture, besides oxygen
US4770760A (en) * 1986-08-04 1988-09-13 Ngk Insulators, Ltd. Electrochemical NOx sensor
WO1996028722A1 (en) * 1995-03-10 1996-09-19 Kabushiki Kaisha Riken Nitrogen oxide sensor
US6274016B1 (en) 1998-06-29 2001-08-14 Kabushiki Kaisha Riken Nitrogen oxide gas sensor
US6303011B1 (en) 1997-06-23 2001-10-16 Kabushiki Kaisha Riken Gas sensor
JP2004294455A (en) * 2004-07-26 2004-10-21 Ngk Insulators Ltd Gas sensor
US11193907B2 (en) 2018-06-26 2021-12-07 Denso Corporation Nitrous oxide concentration detector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241751A2 (en) * 1986-03-27 1987-10-21 ROTH-Technik GmbH & Co. Forschung für Automobil- und Umwelttechnik Method of continuously monitoring the gaseous constituents of a gas mixture, besides oxygen
JPS636454A (en) * 1986-03-27 1988-01-12 ロート―テヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー フォルシュング フュア アウトモビール― ウント ウムヴェルトテヒニーク Method and device for continuously monitoring concentration of gaseous component except o2 in gas mixture
US4985126A (en) * 1986-03-27 1991-01-15 Kernforschungszenthrum Karlsruhe Gmbh Apparatus and process for continuously monitoring concentrations of gaseous components in gas mixtures, with exception of O2
US4770760A (en) * 1986-08-04 1988-09-13 Ngk Insulators, Ltd. Electrochemical NOx sensor
WO1996028722A1 (en) * 1995-03-10 1996-09-19 Kabushiki Kaisha Riken Nitrogen oxide sensor
US6019881A (en) * 1995-03-10 2000-02-01 Kabushiki Kaisha Riken NOx sensor
US6303011B1 (en) 1997-06-23 2001-10-16 Kabushiki Kaisha Riken Gas sensor
DE19827927C2 (en) * 1997-06-23 2003-08-21 Riken Tokio Tokyo Kk gas sensor
US6274016B1 (en) 1998-06-29 2001-08-14 Kabushiki Kaisha Riken Nitrogen oxide gas sensor
US6413397B2 (en) 1998-06-29 2002-07-02 Kabushiki Kaisha Riken Nitrogen oxide gas sensor
JP2004294455A (en) * 2004-07-26 2004-10-21 Ngk Insulators Ltd Gas sensor
US11193907B2 (en) 2018-06-26 2021-12-07 Denso Corporation Nitrous oxide concentration detector

Also Published As

Publication number Publication date
JPH0226741B2 (en) 1990-06-12

Similar Documents

Publication Publication Date Title
JP3311218B2 (en) Hydrocarbon sensor
US9164080B2 (en) System and method for sensing NO
JPH11223617A (en) Sulfur dioxide gas sensor
US20090026076A1 (en) Nox sensor with improved selectivity and sensitivity
JPS5991358A (en) Nitrous gas sensor
Yan et al. High-performance solid-electrolyte SOx sensor using MgO-stabilized zirconia tube and Li2SO4 CaSO4 SiO2 auxiliary phase
JPS60228949A (en) Method and device for detecting reducing gas in mixed gas tobe detected
JP3775704B2 (en) Solid electrolyte hydrogen sensor
JP2002508073A (en) Apparatus and method for measuring gas composition using ion-conductive electrolyte
JPS6133132B2 (en)
JPH0829387A (en) Electrochemical element and nitrogen oxide concentration measuring apparatus
JPH0115016B2 (en)
USRE38344E1 (en) Hydrogen sensor using a solid hydrogen ion conducting electrolyte
JP3308624B2 (en) Hydrocarbon sensor
JPS607358A (en) Room temperature operating type gas sensor
JPS63231258A (en) Sensor
JP3387611B2 (en) CO gas sensor and CO gas detection method
JPH0114534B2 (en)
JP4912968B2 (en) Non-methane hydrocarbon gas detector
RU2755639C1 (en) Amperometric method for measuring the content of carbon monoxide in inert gases
RU2094795C1 (en) Sensitive element of electrochemical sensor of partial pressure of hydrogen in gas mixtures
RU2194975C2 (en) Solid-state electrochemical gas analyzer for finding-out acetylene
JP2911292B2 (en) Humidity sensor
JP4996171B2 (en) Hydrogen gas sensor
JP3371358B2 (en) Oxygen / carbon monoxide gas sensor, oxygen / carbon monoxide measuring device and oxygen / carbon monoxide measuring method