[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6073465A - Automatic analysis device - Google Patents

Automatic analysis device

Info

Publication number
JPS6073465A
JPS6073465A JP18406283A JP18406283A JPS6073465A JP S6073465 A JPS6073465 A JP S6073465A JP 18406283 A JP18406283 A JP 18406283A JP 18406283 A JP18406283 A JP 18406283A JP S6073465 A JPS6073465 A JP S6073465A
Authority
JP
Japan
Prior art keywords
absorbance
value
reagent
concentration
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18406283A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakano
中野 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP18406283A priority Critical patent/JPS6073465A/en
Publication of JPS6073465A publication Critical patent/JPS6073465A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To judge easily whether a specimen such as a blood serum can be measured or not and to prevent to loss of the precious specimen by constituting the device in such a way that the difference between the measurable critical absorbance and the absorbance of a blank reagent liquid or the concn. converted from said difference can be displayed as the corrected measurable critical absorbance. CONSTITUTION:The 1st arithmetic and display means 8 is constituted of a multiplexer 17 consisting essentially of an electronic circuit, an absorbancy converting part 18 and an A/D converting part 19 as well as the 1st data processing part 20 consisting of a microcomputer and a printer 21. On the other hand, the 2nd arithmetic and display means 9 contains commonly the multiplexer 17, the absorbancy converting part 18 and the A/D converting part 19 and consists further of an arithmetic circuit 23 which calculates the absorbance difference Al-Ab between the measurable critical absorbance value Al of the reagent and the measured absorbance value Ab of the blank reagent liquid measured with a multiwavelength photometer 7 and which calculates further the equiv. concn. C by multiplying the calculated absorbance difference by a concn. conversion factor K and consists of a printer 24 as a display part which displays the equiv. concn. as the corrected measurable critical value C.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は自動分析装置に関し、特に臨床生化学分野で
好適に使用される自動分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an automatic analyzer, and particularly to an automatic analyzer suitably used in the field of clinical biochemistry.

(ロ)従来技術 臨床生化学分野で使用される自動分析装置は、一般に吸
光光度法を原理とするエンドポイント法およびレート法
により分析を行なっている。もちろんこれらの方法には
測定できる範囲、つまり測定限界値があり、この測定限
界値を決める要因としては、反応条件(試料量、分析試
薬成分濃度および液量、反応時間等)と測定条件(測定
セル長、光度計の測定波長、その波長における迷光等)
が挙げられる。すなわち、これらの条件が変化しなけれ
ば測定限界値はほとんど変わらないと言える。
(B) Prior Art Automated analyzers used in the field of clinical biochemistry generally perform analysis using the end point method and rate method based on the spectrophotometric method. Of course, these methods have measurable ranges, or measurement limits, and the factors that determine these measurement limits are reaction conditions (sample amount, analytical reagent component concentration and liquid volume, reaction time, etc.) and measurement conditions (measurement conditions). (cell length, photometer measurement wavelength, stray light at that wavelength, etc.)
can be mentioned. In other words, if these conditions do not change, the measurement limit value will hardly change.

ところが、上述の条件のうち、分析試薬成分濃度(以下
単に試薬濃度と称することもある)は、最も変動しやす
く、分析試薬(以下単に試薬と称することもある)によ
っては数時間程度で測定限界値に影響を及ぼす(第2図
参照)。
However, among the above conditions, the analytical reagent component concentration (hereinafter sometimes simply referred to as reagent concentration) is the most variable, and depending on the analytical reagent (hereinafter sometimes simply referred to as reagent), the measurement limit can be reached within a few hours. (see Figure 2).

一方従来の自動分析装置では、分析試薬を調製して数時
間からその日のうちに分析作業を終了し、残存試薬を廃
棄していたが、最近は分析試薬として高価な酵素を多量
に含有する試薬を使用するようになったり、試薬として
の活性低下を防止するための保冷庫を自動分析装置に内
蔵するようになり、試薬を長期間保存する傾向にある。
On the other hand, with conventional automatic analyzers, analytical reagents are prepared, the analysis is completed within a few hours or the same day, and the remaining reagents are discarded.However, recently, analytical reagents containing large amounts of expensive enzymes have been There is a trend towards storing reagents for a long period of time, as reagents have come to be used and automatic analyzers have built-in cold storage to prevent the activity of reagents from decreasing.

従って試薬の長期保存による測定限界値の低下を無視で
きなくなってきたわけである。
Therefore, it has become impossible to ignore the decrease in measurement limit values due to long-term storage of reagents.

これを更に具体的に言えば、従来測定限界値は、分析試
薬調製直後(試薬として最も活性が太きいとき)に高濃
度試料の希釈系列を実際に分析する(第4図)、あるい
は分析試薬成分(基質、補酵素など)の濃度と測定して
得られる被検成分の量(濃度あるいは活性単位)の関係
を検討(第3図)してその直線性を保障できる限界値を
めて決められている。しかし分析試薬の消費が調製から
数日、場合によっては2〜3週間に及ぶと、仮に保冷し
ていても、試薬成分濃度が低下し、測定限界値は小さく
ならざるをえない。ところが従来の測定限界値では、こ
の点の考慮が何らなされていなかった。
To put this more specifically, conventional measurement limit values are determined by actually analyzing a dilution series of a high-concentration sample immediately after preparing the analytical reagent (when the reagent is most active) (Figure 4), or Examine the relationship between the concentration of the component (substrate, coenzyme, etc.) and the measured amount (concentration or activity unit) of the test component (Figure 3), and determine the limit value that can guarantee linearity. It is being However, if the analytical reagent is consumed several days, or even 2 to 3 weeks after its preparation, even if it is kept cold, the concentration of the reagent components will decrease, and the measurement limit value will inevitably become smaller. However, in the conventional measurement limit values, no consideration was given to this point.

(ハ)発明の目的 この発明は、これらの事情に鑑みなされたもので、その
主要な目的の−っは、試薬濃度の低下による測定限界値
の修正情報が得られる自動分析装置の提供にある。
(c) Purpose of the invention This invention was made in view of these circumstances, and its main purpose is to provide an automatic analyzer that can obtain information on correcting measurement limit values due to a decrease in reagent concentration. .

(ニ)発明の構成 この発明は、多数の反応容器の搬送手段と、試料および
試料の被検成分を分析するための試薬の一定量を各反応
容器に分注する分注手段と、所定の吸収波長について、
各反応容器中の反応液の吸光度及び吸光度変化を測定す
る測定手段と、この測定手段による測定信号に基づいて
各試料の被検成分濃度を算出すると共にその算出濃度値
を表示する第1演算・表示手段とを備え、 且つ、試薬の測定可能限界吸光値を予め記憶するための
記憶部、この記憶部に記憶された限界吸光度値と前記測
定手段による試薬ブランク液の測定吸光度値との吸光度
差を算出するか、もしくはその吸光度差に更に濃度換算
定数を乗じて換算濃度を算出する演算部、及びそれらの
吸光度差もしくは換算濃度を修正測定可能限界値として
表示する表示部からなる第2演算・表示手段と、これら
の各手段の作動を制御する制御手段とを備えた自動分析
装置である。
(D) Structure of the Invention The present invention includes a means for transporting a large number of reaction containers, a dispensing means for dispensing a fixed amount of a reagent for analyzing a sample and a test component of the sample into each reaction container, and a means for dispensing a predetermined amount of a reagent to each reaction container. Regarding absorption wavelength,
A measuring means for measuring the absorbance and absorbance change of the reaction solution in each reaction container; a storage section for pre-storing the measurable limit absorbance value of the reagent; and an absorbance difference between the limit absorbance value stored in the storage section and the absorbance value measured by the measuring means of the reagent blank solution. or further multiplies the absorbance difference by a concentration conversion constant to calculate the converted concentration, and a display section that displays the absorbance difference or the converted concentration as a corrected measurable limit value. This is an automatic analyzer equipped with a display means and a control means for controlling the operation of each of these means.

(ホ)実施例 以下図に示す実施例に基づいてこの発明を詳述する。た
だしこれによってこの発明が限定されるものではない。
(e) Examples The present invention will be described in detail below based on examples shown in the drawings. However, this invention is not limited to this.

まず第1図において、自動生化学分析装置(1)は、反
応容器(2)(3)・・・・・・の搬送用コンベア(5
)と、試料および試薬の一定量を各反応容器に分注する
分注手段(6)と、各反応容器中の反応液の吸光度及び
吸光度変化を測定する測定手段としての多波長光度計(
7)と、この光度計からの検出信号に基づいて各試料の
被検成分濃度を算出すると共にその算出濃度値を表示す
る第1演算・表示手段(8)と、修正測定可能限界値の
算出及び表示のための第2演算・表示手段(9)と、こ
れらの各手段の作動を制御する制御手段(図示省略)と
を備えている。
First, in Fig. 1, the automatic biochemical analyzer (1) is equipped with a conveyor (5
), a dispensing means (6) for dispensing a fixed amount of sample and reagent into each reaction container, and a multi-wavelength photometer (6) as a measurement means for measuring the absorbance and absorbance change of the reaction solution in each reaction container.
7), a first calculation/display means (8) that calculates the concentration of the test component in each sample based on the detection signal from the photometer and displays the calculated concentration value, and calculation of a corrected measurable limit value. and a second calculation/display means (9) for display, and a control means (not shown) for controlling the operation of each of these means.

なお、QQは検体ピペッタ、(11)Uは試薬分注器、
0→はフローセル、α4は回折格子、0Fj(イ)・・
・は検出器である。
In addition, QQ is a sample pipettor, (11)U is a reagent dispenser,
0→ is the flow cell, α4 is the diffraction grating, 0Fj (a)...
・ is a detector.

而して第1演算・表示手段(8)は、実質的に電子回路
からなるマルチプレキサ(17)、吸光度変換部Q樽及
び /変換部Qlと、マイクロコンピュータからなる第
1データ処理部翰と、プリンタ。心とがら構成されてい
る。
The first calculation/display means (8) includes a multiplexer (17) substantially consisting of an electronic circuit, an absorbance conversion section Q barrel and a /conversion section Ql, and a first data processing section consisting of a microcomputer. , printer. It is thoughtfully constructed.

一方第2演算・表示手段(9)は、−前記マルチプレキ
サaη、吸光度変換部(至)及びA/D変換部oIを共
通に含み、更に試薬の測定可能限界吸光度値(kl)と
前記多波長光度計(7)を介して測定した試薬ブランク
液の測定吸光度値(Ab)との吸光度差<he −Ab
)を算出し、更にその算出吸光度差に濃度換算定数@)
を乗じて換算濃度(C)を算出する演算回路■、及びそ
の換算濃度を修正測定可能限界値(R)として表示する
表示部としてのプリンタ(ハ)からなる。
On the other hand, the second calculation/display means (9) includes - the multiplexer aη, the absorbance converter (to), and the A/D converter oI, and further includes the measurable limit absorbance value (kl) of the reagent and the multiplexer aη, the absorbance converter (to), and the A/D converter oI. Absorbance difference with the measured absorbance value (Ab) of the reagent blank solution measured via the wavelength photometer (7) <he −Ab
), and then use the calculated absorbance difference as a concentration conversion constant @)
It consists of an arithmetic circuit (2) that calculates a converted density (C) by multiplying by , and a printer (c) that serves as a display unit that displays the converted density as a corrected measurable limit value (R).

次いで、以上のような構成からなる自動生化学分析装置
(1)の作動を、血清中のI、DH(乳酸脱水素酵素)
の測定を例に挙げて説明する。
Next, the operation of the automatic biochemical analyzer (1) having the above-mentioned configuration is performed to detect I and DH (lactate dehydrogenase) in the serum.
This will be explained using the measurement of .

まずIIDIの測定の拠り所となる反応式は、ピルビン
酸十NADH−−−乳酸十NAD(IIDI である。なお、NADHはニコチンアミドアデニンヌク
レオチド還元型、NA′Dはニコチンアミドアデニンヌ
クレオチド酸化型を示す。かくしてLDHの測定値は、
340 nmにおいて吸収を示すHAD)1の吸光度の
減少(NADは340皿において吸収なし)速度からめ
ることができる。
First, the reaction formula that is the basis for the measurement of IIDI is pyruvate ten NADH---lactic acid ten NAD (IIDI). Note that NADH indicates the reduced form of nicotinamide adenine nucleotide, and NA'D indicates the oxidized form of nicotinamide adenine nucleotide. .Thus, the measured value of LDH is
This can be seen from the rate of decrease in the absorbance of HAD (which exhibits absorption at 340 nm) (NAD has no absorption at 340 nm).

例えば、反応容器(2)(3)・・・・・・に分注手段
(6)によって、試料(血清)loplと純水50 /
11:を注入し、その注入後、2.1分で第1試薬(R
J : NADH0,22m 。
For example, by dispensing means (6) into reaction vessels (2), (3), and so on, sample (serum) lopl and pure water 50/
11: was injected, and 2.1 minutes after the injection, the first reagent (R
J: NADH0.22m.

0.05 Mリン酸緩衝液pH7,4) 400 )1
1を、次イテ、同9.3分で第2試薬(R■:ピルビン
酸4 mM 。
0.05 M phosphate buffer pH 7.4) 400) 1
1, and then the second reagent (R■: pyruvic acid 4 mM) at the same time for 9.3 minutes.

0.05 Mリン酸緩衝液pH7,4) 100 pl
をそれぞれ注入する。そして同9.7分で攪拌後8.4
〜8.7分にてレート測定(37℃)を行なう。つまり
、多波長光度計(7)によυMADEの吸光度変化を検
出しヤルチブレキサ←ηにて波長340皿における光信
号を選択して、吸光度変換部(ハ)及びA/D変換部D
Iを経て第1データ処理部(ホ)にて試料の被検成分濃
度を算出し、更にその濃度値をプリンタ(ハ)に印字表
示する。
0.05 M phosphate buffer pH 7.4) 100 pl
Inject each. And 8.4 after stirring at the same 9.7 minutes
Rate measurements (37°C) are taken at ~8.7 minutes. In other words, the multi-wavelength photometer (7) detects the change in the absorbance of υMADE, and the optical signal at the wavelength of 340 is selected by the Yaruchi braker ←η, and the absorbance converter (c) and A/D converter D
The concentration of the component to be detected in the sample is calculated in the first data processing section (E) via I, and the concentration value is printed and displayed on the printer (C).

ところでこの自動生化学分析装置(1)は、上述の分析
の前に修正測定可能限界値(Cυをプリンタ(ハ)に印
字表示できる。すなわち、試薬ブランク液(試料の代り
に同量の純水を採りRIとR[を加える)の吸光度(A
b)を本装置(1)で測定すると、演算回路(ホ)によ
って、記憶回路翰に記憶されていた測定可能限界吸光度
値(1’、決め方は後述する)と試薬ブランク液の測定
吸光度値(Ab)との吸光度差(Ar−hb)が算出さ
れると共に、その吸光度差に濃度換算定数(K、レート
法の測定値から活性値に換算するための定数で装置条件
によって固有の値)ff−乗じて修正測定可能限界値(
ax + K(へE−へ))〕が算出され、プリンタ(
ハ)に印字表示される。つまり、測定可能限界吸光度値
(kl)から試薬ブランク液の測定吸光度値(Ab)を
差し引くことによって、試薬中の不安定成分の濃度の低
下(第2図参照)を考慮でき、そ1によって正確で無駄
のない分析が可能になる。これを更に具体的に説明すれ
ば、試薬調製後、1週間、2週間使用できる試薬でも、
ルーチン分析を実施する日は試薬ブランク測定を、最低
1日に1回は実施されるのが普通であるから、それに伴
なって修正測定可能限界値が表示され、自動分析装置の
オペレータは、その測定できる限界値(上限値又は下限
値)を確認することによって安心して分析作業を行なう
ことができる0 ここで第2図のグラフは、LDH測定試薬のRIを、5
℃にて保存して吸光度の経時変化を調べたもので、この
吸光度変化はNADHの濃度と見なせる(ピルビン酸も
340囮において吸収を有する一hZ rrn冬1k”
’rlt”を客e〒01ンス、y変什1−fiい〕、次
に第3図のグラフは、TJDH反応において、R):R
1=4.:L(ろρの混合液中のNADH濃度を変化さ
せたときのLDH活性値を示す。図中よりNADHo、
x’ybraA以上の濃度域ではほぼ一定のLDH活性
値が得られ、0.15喧てはその99%、0.1蝦では
同じく約95%である。
By the way, this automatic biochemical analyzer (1) can print and display the corrected measurable limit value (Cυ) on the printer (c) before the above-mentioned analysis.In other words, the reagent blank solution (instead of the sample, the same amount of pure water) can be displayed. is taken and the absorbance of RI and R [added] (A
When b) is measured with this device (1), the arithmetic circuit (e) calculates the measurable limit absorbance value (1', which will be determined later) stored in the memory circuit and the measured absorbance value of the reagent blank solution ( The absorbance difference (Ar-hb) with Ab) is calculated, and the absorbance difference is given a concentration conversion constant (K, a constant for converting the rate method measurement value into an activity value, which is a unique value depending on the device conditions) ff -Multiply to correct measurable limit value (
ax + K (to E-to)] is calculated, and the printer (
c) is printed and displayed. In other words, by subtracting the measured absorbance value (Ab) of the reagent blank solution from the measurable limit absorbance value (kl), it is possible to take into account the decrease in the concentration of unstable components in the reagent (see Figure 2). This enables lean analysis. To explain this more specifically, even if the reagent can be used for one week or two weeks after preparation,
Since reagent blank measurements are normally performed at least once a day on days when routine analysis is performed, the corrected measurable limit values are displayed accordingly, and the automatic analyzer operator can By confirming the measurable limit value (upper limit value or lower limit value), you can carry out analysis work with peace of mind.The graph in Figure 2 shows the RI of the LDH measurement reagent, 5
The changes in absorbance over time after storage at ℃ were investigated, and this change in absorbance can be regarded as the concentration of NADH (pyruvic acid also has absorption in 340 decoys.
'rlt' is changed to e〒01st, y is changed to 1-fi], then the graph in Figure 3 shows that in the TJDH reaction, R):R
1=4. :L(shows the LDH activity value when changing the NADH concentration in the mixed solution of filter ρ. From the figure, NADHo,
In the concentration range of x'ybraA or higher, an almost constant LDH activity value is obtained, 99% of that for 0.15 shrimp, and about 95% for 0.1 shrimp.

第4図のグラフは、IDH0,22観のR)と只■の混
合液中に血清を加えて本装置(1)によりLDH測定の
直線性を調べたものである。LI)1(活性値が大きく
なるにつれて単位時間内に消費されるMAD)1量が増
え、それによってNADH濃度が低下すると、次第に直
線性が失われて正しいLDH活性値を示さなくなる。な
お、反応液中のピルビン酸は1m以上の濃度であり、こ
の条件ではLDH活性値に影響を与えない。
The graph in FIG. 4 shows the linearity of LDH measurement using this device (1) by adding serum to a mixed solution of IDH0, 22 (R) and Takanashi (2). When the amount of LI)1 (MAD consumed within unit time as the activity value increases) increases and the NADH concentration decreases, linearity is gradually lost and the correct LDH activity value is no longer indicated. Note that the concentration of pyruvic acid in the reaction solution is 1 m or more, and under this condition, it does not affect the LDH activity value.

以上の第2〜4図からLDH測定試薬中のLDH反応の
基質であるMADHが経時変化すること、及びLDH活
性値が1liADH濃度に依存し、それによって測定で
きる限界値(直線性)が変ることがわかる。
From Figures 2 to 4 above, it can be seen that MADH, which is the substrate for the LDH reaction in the LDH measurement reagent, changes over time, and that the LDH activity value depends on the 1liADH concentration, which changes the measurable limit value (linearity). I understand.

ところで測定可能限界吸光度値(A/)は、第3図又は
第4図の直線性がくずれるところに対応する吸光度値を
算出して決められる。例えば第3図において最高活性値
の99%以上の値を得るNADH濃度、すなわち吸光度
の区切りの値iA/とする。
By the way, the measurable limit absorbance value (A/) is determined by calculating the absorbance value corresponding to the point where the linearity in FIG. 3 or 4 breaks down. For example, in FIG. 3, the NADH concentration at which a value of 99% or more of the maximum activity value is obtained, that is, the absorbance division value iA/ is assumed.

上記実施例とは異なり、修正測定可能限界値として、単
に測定可能限界吸光度値と試薬ブランク液の測定吸光度
値との差(Al−Ab)のみを表示するようにしてもよ
い。
Unlike the above embodiment, only the difference (Al-Ab) between the measurable limit absorbance value and the measured absorbance value of the reagent blank solution may be displayed as the corrected measurable limit value.

また反応液をフローセルへ移してレート測定するのとは
異なり、同一の反応容器において、ま子試祭ブランク液
の吸光度を測定し、次いで試料を分注してから吸光度あ
るいは吸光度変化を測定する、いわゆる反応容器直接測
光方式を採用してもよい。
Also, unlike transferring the reaction solution to a flow cell and measuring the rate, it is possible to measure the absorbance of the Mako Test Blank Solution in the same reaction container, then dispense the sample and then measure the absorbance or absorbance change. A so-called reaction vessel direct photometry method may be adopted.

なお、LDHと同様に吸光度の下降速度を測定するGO
T (グルタミン酸・オキサロ酢酸トランスアミナーゼ
i UV−MDH法ン、GOT (グルタミン酸・ピル
ビン酸トランスアミナーゼi UV−LDH法λ又は吸
光度の上昇速度を測定するALP (アルカリ性ホスフ
ァターゼ;p−ニトロフェニルリン酸基質法)、7−G
TP(7−ゲルタミントランスペプチターゼ;L−T−
グルタミル−p−ニトロアニリド基質法)などの測定に
適用できる。またグルコース(ヘキソキナーゼ・NAD
PH法) 、コレステロール(コレステロールオキシダ
ーゼ法)などのエンドポイント測定法による分析項目に
も同様の考え方により適用できる。
Note that GO measures the rate of decrease in absorbance in the same way as LDH.
T (glutamate/oxaloacetate transaminase i UV-MDH method), GOT (glutamate/pyruvate transaminase i UV-LDH method λ or ALP (alkaline phosphatase; p-nitrophenyl phosphate substrate method) that measures the rate of increase in absorbance), 7-G
TP (7-geltamine transpeptidase; L-T-
It can be applied to measurements such as glutamyl-p-nitroanilide substrate method). Also, glucose (hexokinase, NAD
The same concept can be applied to analysis items by endpoint measurement methods such as PH method) and cholesterol (cholesterol oxidase method).

(へ)発明の効果 この発明は、測定可能限界吸光度と試薬ブランク液の吸
光度との差又はその差から換算した濃度を修正測定可能
限界吸光度として表示できるようにすることによって、
血清などの検体の測定の可否が容易に判断でき、貴重な
検体の損失を防止できる。特に試薬ブランク液の吸光度
測定は、1日に少なくとも1度は行なうので、それを利
用して上記の表示を行なうことができて便利である。
(f) Effects of the Invention This invention enables the difference between the measurable limit absorbance and the absorbance of the reagent blank solution, or the concentration converted from the difference, to be displayed as the corrected measurable limit absorbance.
It is possible to easily determine whether or not a sample such as serum can be measured, and the loss of valuable samples can be prevented. In particular, since absorbance measurement of a reagent blank solution is carried out at least once a day, it is convenient to use this measurement to perform the above display.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る自動分析装置の一実施例を示す
機能説明図、第2図はLBH測定試薬の保存期間と吸光
度の関係を示すグラフ、第3図はLDH試薬中のNAD
H濃度とLDH活性値との関係を示すグラフ、第4図は
LDH測定の直線性を示すグラフである。 (1)・・・・・・自動生化学分析装置、(2)(3)
・・・・・反応容器、 (5)・・・・・・搬送用コン
ベア、(6)・・・・・・分注手段、 (7)・・・・
・・多波長光度計、(8)・・・・・・第1演算・表示
手段、(9)・・・・・・第2演算・表示手段、 磐・
・・・・記憶回路、翰・・・・・・演算回路、 (ハ)
・・・・・・プリンタ。 、、yIJ、: 、 ””::、! 代理人 弁理士 野 河 信太部、パ・。 1、・ :5.゛ 第1図
Fig. 1 is a functional explanatory diagram showing one embodiment of the automatic analyzer according to the present invention, Fig. 2 is a graph showing the relationship between the storage period and absorbance of the LBH measurement reagent, and Fig. 3 is a graph showing the relationship between NAD in the LDH reagent.
A graph showing the relationship between H concentration and LDH activity value, and FIG. 4 is a graph showing linearity of LDH measurement. (1)・・・Automatic biochemical analyzer, (2)(3)
...Reaction container, (5) ...Transportation conveyor, (6) ...Dispensing means, (7) ...
...Multi-wavelength photometer, (8)...First calculation/display means, (9)...Second calculation/display means, Iwa.
...Memory circuit, Kan...Arithmetic circuit, (c)
...Printer. ,,yIJ,: , ””::,! Agent: Patent attorney Shintabe Nogawa, Pa. 1, ・ : 5.゛Figure 1

Claims (1)

【特許請求の範囲】 1、多数の反応容器の搬送手段と、試料および試料の被
検成分を分析するための試薬の一定量を各反応容器に分
注する分注手段と、所定の吸収波長について、各反応容
器中の反応液の吸光度及び吸光度変化を測定する測定手
段と、この測定手段による測定信号に基づいて各試料の
被検成分濃度を算出すると共にその算出濃度値を表示す
る第1演算・表示手段とを備え、 且つ、試薬の測定可能限界吸光度値を予め記憶するため
の記憶部、この記憶部に記憶された限界吸光度値と前記
測定手段による試薬ブランク液の測定吸光度値との吸光
度差を算出するか、もしくはその吸光度差に更に濃度換
算定数を乗じて換算濃度を算出する演算部、及びそれら
の吸光度差もしくは換算濃度を修正測定可能限界値とし
て表示する表示部からなる第2演算・表示手段と、これ
らの各手段の作動を制御する制御手段とを備えた自動分
析装置。
[Scope of Claims] 1. A transport means for a large number of reaction vessels, a dispensing means for dispensing a fixed amount of a reagent for analyzing a sample and a test component of the sample into each reaction vessel, and a predetermined absorption wavelength. , a measuring means for measuring the absorbance and absorbance change of the reaction solution in each reaction container, and a first measuring means for calculating the concentration of the test component in each sample based on the measurement signal from the measuring means and displaying the calculated concentration value. a storage section for pre-storing the measurable limit absorbance value of the reagent, and a storage section for storing in advance the measurable limit absorbance value of the reagent, and a combination of the limit absorbance value stored in the storage section and the absorbance value measured for the reagent blank solution by the measuring means; A second comprising a calculation section that calculates the absorbance difference or further multiplies the absorbance difference by a concentration conversion constant to calculate a converted concentration, and a display section that displays the absorbance difference or the converted concentration as a corrected measurable limit value. An automatic analyzer equipped with calculation/display means and control means for controlling the operation of each of these means.
JP18406283A 1983-09-30 1983-09-30 Automatic analysis device Pending JPS6073465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18406283A JPS6073465A (en) 1983-09-30 1983-09-30 Automatic analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18406283A JPS6073465A (en) 1983-09-30 1983-09-30 Automatic analysis device

Publications (1)

Publication Number Publication Date
JPS6073465A true JPS6073465A (en) 1985-04-25

Family

ID=16146707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18406283A Pending JPS6073465A (en) 1983-09-30 1983-09-30 Automatic analysis device

Country Status (1)

Country Link
JP (1) JPS6073465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267455A (en) * 1985-09-20 1987-03-27 Nichiriyoo:Kk Soil leaching filter
JPS63158459A (en) * 1986-09-05 1988-07-01 ライフトレイク Method of adjusting precision of sensitive assay
JPS63298033A (en) * 1987-05-28 1988-12-05 Shimadzu Corp Automatic analyzing device
JPH0259671A (en) * 1988-08-26 1990-02-28 Hitachi Ltd Immunoassay

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267455A (en) * 1985-09-20 1987-03-27 Nichiriyoo:Kk Soil leaching filter
JPS63158459A (en) * 1986-09-05 1988-07-01 ライフトレイク Method of adjusting precision of sensitive assay
JPS63298033A (en) * 1987-05-28 1988-12-05 Shimadzu Corp Automatic analyzing device
JPH0259671A (en) * 1988-08-26 1990-02-28 Hitachi Ltd Immunoassay

Similar Documents

Publication Publication Date Title
US20200348306A1 (en) Slope-Based Compensation
Tiffany et al. Enzymatic kinetic rate and end-point analyses of substrate, by use of a GeMSAEC fast analyzer
Kadish et al. A new and rapid method for the determination of glucose by measurement of rate of oxygen consumption
US6846457B1 (en) Automatic analysis apparatus, managing apparatus for analysis apparatus, and program product for managing analysis apparatus
EP2431731B1 (en) Automatic analysis device
US20100206750A1 (en) Rapid Analyte Measurement Assay
CN103003692B (en) Residual compensation for a biosensor
JPS649572B2 (en)
CN102239406A (en) Biosensor system with signal adjustment
DK150805B (en) CHEMICAL ANALYSIS FOR CONCENTRATION DETERMINATION BY REACTION RATE MEASUREMENT
US20070161114A1 (en) Method and apparatus for determining liquid volume
US4750133A (en) Validation of kinetic chemical reaction
JPS6073465A (en) Automatic analysis device
JP2008076342A (en) Automatic analyzer
US20200200653A1 (en) Method and system for preparing a solution
JP3206999B2 (en) Method for detecting sample dilution error and apparatus for detecting sample dilution error using the same
JPS63138268A (en) Automatic analyzing device
US20060199221A1 (en) Correction for temperature dependence assays
Adlercreutz et al. Evaluation of the new" System Olli 3000" kinetic ultraviolet analyzer for measuring aspartate and alanine aminotransferase and lactate dehydrogenase activities in serum
JP2779071B2 (en) Biochemical automatic analyzer
JP2008203008A (en) Autoanalyzer
JP2869610B2 (en) Calibration method of electrolyte analyzer
JPH0257863B2 (en)
JPS6060558A (en) Analyzing method for plural measurements
JPH07110333A (en) Automatic analyzer