[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6072229A - Electrode and wiring structure of semiconductor device - Google Patents

Electrode and wiring structure of semiconductor device

Info

Publication number
JPS6072229A
JPS6072229A JP17801583A JP17801583A JPS6072229A JP S6072229 A JPS6072229 A JP S6072229A JP 17801583 A JP17801583 A JP 17801583A JP 17801583 A JP17801583 A JP 17801583A JP S6072229 A JPS6072229 A JP S6072229A
Authority
JP
Japan
Prior art keywords
film
metal
mask
ion implantation
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17801583A
Other languages
Japanese (ja)
Other versions
JPH0462173B2 (en
Inventor
Naoki Yamamoto
直樹 山本
Seiichi Iwata
誠一 岩田
Takao Amasawa
天沢 敬生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP17801583A priority Critical patent/JPS6072229A/en
Publication of JPS6072229A publication Critical patent/JPS6072229A/en
Publication of JPH0462173B2 publication Critical patent/JPH0462173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To avoid the generation of channeling when electrodes and wirings consisting of high-melting-point metals are arranged in a semiconductor device and impurity layers are formed by self-aligning by ion implantation using said electrodes and wirings as a mask by providing an oxide film consisting of the same metal on the metal surface before the ion implantation. CONSTITUTION:A thick SiO2 film 2 for element isolation is formed on a circumferential portion of a p type Si substrate 1 and a thin gate SiO2 film 3 is arranged on the substrate surface surrounded with said SiO2 film 2 and further the whole surface is coated with a film 4 of a high-melting-point metal such as Mo. Next, a mask 5 of a photoresist film is arranged on the substrate followed by etching using CF4 gas including O2 of 20% of leave the film 4 only in the center of surface. After that, the mask 5 is removed and a heat treatment is performed with 400 deg.C in O2 atmosphere to produce an oxide film 6 on a surface of the exposed film 4. Then this film is used as a mask to implant As ions and an implantation region 7 is formed. Thus, the ions enter deeply because atomic configurations of the metallic oxide and the metal are different and channeling is diminished.

Description

【発明の詳細な説明】 本発明は高融点金机からなる電極・配線ケ有する半導体
装置に係シ、特に上記金属をマスクとしてイオン打込全
行ない、半導体基板内に自己整合的に不純物層を設ける
ことを特徴とする半導体装置に好適な電極および配線構
造体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device having electrodes and wiring made of a high-melting point metal. The present invention relates to an electrode and wiring structure suitable for a semiconductor device characterized in that the present invention is provided with an electrode and a wiring structure.

モリブデンゲート電極をマスクとしてひ素イオンの打込
を行ない自己整合的にソース、ドレイン全形成するMO
Sトランジスタにおいて、モリブデンがイオン打込のマ
スクとならず、ゲート電極下のシリコン基板までひ素が
突き貫けることが報告されている(村尾他、半導体集積
回路技術第19回シンポジウム講演論文集、 96頁、
1980)。
MO in which the source and drain are completely formed in a self-aligned manner by implanting arsenic ions using the molybdenum gate electrode as a mask.
It has been reported that in S transistors, molybdenum does not act as a mask for ion implantation, and arsenic can penetrate to the silicon substrate below the gate electrode (Murao et al., Proceedings of the 19th Symposium on Semiconductor Integrated Circuit Technology, p. 96) ,
1980).

また同報告ではこの突き負は防止のために、モリブデン
表m1にシリコン窒化膜分被覆した後、イオン打込する
方法が示されている。この方法では、モリブデン膜とシ
リコン窒化膜の重ね膜をゲート電極および配線として加
工する必要がある。この加工にはプラズマエッチ吟のド
ライエンチングが用イられるが、この場合、モリブデン
およびシリコン窒化膜のエツチング速度が異なるため、
工ないし2ミクロン等の微細加工が難がしくなるという
欠点があった。
In order to prevent this negative effect, the same report describes a method in which ions are implanted after coating the molybdenum surface m1 with a silicon nitride film. In this method, it is necessary to process a stacked film of a molybdenum film and a silicon nitride film as a gate electrode and wiring. Dry etching using plasma etching is used for this process, but in this case, since the etching speeds of molybdenum and silicon nitride films are different,
There was a drawback that microfabrication of microns to 2 microns or the like became difficult.

本発明の目的は高融点金塊電極および配線ケマスクとし
てイオン打込を行なう際、打込元素の電極および配線下
への突き貫け?防止するとともに従来の突き貫は防止策
の欠点であった微細加工の困難さを解決した電極および
配線構造体を提供することにある。
The purpose of the present invention is to penetrate the implanted element under the electrode and wiring when performing ion implantation as a high melting point gold bullion electrode and wiring mask. It is an object of the present invention to provide an electrode and wiring structure that prevents penetration and solves the difficulty of microfabrication, which is a drawback of conventional penetration prevention measures.

LSS理論によるとモリブデンやタングステンに対し、
50〜100KeVのエネルギでひ素のイオン打込全行
なった場合、その射影飛程は1゜〜2Qnm、分散は約
I Qnm程度となる。したがって約3 Q Q nm
の膜厚のモリブデンでは完全にイオン打込のマスクにな
るはずである。このため、前述のひ素イオン打込の突き
貫けはチャンネリング効果によるものと説明されている
。LSS理論はイオンを打込まれる金属を非晶質体と仮
定している。しかし蒸着やスパッタ法で形成したモリブ
デンやタングステンは基板面に垂直方向にのびた柱状結
晶になっており、その結晶粒径はlO〜lQQnmで(
110)に配向している。このような金属膜にイオンが
垂直方向から入射すると、イオンは原子列に対し、小さ
い角度で近づくため金属原子との間に働く反発力等の作
用により、衝突することなく膜内に侵入する。したがっ
て、このようなチャンネリングの場合は衝突によるエネ
ルギ損失は小さくなシ注入イオンは深くまで侵入する。
According to LSS theory, for molybdenum and tungsten,
When arsenic ions are fully implanted with an energy of 50 to 100 KeV, the projected range is 1° to 2 Qnm, and the dispersion is about IQnm. Therefore about 3 Q Q nm
A film of molybdenum with a thickness of 100 to 100 mL should perfectly serve as a mask for ion implantation. For this reason, it is explained that the penetration of the arsenic ion implantation described above is due to the channeling effect. The LSS theory assumes that the metal into which ions are implanted is an amorphous body. However, molybdenum and tungsten formed by vapor deposition or sputtering are columnar crystals that extend perpendicularly to the substrate surface, and the crystal grain size is lO~lQQnm (
110). When ions are incident on such a metal film from a vertical direction, the ions approach the atomic array at a small angle, so they enter the film without colliding with the metal atoms due to the effects of repulsive force between them and the metal atoms. Therefore, in the case of such channeling, the energy loss due to collision is small, and the implanted ions penetrate deeply.

このようなチャンネリングを防止するためには金属表面
に非晶質あるいは金属の格子配列と異なる薄膜を形成す
ることが考えられる。
In order to prevent such channeling, it is conceivable to form an amorphous film or a thin film with a lattice arrangement different from that of the metal on the metal surface.

この方法として、前述のシリコン窒化膜が考λられたわ
けであるが、すでに述べたように微細加工が難かしいと
いう欠点を有する。
The above-mentioned silicon nitride film has been considered as this method, but as already mentioned, it has the drawback that microfabrication is difficult.

本発明は、この欠点ケ無くシ、チャンネリングを防止す
ることを目的としている。一般に高融点金属の酸化物は
金属の結晶系と異なる。たとえばモリブデンおよびタン
グステンは立方晶系で体心立方構造であるが、その酸化
物は斜方晶系でルチル型構造等を有する。したがって、
高融点金属表面を酸化した後、イオン打込を行なえば、
金属酸化物と金属の原子配列が異なるため、チャンネリ
ングが抑止できる。この金属表面の酸化は、金属を電極
および配線に加工した後に行なえば良いため、前述のシ
リコン窒化物被覆法で問題となった微細加工の難かしさ
を無くすることができる。なお高融点金属分酸化する場
合、高温酸化では昇華および微粉末化するため、これら
を生じさせない低温で酸化する必要がある。
The present invention aims to prevent channeling without this drawback. Generally, oxides of high melting point metals differ from the crystalline system of the metal. For example, molybdenum and tungsten are cubic and have a body-centered cubic structure, but their oxides are orthorhombic and have a rutile structure. therefore,
If ion implantation is performed after oxidizing the high melting point metal surface,
Channeling can be suppressed because the atomic arrangement of metal oxide and metal is different. This oxidation of the metal surface can be carried out after the metal has been processed into electrodes and wiring, thereby eliminating the difficulty in microfabrication that was a problem with the silicon nitride coating method described above. Note that when high-melting point metals are oxidized, high-temperature oxidation causes sublimation and pulverization, so it is necessary to oxidize at a low temperature that does not cause these problems.

以下、本発明の一実施例を第1図により説明する。An embodiment of the present invention will be described below with reference to FIG.

本実施例は微細ゲート電極MOSトランジスタである。This example is a fine gate electrode MOS transistor.

lOΩ・cm、 P (100) シリコン基板1e局
部的に酸化し、70Qnmの素子間分離用シリコン酸化
膜2を形成する。続いて2onmのゲート酸化膜3を形
成した後、MOSト?ンジスタのしきい電圧調整のため
ボロンを60KeVで7×10” (cII−2)打込
む。次にスパッタ法にょシao。
1OΩ·cm, P (100) The silicon substrate 1e is locally oxidized to form a silicon oxide film 2 for element isolation of 70 Qnm. Subsequently, after forming a gate oxide film 3 of 2 onm, the MOS transistor is formed. In order to adjust the threshold voltage of the transistor, boron was implanted at 60 KeV to a size of 7 x 10" (cII-2). Next, sputtering was performed.

nmの厚さにモリブデン膜4を形成する。続いてホトレ
ジスト5全マスクとしてCF4+20%o2ガスを用い
たプラズマエツチングにょジモリブデンを所望の形状に
加工する。次にレジストを除去後、400t?、酸素雰
囲気中でモリブデン表面を約5Qnm酸化6する。その
後、ひ素を80KeVT I X 1016Crn−”
 イオン打込7を行なう。次にlQmolのシん硅酸ガ
ラスThCVD法により500nm堆積8する。ぶつ酸
系エンチング液でコンタクト孔9を開けた後、100(
1,20分の窒素殊囲気熱処理を行なった後、コンタク
ト孔に露出したモリブデン酸化物を先のプラズマエンチ
ング法によシ除去し、lチシリコン入シアルミニウム電
極lOを形成する。続いて% 450 Cy 60分の
水素熱処理を行なった後、パシベーション膜ll?形成
し、微細ゲート電極MOsトランジスタが完成する。
A molybdenum film 4 is formed to a thickness of nm. Subsequently, the photoresist 5 is processed into a desired shape by plasma etching using CF4+20% O2 gas as an entire mask of molybdenum. Next, after removing the resist, 400t? , the molybdenum surface is oxidized to about 5 Qnm in an oxygen atmosphere. Then, arsenic was added to 80KeVT I X 1016Crn-”
Perform ion implantation 7. Next, 500 nm of 1 Q mol cinsilicate glass is deposited 8 by the ThCVD method. After opening the contact hole 9 with butic acid-based enching liquid, 100 (
After heat treatment in a nitrogen atmosphere for 1 to 20 minutes, the molybdenum oxide exposed in the contact hole is removed by the plasma etching method described above to form a silicon-containing sialuminium electrode IO. Subsequently, after performing hydrogen heat treatment at % 450 Cy for 60 minutes, a passivation film was formed. A fine gate electrode MOs transistor is completed.

板肉にひ素イオンが突き貫け、正常なMO8+−ランジ
スタ特性を示さなかった。
Arsenic ions penetrated the plate and did not exhibit normal MO8+- transistor characteristics.

本実施例によシ形成した1、4μmゲート長のMOs−
4−ランジスタは電源電圧5V、基板バイアス−3Vで
0.24±0.07Vのしきい電圧を示した。また設計
寸法1.4μmゲート長に対し、モリブデンの加工寸法
は1.4゛μmで標準偏差0.2μmであった。
MOs with a gate length of 1.4 μm formed according to this example.
The 4-transistor exhibited a threshold voltage of 0.24±0.07V at a power supply voltage of 5V and a substrate bias of -3V. Furthermore, with respect to the designed gate length of 1.4 μm, the processing dimension of molybdenum was 1.4 μm with a standard deviation of 0.2 μm.

【図面の簡単な説明】 嬉1図はMOSトランジスタ製造工程の流れ、および各
工程で得られる断面図である。 l・・・シリコン基板、2・・・菓子間分離用シリコン
酸化膜、3・・・ゲート酸化膜、4・・・モリブデン、
5・・・レジスト、6・・・モリブデン酸化膜、7・・
・ひ素イオン打込層、8・・・シん硅酸ガラス、9・・
・コンタクト孔、10・・・1%シリコン入クシアルミ
ニウム電極11・・・パシベーション膜。 代理人 弁理士 傅俳和挙 )へ すφ
[Brief Description of the Drawings] Figure 1 shows the flow of the MOS transistor manufacturing process and cross-sectional views obtained in each process. l... Silicon substrate, 2... Silicon oxide film for separating confectionery, 3... Gate oxide film, 4... Molybdenum,
5...Resist, 6...Molybdenum oxide film, 7...
・Arsenic ion implantation layer, 8... cinsilicate glass, 9...
- Contact hole, 10...1% silicon-containing oxidized aluminum electrode 11...passivation film. Agent: Patent Attorney Fuhai Wagyo) Hesuφ

Claims (1)

【特許請求の範囲】[Claims] 1、高融点金属からなる電極、配線を有し、かつ、上記
金属薄膜形成後、イオン打込工程を有する半導体装置に
おいて、イオン打込前に、上記金属表面に、同金属から
なる酸化膜を設けたことを特徴とする半導体装置の電極
・配線構造体。
1. In a semiconductor device having electrodes and wiring made of a high melting point metal and having an ion implantation step after forming the metal thin film, an oxide film made of the same metal is formed on the surface of the metal before ion implantation. An electrode/wiring structure for a semiconductor device, characterized in that:
JP17801583A 1983-09-28 1983-09-28 Electrode and wiring structure of semiconductor device Granted JPS6072229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17801583A JPS6072229A (en) 1983-09-28 1983-09-28 Electrode and wiring structure of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17801583A JPS6072229A (en) 1983-09-28 1983-09-28 Electrode and wiring structure of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6072229A true JPS6072229A (en) 1985-04-24
JPH0462173B2 JPH0462173B2 (en) 1992-10-05

Family

ID=16041070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17801583A Granted JPS6072229A (en) 1983-09-28 1983-09-28 Electrode and wiring structure of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6072229A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017783A (en) * 1991-05-16 2000-01-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using an insulated gate electrode as a mask
US6197702B1 (en) 1997-05-30 2001-03-06 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US7049187B2 (en) 2001-03-12 2006-05-23 Renesas Technology Corp. Manufacturing method of polymetal gate electrode
US7053459B2 (en) 2001-03-12 2006-05-30 Renesas Technology Corp. Semiconductor integrated circuit device and process for producing the same
US7221056B2 (en) 2003-09-24 2007-05-22 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863170A (en) * 1981-10-13 1983-04-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863170A (en) * 1981-10-13 1983-04-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6017783A (en) * 1991-05-16 2000-01-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using an insulated gate electrode as a mask
US6987069B2 (en) 1997-05-30 2006-01-17 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US6528403B2 (en) 1997-05-30 2003-03-04 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US6503819B2 (en) 1997-05-30 2003-01-07 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US6784116B2 (en) 1997-05-30 2004-08-31 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US6197702B1 (en) 1997-05-30 2001-03-06 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US7122469B2 (en) 1997-05-30 2006-10-17 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US7049187B2 (en) 2001-03-12 2006-05-23 Renesas Technology Corp. Manufacturing method of polymetal gate electrode
US7053459B2 (en) 2001-03-12 2006-05-30 Renesas Technology Corp. Semiconductor integrated circuit device and process for producing the same
US7144766B2 (en) 2001-03-12 2006-12-05 Renesas Technology Corp. Method of manufacturing semiconductor integrated circuit device having polymetal gate electrode
US7300833B2 (en) 2001-03-12 2007-11-27 Renesas Technology Corp. Process for producing semiconductor integrated circuit device
US7375013B2 (en) 2001-03-12 2008-05-20 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7632744B2 (en) 2001-03-12 2009-12-15 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7221056B2 (en) 2003-09-24 2007-05-22 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0462173B2 (en) 1992-10-05

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JPS6072229A (en) Electrode and wiring structure of semiconductor device
JPH05183160A (en) Semiconductor device and fabrication thereof
JPS6039848A (en) Manufacture of semiconductor device
JP2997554B2 (en) Method for manufacturing semiconductor device
JPS61267365A (en) Semiconductor device
JPS6138858B2 (en)
JPH0637106A (en) Manufacture of semiconductor device
JPH0897212A (en) Manufacture of semiconductor device
JPS5922322A (en) Semiconductor device and manufacture thereof
JPS5896732A (en) Ion implantation
JPH0248146B2 (en)
JPS58155767A (en) Manufacture of metal oxide semiconductor type semiconductor device
JPS59111367A (en) Manufacture of semiconductor device
JPS6190470A (en) Manufacture of compound semiconductor device
JPH01122167A (en) Manufacture of semiconductor device
JPH01175770A (en) Preparation of semiconductor device
JPH02292866A (en) Manufacture of mis type semiconductor device
JPH0441510B2 (en)
JPH02103930A (en) Manufacture of semiconductor device
JPH0430422A (en) Semiconductor device and manufacture thereof
JPH0527272B2 (en)
JPS60147116A (en) Pattern forming method
JPH0532910B2 (en)
JPH04372123A (en) Manufacture of semiconductor device