[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6072977A - Oxidizing agent for carbon monoxide - Google Patents

Oxidizing agent for carbon monoxide

Info

Publication number
JPS6072977A
JPS6072977A JP58180607A JP18060783A JPS6072977A JP S6072977 A JPS6072977 A JP S6072977A JP 58180607 A JP58180607 A JP 58180607A JP 18060783 A JP18060783 A JP 18060783A JP S6072977 A JPS6072977 A JP S6072977A
Authority
JP
Japan
Prior art keywords
compd
oxidizing agent
cobalt
manganese dioxide
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58180607A
Other languages
Japanese (ja)
Other versions
JPH0373336B2 (en
Inventor
Hajime Matsushita
松下 肇
Shigeo Ishiguro
石黒 繁夫
Ayumi Iwashita
岩下 あゆみ
Yasuhei Nitori
似鳥 泰平
Hiroshi Ichise
市瀬 宏
Akira Izumi
昭 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Japan Tobacco and Salt Public Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc, Japan Tobacco and Salt Public Corp filed Critical Japan Tobacco Inc
Priority to JP58180607A priority Critical patent/JPS6072977A/en
Publication of JPS6072977A publication Critical patent/JPS6072977A/en
Publication of JPH0373336B2 publication Critical patent/JPH0373336B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain an oxidizing agent which is highly active, can be inexpensively produced and can effectively exhibit CO-oxidizing activity even at room temp., by combining a Co compd. and a Lu compd. or an Ni compd. with MnO2. CONSTITUTION:Oanganese dioxide y combining a Co compd. and a Lu compd. or an Ni compd. with MnOruthenium compd. or a nickel compd. alone, or an aq. soln. of at least two members of them, and dried. The dry product is treated with a satd. aq. KMnO4 soln., washed and dried to obtain an oxidizing agent for carbon monoxide. Pref. the quantity of the cobalt compd., the ruthenium compd. or the nickel compd. to be carried is in the range of 0.1-20% (in terms of metal). When the oxidizing agent is powdery, a binder is added thereto and the mixture can be compression molded into the desired shape.

Description

【発明の詳細な説明】 本発明は、ガス中の一酸化炭素(以下CO)を選択的に
酸化し、無毒の二酸化炭素(以下CO,)に変えるよう
なCO酸化剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a CO oxidizing agent that selectively oxidizes carbon monoxide (hereinafter referred to as CO) in a gas and converts it into non-toxic carbon dioxide (hereinafter referred to as CO).

炭素や炭化水素といった炭素化合物の不完全燃焼によっ
て生ずるCOは、大気汚染ガスのうちでも最も有毒なも
のの一つである。COは酸素(以下02)吸収・運搬の
役目をする血液中ヘモグロビンとの結合力が強<(0,
の結合力の200〜300倍)、このため、人体が高濃
度のCC性中毒症を引き起こし、甚しくは死に至るので
ある。また、低濃度COの長期的な暴j舅によっては心
臓疾患を引き起こすといわれている。このため、自動車
排ガス等による大気汚染、暖房器具の排ガスや喫煙によ
る室内汚染を防止する方法や、また、鉱山での爆発事故
や火災の際の保安のための環境ガス中CO濃度を低減さ
せる方法の確立が強く望まれている。
CO, produced by the incomplete combustion of carbon compounds such as carbon and hydrocarbons, is one of the most toxic air polluting gases. CO has a strong binding force with hemoglobin in the blood, which plays the role of absorbing and transporting oxygen (02) <(0,
(200 to 300 times the binding force of CC), which causes high concentration CC toxicity in the human body, which can even lead to death. Furthermore, long-term exposure to low concentrations of CO is said to cause heart disease. For this reason, there are methods to prevent air pollution from automobile exhaust gas, indoor pollution from heating equipment exhaust gas and smoking, and methods to reduce the CO concentration in environmental gases for safety in the event of an explosion or fire in a mine. There is a strong desire for the establishment of

これまでに提案されているCO除去方法は、(1)吸着
剤に吸着させる。(2)吸収液に吸収させる。(3)酸
化剤あるいは酸化触媒を用いて無青なCOtに変換する
、の3方法に大別できる。
The CO removal methods that have been proposed so far include (1) adsorption with an adsorbent; (2) Absorb with absorption liquid. (3) Conversion to blue-free COt using an oxidizing agent or an oxidizing catalyst.

(1)の方法として、ポルフィリン金属錯体を吸着剤と
して用いる方法(特公昭54−22951号)や活性炭
とモレキュラーシープを組み合わせて用いる方法(米国
特許第3658069号明細書)などがあるが、前者は
COの吸着速度が比較的遅い欠点があり、また後者は吸
着と同時に出l蘂l++J−瓜l−tがイ’−1+ I
q上八へ、仏4轟ユξべみf> + −Lいう欠点があ
る。
Methods for (1) include a method using a porphyrin metal complex as an adsorbent (Japanese Patent Publication No. 54-22951) and a method using a combination of activated carbon and molecular sheep (U.S. Pat. No. 3,658,069). The disadvantage is that the adsorption rate of CO is relatively slow, and the latter is also adsorbed and released at the same time.
qUp to 8, there is a drawback that Buddha 4 Todoroyu ξbemif> + -L.

(2)の方法の例としては、塩化第一銅と塩化アルミニ
ウム錯体のトルエン溶液にCOを吸rty、 2qるコ
ンーノ去(西ドイツ特許第1944405号、同第24
14801号)や銅アンミン錯イオン溶液を用いた調液
洗浄法などが公知であるが、前者は微量の水分によって
CO吸収活性を失うこと、後者は銅(宇)イオンが容易
に酸化されることによってCOの吸収活性を失うという
欠点があり、このため両者とも装置が大がかりになるた
め使用上の制約が多い。
As an example of the method (2), CO is absorbed into a toluene solution of cuprous chloride and aluminum chloride complex, and 2q is removed (West German Patent No. 1944405, German Patent No. 24).
14801) and a solution cleaning method using a copper ammine complex ion solution are known, but the former loses CO absorption activity due to trace amounts of moisture, and the latter has the disadvantage that copper ions are easily oxidized. This has the disadvantage that CO absorption activity is lost due to this, and as a result, both devices require large-scale equipment, which imposes many restrictions on use.

(3)の例としては、古くから二酸化マンガンと酸化第
二銅な主体とした酸化触媒ホブカライドが知られており
、この触媒は常温またはそれ以下の温度域でも高いCO
の酸化活性を有するが、微量の水分によって容易に活性
を失うため密閉して保存し、さらに使用に際しては処理
すべきガスをあらかじめ完全に乾燥しておかなければな
らないという不便がある。
As an example of (3), the oxidation catalyst fobcalide, which is mainly composed of manganese dioxide and cupric oxide, has been known for a long time, and this catalyst has high CO2 even at room temperature or lower.
However, since it easily loses its activity due to trace amounts of moisture, it is inconvenient that it must be stored in a sealed container and that the gas to be treated must be completely dried before use.

一方COをCOlに酸化させる触媒として、金属単体あ
るいは金属化合物が多数知られているが、それらのほと
んどは活性を失う温度域が常温よりかなり高温であり、
かつガス中の水分によりて簡単に失活する。
On the other hand, many single metals or metal compounds are known as catalysts for oxidizing CO to COl, but most of them lose their activity at temperatures much higher than room temperature.
Moreover, it is easily deactivated by moisture in the gas.

わずかに白金・パラジウム等の貴金属の一部が常温でC
Oの酸化活性を有し、水分に対しても比較的安定して活
性を持続するが、活性自体は極めて低い。
A small amount of precious metals such as platinum and palladium have C at room temperature.
Although it has O oxidation activity and remains relatively stable and active against moisture, the activity itself is extremely low.

本発明は、CO酸化活性な惟温でも有効に発揮し、また
、白金・パラジウム等に比較して廉価で製造容易な化合
物を用いた新しい高活性のCO酸化剤を目的としたもの
である。
The object of the present invention is to create a new highly active CO oxidizing agent that is effective even at room temperature, where CO oxidation is active, and uses a compound that is cheaper and easier to manufacture than platinum, palladium, etc.

本発明者らは、この目的を達成しうるCO酸化剤につい
て様々の検討を行った結果、コバルト化合物、ルテニウ
ム化合物又は二、ケル化合物を二酸化マンガンに含浸し
、過マンガン酸カリウム(以下KMn04)水溶液で処
理して得た酸化剤がよく目的に遠合することを見出した
As a result of various studies on CO oxidizing agents that can achieve this purpose, the present inventors impregnated manganese dioxide with a cobalt compound, a ruthenium compound, or a di-Kel compound, and used a potassium permanganate (hereinafter referred to as KMn04) aqueous solution. It has been found that the oxidizing agent obtained by treatment with oxidizing agent is well suited for the purpose.

白金・パラジウムに比ベニ、ケル、コバルトは安価であ
り、また、ルテニウムは比較的安価で、鉱石中の貴金属
含有比は低いが需要が少ないので供給面での不安はない
という特徴がある。二酸化マンガンはCO酸化能力を有
するが、室温でのそれは非常に低い。また、コバルト、
ルテニウム、又は二、ケルの化合物も、それらを単独で
用いるとCOriI化活性は大変低い。
Compared to platinum and palladium, beni, kel, and cobalt are cheap, and ruthenium is relatively cheap, and although the precious metal content ratio in the ore is low, demand is low, so there is no concern about supply. Although manganese dioxide has CO oxidation capacity, it is very low at room temperature. Also, cobalt,
When ruthenium or di-Kel compounds are used alone, their COriI-forming activity is very low.

本発明者らは、単独で用いた場合には活性の低かったコ
バルト化合物、ルテニウム化合物、二、ケル化合物の一
または二級上の化合物と二酸化マンガンを組み合わせる
ことによって、常温でのCO酸化活性を増大させる効果
のあることを見出し本発明な完成した。
The present inventors have demonstrated that the CO oxidation activity at room temperature can be increased by combining manganese dioxide with cobalt compounds, ruthenium compounds, 2- or 2-higher compounds such as chel compounds, which had low activity when used alone. The present invention was completed after discovering that there is an effect of increasing the amount of water.

すなわち、本発明は、コバルト化合物、ルテニウム化合
物、二、ケル化合物からなる周期律表第八族元素を含有
する化合物群から選ばれた一または二級上の化合物と二
酸化マンガンよりなることを特徴とする一酸化炭素酸化
剤を提供するものである。
That is, the present invention is characterized by comprising a compound of one or two higher classes selected from the group of compounds containing Group 8 elements of the periodic table consisting of cobalt compounds, ruthenium compounds, di- and Kel compounds, and manganese dioxide. The present invention provides a carbon monoxide oxidizing agent.

二酸化マンガンは、二価のマンガン塩の電解酸化法、二
価のマンガン塩とKMn 04とからアルカリ性下で調
製する方法(J、アッテンブロウらJ、Chem、8o
c、1094(1952))*硝酸酸性下で調製する方
法(J、トルマン英国特許第1315374号)及び中
性溶液から調製する方法(s、ボールBiochem、
 J 42516 (1948))などによって得られ
るが、本発明において使用する二酸化マンガンは、この
どれによるものでもよい。
Manganese dioxide can be prepared by the electrolytic oxidation method of divalent manganese salts or by the method of preparing divalent manganese salts and KMn 04 under alkaline conditions (J, Attenbrough et al. J, Chem, 8o
c, 1094 (1952)) *method prepared under nitric acid acidity (J, Tolman British Patent No. 1315374) and method prepared from neutral solution (s, Ball Biochem,
J 42516 (1948)), but the manganese dioxide used in the present invention may be obtained from any of these methods.

本発明による酸化剤は、予め上記方法により閂 (G IE)れたNn Otにコバルト化合物、ルテニ
I)!化合物、又は二、ケル化合物の単独水溶液または
二種類以上の混合液を含浸させ、乾燥後、これをさらに
飽和KMnO4水溶液で処理し洗浄、乾燥を経て得られ
る。コバルト化合物、ルテニウム化合物、又は二、ケル
化合物の担持量は、いくらでも良いがこれら金属に換算
して0.1〜20%の範囲が最も望ましい。この酸化剤
は粉末の場合、Cム(C等のバインダーを加えたり、圧
縮成型するなどして適当な形状として用いることができ
る。
The oxidizing agent according to the present invention is a cobalt compound, Ruthenium I) on NnOt which has been previously bolted (GIE) by the above method. It is obtained by impregnating a single aqueous solution or a mixture of two or more of the compound or the Kel compound, drying, and then treating it with a saturated KMnO4 aqueous solution, washing, and drying. The amount of cobalt compound, ruthenium compound, or di-kel compound supported may be any amount, but it is most preferably in the range of 0.1 to 20% in terms of these metals. When the oxidizing agent is a powder, it can be used in a suitable form by adding a binder such as C or by compression molding.

こうして得られた酸化剤は、室温で有効にCOをCO,
に変換するため、用途としては、CO除去用防毒マスク
、エアークリーナー用CO低減剤、煙中CO低域のため
のシガレ2.トホルダーやシガレットフィルター充填剤
などが名えられる。
The oxidizing agent thus obtained can effectively convert CO to CO at room temperature.
Applications include gas masks for CO removal, CO reducing agents for air cleaners, and cigarettes for low-range CO in smoke. Examples include filter holders and cigarette filter fillers.

以下に実施例を用いて本発明の詳細な説明する。The present invention will be described in detail below using Examples.

実施例1)50fの硝酸マンガン6水塩を300−の蒸
留水に溶解し、これに5Ofの濃硝酸を加えた。別に5
01のKMnO4を2tの蒸留水に溶解し、この溶液を
攪拌しながら先に調製した硝酸酸性硝酸マンガン水溶液
を徐々に加えた。攪拌しながら10分程度置し、生じた
活性二酸化マンガンを傾斜法によって洗浄し、さらに吸
引濾過しながらV液がほとんど無色になるまで洗浄した
。次いで110℃で一晩乾燥し、得られた25fの塊状
の活性二酸化マンガンを破砕し篩別した。20/60メ
、シュの粒径の活性二酸化マンガンをとり、5 Tl9
CoCL、6H,0/*の溶液8*tll(浸し、hI
C圧下で水を留去した後110℃で一晩乾燥した。こう
して得られた塩化コバルト担持活性二酸化マンガンを、
さらに飽和I(MnO,水溶液lO−に浸し、10分間
放tit後、r別し、過マンガン酸イオンの桃色が認め
られなくなるまで蒸留水で洗浄した。次いで110℃で
一晩乾燥し、金属に換算して1. Owt%のコバルト
を担持した活性二酸化マンガンを得た。これと同様の手
順で金属コバルトとして、0.02.0.2.2.0,
4.0,6.0,8.0,10.0,12.0,14.
Owt劾≠パルトを担持したQ他剤を調製した。これら
の酸化剤を各200■使用し、下記の手順でCO除去率
を測定した。■酸化剤tガラス管に充填し、ガラスウー
ルで充填物の両端を押さえる。■このガラス管にキャリ
アガスとしてヘリウムを流しながら反応ガス(COs%
、0,4%、 CH44%。
Example 1) 5Of of manganese nitrate hexahydrate was dissolved in 300 of distilled water, and 5Of of concentrated nitric acid was added thereto. Separately 5
KMnO4 of No. 01 was dissolved in 2 tons of distilled water, and while stirring this solution, the previously prepared nitric acid acidic manganese nitrate aqueous solution was gradually added. The mixture was allowed to stand for about 10 minutes with stirring, and the activated manganese dioxide produced was washed by a decanting method, and further washed with suction filtration until the V liquid became almost colorless. Next, it was dried at 110°C overnight, and the obtained activated manganese dioxide in the form of 25f blocks was crushed and sieved. Take activated manganese dioxide with a particle size of 20/60 mm, 5 Tl9
CoCL, 6H, 0/* solution 8*tll (soaked, hI
After water was distilled off under C pressure, it was dried at 110°C overnight. The cobalt chloride-supported active manganese dioxide obtained in this way was
Further, it was immersed in a saturated I (MnO, aqueous solution lO-), left for 10 minutes, separated, and washed with distilled water until the pink color of permanganate ions was no longer observed.Next, it was dried at 110°C overnight, and the metal Activated manganese dioxide carrying cobalt of 1.0% by weight was obtained in terms of 1.0% by weight.By using the same procedure as this, metallic cobalt was prepared by 0.02.0.2.2.0,
4.0, 6.0, 8.0, 10.0, 12.0, 14.
Q and other agents supporting OwtKaip≠Pult were prepared. Using 200 μl of each of these oxidizing agents, the CO removal rate was measured according to the following procedure. ■Fill the oxidizing agent into a glass tube and press both ends of the filling with glass wool. ■While flowing helium as a carrier gas through this glass tube, the reaction gas (COs%
, 0.4%, CH44%.

ヘリウム87%)のパルスを常温(22℃)で10d与
える。■ガラス管を通過したガスを直接ガスク四マドグ
ラフに導き、ガス成分を分析する。
A pulse of 87% helium was applied for 10 d at room temperature (22° C.). ■The gas that has passed through the glass tube is guided directly to the gas cylinder to analyze the gas components.

結果を第1FXJに、また各酸化剤の平均CO減少率を
第2図に示した。コバルト添加量2.0〜8.0 wt
−の範囲の酸化剤がCO酸化に高活性であり、それらは
平均90%のCOを除去した。
The results are shown in FXJ 1, and the average CO reduction rate of each oxidizing agent is shown in Fig. 2. Cobalt addition amount 2.0 to 8.0 wt
A range of oxidants were highly active in CO oxidation, and they removed an average of 90% of CO.

実施例2) m解酸化法によって得られた市販のMn0
t 4 fを100キの塩化コバルト6水塩を溶解した
25−の水に浸し、減圧下で水を留去した。以下実施例
1で述べた手順と同様にKMnO4水溶液処理、洗浄、
乾燥を行ない、得られた酸化剤のうち200■をパルス
試験に供した。表1KRめられるように、市販のMnO
xを用いた場合でも得られた酸化剤は高いCO酸化活性
を示した。
Example 2) Commercially available Mn0 obtained by m-deoxidation method
The t4f was immersed in 25-g water in which 100 kg of cobalt chloride hexahydrate was dissolved, and the water was distilled off under reduced pressure. Following the same procedure as described in Example 1, KMnO4 aqueous solution treatment, cleaning,
After drying, 200 μm of the obtained oxidizing agent was subjected to a pulse test. As shown in Table 1KR, commercially available MnO
Even when x was used, the obtained oxidizing agent showed high CO oxidation activity.

表1 実施例3)実施例1で得た活性二酸化マンガンを5 ”
f RuC4/d 4.52−に浸し、減圧下で水を留
去した。次いで実施例1と同様の手順で酸化剤調製を行
ないl、 Q wt%のルテニウムを担持した活性二酸
化マンガンを得た。また、同様にして0.02〜’l 
5. Q wt%の範囲のルテニウムを担持した数種の
活性二酸化マンガンを調製した。得られた酸化剤各20
0qについてノくルス試験を行なったところ結果は第3
図、第4図のようになった。CO酸化に最適なルテニウ
ム添加率は12.0〜N4.0w1%であり、そのCO
除夫率は約40%であった。
Table 1 Example 3) 5" of activated manganese dioxide obtained in Example 1
f RuC4/d 4.52-, and water was distilled off under reduced pressure. Next, an oxidizing agent was prepared in the same manner as in Example 1 to obtain activated manganese dioxide carrying 1, Q wt% of ruthenium. Similarly, 0.02~'l
5. Several activated manganese dioxides loaded with ruthenium in the Q wt% range were prepared. 20 each of the obtained oxidizing agents
When we conducted the Nox test on 0q, the result was the third
It became as shown in Figure 4. The optimum ruthenium addition rate for CO oxidation is 12.0 to N4.0w1%, and the CO
The husband removal rate was approximately 40%.

実施例4)実施例1で得た活性二酸化マンガンと、これ
に対して0.02〜14.9w15社の塩化二、ケル水
溶液を用いて実施例1で述べた手順で添加及び処理を行
ない10種の酸化剤を得た。
Example 4) The activated manganese dioxide obtained in Example 1 and a 0.02 to 14.9 w15 aqueous solution of dichloride Kel were added and treated according to the procedure described in Example 1. A seed oxidizer was obtained.

この酸化剤各200qをパルス試験に供し、第5図、第
6図に示すCO減少率を得た。CO酸化に適し九二、ケ
ル添加率は4.0〜8. Owt%で、中でも60wt
%の触媒のCO除夫率は35%であった。
200 q of each of these oxidizers were subjected to a pulse test, and the CO reduction rates shown in FIGS. 5 and 6 were obtained. 92, suitable for CO oxidation, Kel addition rate is 4.0-8. Owt%, especially 60wt
% catalyst had a CO removal rate of 35%.

実施例5)2Ofの無水硫酸マンガンを100ねeの水
に溶解し、攪拌しながらこれに1(H’の)<Mn O
4と51の水酸化ナトリウムとを溶解した300mj!
の蒸留水を徐々に加えた。生じた黒褐色の沈IQを吸引
1″I過によって沢別し、さらに蒸留水でI’液がほと
んど無色となるまで洗浄した。
Example 5) Dissolve 2Of anhydrous manganese sulfate in 100E of water and add to it with stirring 1(H')<MnO
300 mj of sodium hydroxide dissolved in 4 and 51!
of distilled water was gradually added. The resulting black-brown precipitate IQ was separated by suction through a 1'' I filter, and further washed with distilled water until the I' liquid became almost colorless.

次にこれを110℃で一夜乾燥し活性二酸化マンガンの
粉末を得た。このうちがらltをとり5 mf C0C
L、、 6)I207耐16 mlに浸した後、実瀧例
1と同様の手順で処理し、2.0wt%のコバルトを含
有する酸化剤を得た。この酸化剤200mfについてパ
ルス試験を行なった結果を表2に示した。
Next, this was dried at 110° C. overnight to obtain active manganese dioxide powder. Take lt out of this and 5 mf C0C
L,, 6) After soaking in 16 ml of I207, the sample was treated in the same manner as in Example 1 to obtain an oxidizing agent containing 2.0 wt% cobalt. Table 2 shows the results of a pulse test performed on this oxidizing agent at 200 mf.

表2 実LffiM例6)実施例1〜5では、各種の二酸化マ
ンガンとコバルト、二、ケル又はルテニウムの塩化物と
から調製される一酸化炭素酸化剤について述べた。しか
し、使用するコバルト、ニッケル及びルテニウム化合物
は、塩化物に限らず硝酸塩、硫酸塩、酢酸塩その他任意
の塩でもかまわない。そこで、実施例1で得た活性二酸
化マンガンlfとコバルト、ニッケル、ルテニウムの塩
化物以外の化合物から、実施例1に述べた方法と同様の
手順によって酸化剤を調製し、各々200mFを用いて
その活性を調べた。結果を表3に示す。
Table 2 Practical LffiM Examples 6) Examples 1-5 describe carbon monoxide oxidizers prepared from various manganese dioxides and chlorides of cobalt, di, chel, or ruthenium. However, the cobalt, nickel and ruthenium compounds used are not limited to chlorides, but may also be nitrates, sulfates, acetates or other arbitrary salts. Therefore, an oxidizing agent was prepared from the activated manganese dioxide lf obtained in Example 1 and compounds other than the chlorides of cobalt, nickel, and ruthenium by the same procedure as described in Example 1, and the oxidizing agent was oxidized using 200 mF for each. The activity was examined. The results are shown in Table 3.

尚、表3に載せた以外の化合物(例: Cocoa’7
Hs O,Co(CHs Coo)! ・4Hs O,
Ni (Noj )禦・6Ht OrNISOa・6H
,O)を用いた場合も同様のCo除去活性が認められる
In addition, compounds other than those listed in Table 3 (e.g. Cocoa'7
Hs O, Co (CHs Coo)!・4Hs O,
Ni (Noj) 禦・6Ht OrNISOa・6H
, O), similar Co removal activity was observed.

表3 以上の実施例から、コバルト化合物、ルテニは、室温で
気相中COを効率よく酸化する性能を有することが実証
された。
Table 3 From the above examples, it was demonstrated that the cobalt compound rutheni has the ability to efficiently oxidize CO in the gas phase at room temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコバルト−活性二酸化マンガンのパルス試験結
果のグラフであり第2図はコバルト−活性二酸化マンガ
ンの平均CO減少率のグラフであり、第3図はルテニウ
ム−活性′二酸化マンガンのパルス試験結果のグラフで
あり、第4図はルテニウム−活性二酸化マンガンの平均
CO減少率のグラフであり、第5図はニッケルー活性二
酸化マンガンのパルス試験結果であり、第6図は二、ケ
ルー活性二酸化マンガンの平均CO減少率のグラフであ
る。 パルス(回) 第 1 図 コバルト添加率fwl’/at 第2図 パル7、、(回) 率 3 図 ルテニクム圧力ml覧1wj%1 第 4 図 Iマルス(回) 第 5 図 二−ノケル)r>加年1w+%) 第 6図 手 続 補 正 古 (方式) %式% 3、補正をする名 事「1.との関係 クキ許出願人 1目W 束ノ2都港区虎ノ門二丁目2番1号氏名 (4
56) 日本専売公ン! 代表一台 総裁 長 岡 實 4、指定代理人 (1,所 東京都港区虎)門二丁目2番1号1Mj和5
9年1月3111 (発送日)6、 補正の対象 明細V; 7、 捕iEの内容 別n(のきおり明m書を全文補正しまj−0(内容に変
更なし。)
Figure 1 is a graph of pulse test results for cobalt-activated manganese dioxide, Figure 2 is a graph of average CO reduction rate for cobalt-activated manganese dioxide, and Figure 3 is a graph of pulse test results for ruthenium-activated manganese dioxide. Fig. 4 is a graph of the average CO reduction rate of ruthenium-activated manganese dioxide, Fig. 5 is a graph of the pulse test results of nickel-activated manganese dioxide, and Fig. 6 is a graph of the average CO reduction rate of ruthenium-activated manganese dioxide. It is a graph of average CO reduction rate. Pulse (times) Figure 1 Cobalt addition rate fwl'/at Figure 2 Pulse 7,, (times) Rate 3 Figure Ruthenicum pressure ml list 1wj%1 Figure 4 I Malus (times) Figure 5 Figure 2 - Nokel) r > Year 1w + %) Figure 6 Procedures Correction Old (Method) % Formula % 3. Relationship with famous event to be corrected ``1. Number 1 Name (4
56) Japan exclusive public! 1 Representative Director: Minoru Nagaoka 4, Designated Agent (1, Address: 2-2-1 Toramon, Minato-ku, Tokyo 1Mj Wa 5)
January 9, 3111 (Delivery date) 6. Details to be amended V; 7. The full text of the written statement has been amended (no changes to the contents).

Claims (1)

【特許請求の範囲】 1、 コバルト化合物、ルテニウム化合物、二。 ケル化合物からなる周期律表第八族元素を含有する化合
物群から選ばれた一または二級上の化合物と二酸化マン
ガンよりなることを特徴とする一酸化炭素酸化剤
[Claims] 1. Cobalt compound, ruthenium compound, 2. A carbon monoxide oxidizing agent characterized by comprising a first or second class higher compound selected from the group of compounds containing Group 8 elements of the periodic table consisting of Kel compounds and manganese dioxide.
JP58180607A 1983-09-30 1983-09-30 Oxidizing agent for carbon monoxide Granted JPS6072977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180607A JPS6072977A (en) 1983-09-30 1983-09-30 Oxidizing agent for carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180607A JPS6072977A (en) 1983-09-30 1983-09-30 Oxidizing agent for carbon monoxide

Publications (2)

Publication Number Publication Date
JPS6072977A true JPS6072977A (en) 1985-04-25
JPH0373336B2 JPH0373336B2 (en) 1991-11-21

Family

ID=16086202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180607A Granted JPS6072977A (en) 1983-09-30 1983-09-30 Oxidizing agent for carbon monoxide

Country Status (1)

Country Link
JP (1) JPS6072977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511425A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Platinum-free ruthenium-cobalt catalyst formulation for hydrogen generation
JPWO2010090193A1 (en) * 2009-02-04 2012-08-09 リケンテクノス株式会社 Film capable of oxidizing carbon monoxide and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910190A (en) * 1972-04-12 1974-01-29
JPS5036387A (en) * 1973-08-02 1975-04-05
JPS50139087A (en) * 1974-04-26 1975-11-06
JPS525434A (en) * 1975-07-01 1977-01-17 Hitachi Ltd Oxygen electrode for fuel cell
JPS526277A (en) * 1975-07-02 1977-01-18 Shii Esu Shii Kk Packing bag for charging powder* coffee grain* etc*
JPS53142393A (en) * 1977-05-17 1978-12-12 Matsushita Electric Ind Co Ltd Production of gas purification catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910190A (en) * 1972-04-12 1974-01-29
JPS5036387A (en) * 1973-08-02 1975-04-05
JPS50139087A (en) * 1974-04-26 1975-11-06
JPS525434A (en) * 1975-07-01 1977-01-17 Hitachi Ltd Oxygen electrode for fuel cell
JPS526277A (en) * 1975-07-02 1977-01-18 Shii Esu Shii Kk Packing bag for charging powder* coffee grain* etc*
JPS53142393A (en) * 1977-05-17 1978-12-12 Matsushita Electric Ind Co Ltd Production of gas purification catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511425A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Platinum-free ruthenium-cobalt catalyst formulation for hydrogen generation
JPWO2010090193A1 (en) * 2009-02-04 2012-08-09 リケンテクノス株式会社 Film capable of oxidizing carbon monoxide and use thereof
JP6042595B2 (en) * 2009-02-04 2016-12-14 リケンテクノス株式会社 Film capable of oxidizing carbon monoxide and use thereof

Also Published As

Publication number Publication date
JPH0373336B2 (en) 1991-11-21

Similar Documents

Publication Publication Date Title
JP3924322B2 (en) Hazardous gas removal agent
US11247197B1 (en) Core-shell structured catalyst, preparation method thereof and method for treating industrial tail gas
JPH02303539A (en) Production method of carrier catalyser to oxidize co, carrier catalyser and co-oxidation by contacting method
WO2004052536A1 (en) Composite catalyst for removing carbon monoxide and method for removing carbon monoxide using the same
CN111939896A (en) Liquid catalyst for catalyzing ozonolysis at normal temperature and preparation method and application thereof
US4031185A (en) Process for making nitrogen oxides contained in flue gas harmless
JP4861018B2 (en) Nitric oxide oxidation catalyst and nitric oxide oxidation method
JPS6072977A (en) Oxidizing agent for carbon monoxide
KR102054289B1 (en) Filter impregnated alkali metal compound for removing NO2 and air purifier including thereof
JPH04197447A (en) Remover of nitrogen oxide
JPH05111618A (en) Removing method of carbon monoxide
JPS63171623A (en) Removing method for nitrogen oxide
JPS5933410B2 (en) How to remove ozone
JPH0239297B2 (en)
JPS6120330B2 (en)
JPH07743A (en) Adsorbent and removing method for nitrogen oxide using adsorbent
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JPS5926337B2 (en) carbon monoxide remover
JPS63310627A (en) Carbon monoxide remover
JPH11128736A (en) Adsorbent for nitrogen oxide
JPH04219136A (en) Composition having air purifying power and production thereof
JPS62193633A (en) Reducing agent for nitrogen oxide
JPS6120329B2 (en)
JP3779459B2 (en) Nitrogen dioxide adsorption / reduction remover and nitrogen dioxide removal method
JPH0222702B2 (en)