[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11128736A - Adsorbent for nitrogen oxide - Google Patents

Adsorbent for nitrogen oxide

Info

Publication number
JPH11128736A
JPH11128736A JP9297465A JP29746597A JPH11128736A JP H11128736 A JPH11128736 A JP H11128736A JP 9297465 A JP9297465 A JP 9297465A JP 29746597 A JP29746597 A JP 29746597A JP H11128736 A JPH11128736 A JP H11128736A
Authority
JP
Japan
Prior art keywords
adsorbent
oxide
mass
adsorption
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9297465A
Other languages
Japanese (ja)
Other versions
JP3474409B2 (en
Inventor
Yuji Horii
雄二 堀井
Akinori Inoue
聡則 井上
Takeshi Yamashita
岳史 山下
Yoshiyuki Tomiyama
好行 冨山
Hidetaka Shibano
秀孝 柴野
Satoshi Teshigahara
聡志 勅使川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Sued Chemie Catalysts Japan Inc
Original Assignee
Kobe Steel Ltd
Nissan Girdler Catalysts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nissan Girdler Catalysts Co Ltd filed Critical Kobe Steel Ltd
Priority to JP29746597A priority Critical patent/JP3474409B2/en
Priority to DE1998149928 priority patent/DE19849928A1/en
Publication of JPH11128736A publication Critical patent/JPH11128736A/en
Application granted granted Critical
Publication of JP3474409B2 publication Critical patent/JP3474409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively adsorb and remove NOx without previously adding O2 to a gas to be treated when the NOx included in the gas to be treated is adsorbed and removed. SOLUTION: This adsorbent contains one or more selected from the group of Mn oxide, Mn-Cu combined oxides and Mn-Fe combined oxides and an alkali or alkaline earth metal salt of ruthenium acid. Alternatively, in addition to those, an alkali metal compound other than the above is added to form this adsorbent that has a high nitrogen oxide removing efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一酸化窒素(N
O)や二酸化窒素(NO2 )などの窒素酸化物(NO
x )を除去するための吸着剤に関し、特に、自動車用ト
ンネル、地下駐車場等からの換気排ガス等に含まれるN
x を効率よく吸着除去し、大気汚染を防止するために
使用されるNOx 吸着剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nitric oxide (N
O) and nitrogen oxides (NO 2 ) such as nitrogen dioxide (NO 2 )
x ), for adsorbents for removing, particularly, N contained in ventilation exhaust gas from automobile tunnels, underground parking lots, etc.
The O x efficiently adsorbed and removed relates the NO x adsorption material that is used to prevent air pollution.

【0002】[0002]

【従来の技術】自動車用トンネルや地下自動車駐車場、
有害ガス発生機器を有する室内等からの換気排ガスは常
温であり、NOx 濃度が低く、瞬間的な濃度変動が大き
い等、焼却設備等における煙道排ガスの性状とは大きく
異なっている。このため、これら換気ガス中の有害ガス
の除去には、焼却設備等の煙道排ガスに対し従来から用
いられている「チタニア(TiO2 )を主成分とする脱
硝触媒上でアンモニア(NH3 )を還元剤として選択的
に窒素(N2 )まで還元する選択的触媒還元法(NH3
還元脱硝法)」をそのまま適用することはできない。そ
のため、換気ガス中のNOx については、これを適当な
NOx 吸着剤に通して一旦吸着させた後、加熱脱着させ
て高濃度のNOx を得、前記NH3 還元脱硝法を適用す
ることが考えられた。そして、かかる方法に用いられる
NOx 吸着剤としては、下記の様な吸着剤が知られてい
る。
2. Description of the Related Art Automobile tunnels and underground car parking lots,
Ventilation exhaust from the room or the like having a harmful gas generating device is a room temperature, low concentration of NO x, instantaneous concentration fluctuation is large and the like and is much different from the properties of the flue gas in the incineration facilities. For this reason, in order to remove harmful gas from these ventilation gases, ammonia (NH 3 ) is used on a denitration catalyst containing titania (TiO 2 ) as a main component, which is conventionally used for flue exhaust gas from incinerators and the like. Catalytic reduction method (NH 3 ) for selectively reducing to nitrogen (N 2 )
Reduction denitration method) cannot be applied as it is. Therefore, for the NO x in the ventilation gas, this was allowed to temporarily adsorbed through appropriate the NO x adsorbing agent, by thermal desorption to obtain a high concentration of NO x, applying the NH 3 reducing denitration method Was thought. Then, as the the NO x adsorbing agent used in such methods are known adsorbents such as described below.

【0003】Na、Ca等の酸化物を含み、更にM
n、Fe又はCu等の酸化物を含ませることより吸着活
性を高めた活性アルミナ(Al23 )系NOx 吸着剤
(特開平4−367707号公報)。
[0003] It contains oxides such as Na, Ca, etc.
An activated alumina (Al 2 O 3 ) -based NO x adsorbent having an enhanced adsorption activity by containing an oxide such as n, Fe or Cu (Japanese Patent Application Laid-Open No. Hei 4-367707).

【0004】アナターゼ型TiO2 よりなる担体にR
u(ルテニウム)を担持させた低濃度NOx 吸着剤(特
開平5−123568号公報)。
An anatase-type TiO 2 carrier has R
u low concentration the NO x adsorbing agent was supported (ruthenium) (JP-A-5-123568).

【0005】Pt、Au、Ru、Rh及びPdから選
ばれる少なくとも1種の貴金属、あるいはそれらの化合
物を担体に担持させるか、あるいはそれらの貴金属成分
とMn、Fe、Co、Ni、Cu、Zn等の金属酸化物
とを、必要に応じて担体に担持させてなる、NOx 、特
にNO2 を対象とした吸着剤(特開平7−88363号
公報)。
[0005] At least one noble metal selected from Pt, Au, Ru, Rh and Pd, or a compound thereof is supported on a carrier, or the noble metal component is combined with Mn, Fe, Co, Ni, Cu, Zn, etc. Adsorbent for NO x , especially NO 2 (Japanese Patent Application Laid-Open No. 7-88363), wherein the metal oxide is supported on a carrier as required.

【0006】比表面積が100m2 /g以上のγ−M
nO2-x (但し、0≦x≦0.1)を主成分とするNO
x 酸化吸着剤(特開平8−173796号公報)。
Γ-M having a specific surface area of 100 m 2 / g or more
NO whose main component is nO 2-x (where 0 ≦ x ≦ 0.1)
x Oxidation adsorbent (JP-A-8-173796).

【0007】Mn−Cu複合酸化物および/またはM
n−Fe複合酸化物とRu化合物を含有するNOx 吸着
剤、あるいはMn酸化物、Mn−Cu複合酸化物および
Mn−Fe複合酸化物よりなる群から選択される少なく
とも1種と、Ru化合物と、アルカリ金属化合物および
/またはSn化合物を含有するNOx 吸着剤(国際公開
WO97/11779)。
Mn—Cu composite oxide and / or M
the NO x adsorbing agent containing n-Fe composite oxide and a Ru compound, or Mn oxide, at least one member selected from the group consisting of Mn-Cu composite oxide and Mn-Fe complex oxide, a Ru compound , NO x adsorbent containing an alkali metal compound and / or Sn compound (International Publication WO97 / 11779).

【0008】酸化Mn、あるいはCuまたはFeを含
有する酸化マンガンに、Ru化合物を担持させたNOx
吸着剤(特開平9−141088号)。
[0008] manganese oxide containing Mn oxide, or Cu or Fe,, NO x, which was supported Ru compounds
Adsorbent (Japanese Patent Application Laid-Open No. 9-141088).

【0009】ところが上記NOx 吸着剤〜には、各
々下記の様な問題点がある。の吸着剤はNOx 吸着剤
とされているが、実用的にはNO2 に対する吸着能しか
有していない。前記換気ガス等に含まれるNOx の大半
はNOであり、NO 2 は一般に全NOx 濃度の数〜10
%程度を占めるに過ぎない場合が多い。そのため、の
吸着剤を用いる場合は、被処理ガスに予めオゾン(O
3 )を添加してNOをNO2 に酸化する必要がある。こ
のとき、O3 の添加量が不足すると未酸化のNOが残
り、十分なNOx 除去性能が得られなくなる。逆にO3
を過剰に添加すると、余剰のO3 が有害ガスとして放出
されることになる。またO3 添加量の多少にかかわら
ず、処理装置からのO3 漏洩の危険が否めない。しか
も、この吸着剤に吸着させたNOx を脱着するには、4
50℃もの高温で処理しなければならない。
However, the above NOx Adsorbents ~ each
There are the following problems. Adsorbent is NOx Adsorbent
But practically NOTwo Only adsorption capacity for
I do not have. NO contained in the ventilation gas etc.x Most of
Is NO, NO Two Is generally all NOx Number of concentrations to 10
In many cases, it only accounts for about%. Therefore, of
When an adsorbent is used, ozone (O
Three ) To convert NO to NOTwo Need to be oxidized. This
When OThree Insufficient NO will leave unoxidized NO
Enough NOx Removal performance cannot be obtained. On the contrary, OThree 
Is added in excess, excess OThree Released as harmful gas
Will be done. Also OThree Regardless of the amount added
And O from the processing equipmentThree The danger of leakage cannot be denied. Only
NO adsorbed on this adsorbentx 4 to remove
It must be processed at temperatures as high as 50 ° C.

【0010】の吸着剤もNOx 吸着剤とされている
が、NOとNO2 の区別は全くなされておらず、NOの
吸着性能は不明である。またこの吸着剤も、脱着再生す
るのに350℃程度の高温処理を必要とする。
[0010] While the there is a sorbent also the NO x adsorbing agent, the distinction between NO and NO 2 not at all made, adsorption performance of NO is unknown. This adsorbent also requires a high temperature treatment of about 350 ° C. for desorption and regeneration.

【0011】の吸着剤はNOに対する吸着能も有して
いると記載されているが、そのNO吸着能はNO2 吸着
能に比べて遥かに低い(性能持続時間が短い)。そのた
め前記の吸着剤の場合と同様に、実用に際してはO3
添加による予備酸化処理が必要となる。
It is described that the adsorbent also has an adsorbing ability for NO, but the NO adsorbing ability is much lower than the NO 2 adsorbing ability (duration of performance is short). Therefore, as in the case of the adsorbent described above, O 3
Pre-oxidation treatment by addition is required.

【0012】また、NOを一旦NO2 にまで酸化してか
らでなければ実用的な除去性能を発揮しない吸着剤を使
用し、NOの全量をNO2 にまで酸化すると、吸着除去
できなかったNO2 が排出されることになる。自動車ト
ンネルや地下駐車場の換気ガスの様な被処理ガス中のN
2 濃度は、NO濃度に比べて低い場合が殆どであるの
で、NO2 の吸着性能を非常に高くしなければ、NO2
が殆ど減らなかったり、逆に増加することもあり得る。
従って、環境基準で規制値が設定されている有害ガスで
あるNO2 を除去すべき吸着剤としては、基本的に問題
がある。
Further, by using the adsorbent which does not exhibit practical removal performance unless after oxidized to once NO 2 to NO, is oxidized on the total amount of NO to the NO 2, NO that can not be adsorbed and removed 2 will be discharged. N in gases to be treated, such as ventilation gases in car tunnels and underground parking
O 2 concentration, since if lower than the NO concentration is almost, unless very high adsorption performance of NO 2, NO 2
May hardly decrease or may increase.
Therefore, there is basically a problem as an adsorbent for removing NO 2 , which is a harmful gas whose regulation value is set by environmental standards.

【0013】更に、自動車トンネルや地下駐車場の換気
ガスの様な被処理ガスの大部分はイオウ酸化物(SO
x )、即ち、二酸化イオウ(SO2 )や三酸化イオウ
(SO3)を含んでおり、SOx の濃度は、一般にNOx
の濃度よりも低いが、多くの金属と蓄積性のイオウ化
合物(硫酸塩等)を生成する。そして上記、、の
吸着剤とも、重金属酸化物や活性アルミナ、Ru化合物
の様に、イオウ化合物を生成し易い金属を主体とするも
のであるから、SOx による性能劣化(被毒)が問題と
なる。
In addition, most of the gases to be treated, such as ventilation gases in car tunnels and underground parking lots, contain sulfur oxides (SO
x ), that is, sulfur dioxide (SO 2 ) and sulfur trioxide (SO 3 ), and the concentration of SO x is generally NO x
, But produces many metals and accumulative sulfur compounds (sulfates, etc.). Since the above adsorbents are mainly composed of metals that easily generate sulfur compounds, such as heavy metal oxides, activated alumina, and Ru compounds, performance degradation (poisoning) due to SO x is a problem. Become.

【0014】の酸化吸着剤の場合、NOの大部分がN
2 に酸化されて放出され、NOの一部が吸着されるだ
けであるため、下流側に別途NO2 吸着部を設けなけれ
ばならない。従ってこの場合も、上記、の吸着剤を
用いる場合と同様に、NO2吸着性能を著しく高めなけ
れば、満足のいくNOx 除去効果を得ることができな
い。
In the case of the oxidizing adsorbent, most of NO is N
Since it is oxidized and released to O 2 and only a part of NO is adsorbed, a separate NO 2 adsorbing section must be provided on the downstream side. Therefore also in this case, as with the above, the adsorbent, if significantly increased the NO 2 adsorption performance can not be obtained NO x removal effect satisfactory.

【0015】の吸着剤は、NOおよびNO2 吸着活性
が高い点で、上記〜の各吸着剤に比べて遥かに優れ
てはいるが、なお改良すべき点が残っている。先ず、R
uは金属あるいは酸化物状態で存在しても意図する様な
効果は発揮されず、塩化物(RuCl3 )あるいは硝酸
塩が望ましいとされている。これらの物質は酸性化合物
であるので、塩基性化合物であるMn酸化物、Mn−C
u複合酸化物あるいはMn−Fe複合酸化物に混練した
り含浸したりすると、Ru化合物がMn酸化物表面に凝
集し易く、均一に分散し難い傾向が見られる。すなわ
ち、高表面積の活性点が得られ難くなる。また、炭酸カ
リウム等のアルカリ金属化合物の担持は吸着性能を高め
る効果を有しているが、ペレット等の成形体の強度低下
の原因になったり、高湿度時に成形体の吸湿が進むと吸
着水への溶解が生じ、細孔を閉塞する原因ともなる。そ
のためアルカリ金属化合物の担持量には制約があり、担
持方法にも十分な注意が必要となる。
Although the adsorbent is much superior to the above adsorbents in that it has high NO and NO 2 adsorption activity, it still has points to be improved. First, R
Even if u exists in a metal or oxide state, the intended effect is not exhibited, and chloride (RuCl 3 ) or nitrate is considered to be desirable. Since these substances are acidic compounds, basic compounds such as Mn oxide and Mn-C
When kneaded or impregnated with the u composite oxide or the Mn-Fe composite oxide, the Ru compound tends to agglomerate on the Mn oxide surface and tends to be difficult to be uniformly dispersed. That is, it becomes difficult to obtain an active point having a high surface area. In addition, the loading of an alkali metal compound such as potassium carbonate has the effect of increasing the adsorption performance, but it causes a decrease in the strength of the molded body such as pellets, or when the moisture absorption of the molded body at high humidity advances, Dissolution occurs, which also causes pores to be closed. For this reason, the amount of the alkali metal compound to be carried is limited, and sufficient care must be taken in the carrying method.

【0016】しかも前記の吸着剤は、NOを酸化して
から吸着するので、NOのみを含むガスを処理すると、
吸着できなかった若干のNO2 が出口側にリークする。
この濃度は、通常は問題のない水準ではあるが、直接的
な規制対象でないNOを、直接の環境規制物質であるN
2 に変えて除去すること自体、好ましい方法とは言い
難い。の吸着剤も、上記の吸着剤と実質的に同じ問
題を含んでいる。
Moreover, the above adsorbent adsorbs NO after oxidizing it. Therefore, when a gas containing only NO is treated,
Some NO 2 that could not be adsorbed leaks to the outlet side.
Although this concentration is normally at a level that does not cause any problem, NO that is not directly regulated is converted to N that is a direct environmental control substance.
It is difficult to say that the removal in place of O 2 is a preferable method. Also have substantially the same problems as the adsorbents described above.

【0017】[0017]

【発明が解決しようとする課題】本発明は、上記の様な
従来技術の問題点に着目してなされたものであって、そ
の目的は、NOx 主体の有害ガスの除去に用いられる吸
着剤に指摘される前述の様な問題点を解消し、たとえば
被処理ガス中のNOx を吸着除去する際に、予め被処理
ガスにO3 を添加しなくとも又NO2 のリークを生じる
ことなく、NOxを効率よく吸着除去することのできる
NOx 吸着剤を提供しようとするものである。
The present invention 0005] is, which has been made in view of the problems of such conventional techniques described above, and its object is adsorbent used for the removal of noxious gases of the NO x mainly is the to eliminate such problems described above pointed out, for example, in removing adsorbing NO x in the treated gas, without causing leakage even addition of NO 2 without addition of O 3 in advance in the gas to be treated , it is intended to provide the NO x adsorption material that can be a NO x efficiently adsorbed and removed.

【0018】[0018]

【課題を解決するための手段】上記課題を達成すること
のできた本発明に係るNOx 吸着剤は、Mn酸化物、M
n−Cu複合酸化物およびMn−Fe複合酸化物よりな
る群から選択される少なくとも一種と、ルテニウム酸の
アルカリあるいはアルカリ土類金属塩を含有し、あるい
はMn酸化物、Mn−Cu複合酸化物およびMn−Fe
複合酸化物よりなる群から選択される少なくとも一種、
およびルテニウム酸のアルカリあるいはアルカリ土類金
属塩と共に、上記以外のアルカリ金属化合物を含有する
ところに特徴を有している。
The NO x adsorbing agent according to the present invention which could achieve the above object, according to an aspect of the, Mn oxide, M
At least one selected from the group consisting of an n-Cu composite oxide and a Mn-Fe composite oxide, and an alkali or alkaline earth metal salt of ruthenic acid, or a Mn oxide, a Mn-Cu composite oxide and Mn-Fe
At least one selected from the group consisting of composite oxides,
It is characterized by containing an alkali metal compound other than the above, together with an alkali or alkaline earth metal salt of ruthenic acid.

【0019】上記本発明においては、前記Mn−Cu複
合酸化物として[Mn/(Mn+Cu)]の質量比が
0.15以上、より好ましくは0.45〜0.95のも
のを使用し、また前記Mn−Fe複合酸化物として[M
n/(Mn+Fe)]の質量比が0.10以上、より好
ましくは0.30〜0.85のものを使用することによ
って、NOx 吸着剤としてより高レベルの性能を確保す
ることができる。
In the present invention, the Mn-Cu composite oxide having a mass ratio of [Mn / (Mn + Cu)] of 0.15 or more, more preferably 0.45 to 0.95, is used. As the Mn-Fe composite oxide, [M
n / (Mn + Fe)] mass ratio is 0.10 or more, more preferably by using one of 0.30 to 0.85, it is possible to secure the higher levels of performance as the NO x adsorbing agent.

【0020】前記ルテニウム酸塩の吸着剤中に占める含
有率は、ルテニウム金属換算で0.05質量%以上、よ
り好ましくは0.10質量%以上、更に好ましくは0.
30質量%以上であり、その上限は2質量%程度であ
る。また上記ルテニウム酸塩の中でも特に好ましいのは
ルテニウム酸カリウムとルテニウム酸ナトリウムであ
り、これらは単独で使用し得る他、必要に応じて2種を
併用することも有効である。
The content of the ruthenate in the adsorbent is 0.05% by mass or more, preferably 0.10% by mass or more, more preferably 0.1% by mass or less in terms of ruthenium metal.
It is 30% by mass or more, and its upper limit is about 2% by mass. Among the above-mentioned ruthenates, potassium ruthenate and sodium ruthenate are particularly preferable, and these can be used alone, and it is also effective to use two kinds in combination as necessary.

【0021】[0021]

【発明の実施の形態】本発明の吸着剤は、上記の様にM
n酸化物、Mn−Cu複合酸化物およびMn−Fe複合
酸化物よりなる群から選択される少なくとも一種と共
に、ルテニウム酸のアルカリあるいはアルカリ土類金属
塩を含有するところにその特徴を有しており、この吸着
剤は、前記国際公開WO97/11779に記載された
有害ガス除去剤、即ち「RuCl3 や硝酸ルテニウム等
のRu化合物を含有するNOx 吸着剤」に比べて、後記
実施例でも明らかにする如く格段に優れたNOx 吸着性
能を有している。
BEST MODE FOR CARRYING OUT THE INVENTION The adsorbent of the present invention has an M
n-oxide, Mn-Cu composite oxide and Mn-Fe composite oxide, together with at least one selected from the group consisting of ruthenic acid and alkali or alkaline earth metal salts, characterized in that it contains This adsorbent is clearly evident in the following Examples, as compared with the harmful gas remover described in the above-mentioned WO 97/11779, that is, “NO x adsorbent containing a Ru compound such as RuCl 3 or ruthenium nitrate”. As a result, it has a remarkably excellent NO x adsorption performance.

【0022】ここでNOx 吸着性能とは、NOx 即ち
「NO+NO2 」の合計の吸着除去率が高く、且つ直接
の環境規制物質であるNO2 の放出率が低いほど好まし
く、平均NOX 除去率および平均NO2 放出率は次式に
よって計算される。 平均NOx 除去率=(1−出口平均NOx 濃度/入口平
均NOx 濃度)×100[%] 平均NO2 放出率=(出口平均NO2 濃度/入口平均N
x 濃度)×100[%]
[0022] Here in the NO x adsorbing performance, high NO x That total adsorption removal rate of "NO + NO 2", more preferably release rate of NO 2 is low is and the immediate environment controlled substances, the average NO X removal The rate and average NO 2 release rate are calculated by the following equations. Average NO x removal rate = (1 - outlet average concentration of NO x / inlet average concentration of NO x) × 100 [%] Average NO 2 release rate = (outlet average NO 2 concentration / inlet Average N
Ox concentration) x 100 [%]

【0023】NOやNO2 を吸着した状態における赤外
吸収スペクトルや吸着後の吸着剤を加熱したときのNO
やNO2 の脱着温度特性は同様であり、Ru化合物の作
用効果は、NOx 除去(吸着)処理後の吸着剤から抽出
された物質の紫外可視吸収スペクトルや赤外吸収スペク
トルから判断すると、Ruのニトロシル錯体が生成する
ことによると判断される。Ru化合物がニトロシル錯体
を形成し易いことは、例えば、コットン・ウィルキンソ
ン著、「無機化学(下巻)」、培風館、p.894(1
973)にも記載されている通りであり、Ruが硝酸と
共存すると、ニトロシル錯体が生成する。その生成の前
提として、NOがNO2 に酸化され、更に共存する水分
と反応して硝酸イオン(NO3 -)が生成することが必要
であり、事実、上記したRu化合物の効果は、被処理ガ
ス中に水分が存在して初めて有効に発揮される。また、
Ru化合物の有無による除去量(吸着量)の違いを、単
純にニトロシル錯体の生成によるものと仮定すると、R
uの1原子当たり最高10分子程度のNO(又はNOに
由来する物質)が保持されていることになり、説明がつ
かない。即ち、上記Ruのニトロシル錯体は、Ruの1
原子当たり1〜6分子程度のNO(あるいはNO由来の
生成物)しか配位しないはずである。それにもかかわら
ず、後述する如くNOx 吸着効果が著しく向上するの
は、Ru化合物の共存によってMn酸化物自体のNO酸
化能や吸着能が増大するものと考えざるを得ない。
The infrared absorption spectrum in the state of adsorbing NO and NO 2 and the NO absorption in heating the adsorbent after adsorption
And the desorption temperature characteristics of NO 2 are the same, and the action and effect of the Ru compound are determined from the UV-visible absorption spectrum and the infrared absorption spectrum of the substance extracted from the adsorbent after the NO x removal (adsorption) treatment. Is determined to be due to the formation of the nitrosyl complex. The ease with which Ru compounds form nitrosyl complexes is described, for example, in Cotton Wilkinson, "Inorganic Chemistry (2nd volume)", Baifukan, p. 894 (1
973), and when Ru coexists with nitric acid, a nitrosyl complex is formed. As a prerequisite for its generation, it is necessary that NO is oxidized to NO 2 and further reacts with coexisting water to generate nitrate ions (NO 3 ). In fact, the effect of the Ru compound is that It is effective only when moisture is present in the gas. Also,
Assuming that the difference in the removal amount (adsorption amount) depending on the presence or absence of the Ru compound is simply due to the formation of a nitrosyl complex, R
This means that about 10 molecules of NO (or a substance derived from NO) are retained per atom of u at a maximum, which is not explained. That is, the nitrosyl complex of Ru is one of Ru
Only about 1 to 6 molecules of NO (or NO-derived product) should be coordinated per atom. Nevertheless, to improve significantly the NO x adsorption effect as will be described later, inevitably considered that NO oxidation ability or adsorption ability of the Mn oxide itself by the coexistence of a Ru compound is increased.

【0024】一方本発明の吸着剤が、例えば前記国際公
開WO97/11779に記載された様な吸着剤に比べ
て遥かに優れたNOx 吸着性能を発揮する理由は、Mn
酸化物と共に含有されるルテニウム酸のアルカリあるい
はアルカリ土類金属塩が、塩基性物質であるためと考え
られる。すなわち、上記Mn酸化物は塩基性物質であ
り、これらの塩基性物質と共に混練したり含浸される物
質が例えばRuCl3 や硝酸ルテニウムの様な酸性物質
であれば、これらが前記酸化物の表面に凝集し易いのに
対し、ルテニウム酸のアルカリやアルカリ土類金属塩は
塩基性物質であるため酸化物の表面に凝集し難く、前記
酸化物全体に均等に分散されて吸着活性点の実質的な表
面積が拡大され、高度の吸着性能を発揮するものと考え
られる。
On the other hand, the reason why the adsorbent of the present invention exhibits much superior NO x adsorption performance as compared with the adsorbent described in the above-mentioned WO 97/11779, for example, is Mn.
It is considered that the alkali or alkaline earth metal salt of ruthenic acid contained together with the oxide is a basic substance. That is, the above-mentioned Mn oxide is a basic substance, and if the substance to be kneaded or impregnated with these basic substances is an acidic substance such as RuCl 3 or ruthenium nitrate, for example, these are added to the surface of the oxide. While easily agglomerated, alkali or alkaline earth metal salts of ruthenic acid are hardly aggregated on the surface of the oxide because they are basic substances, and are substantially uniformly dispersed throughout the oxide to substantially adsorb active sites. It is considered that the surface area is increased and a high adsorption performance is exhibited.

【0025】また、RuCl3 や硝酸ルテニウムにおけ
るRuは+3価であるのに対し、ルテニウム酸のアルカ
リやアルカリ土類金属塩におけるRuは高酸化状態の+
6価であり、酸化活性自体も遥かに強い。このためNO
からNO+ への酸化が起こり易く、Ruニトロシル錯体
の生成が加速され、これが吸着性能の向上に寄与してい
るものと考えられる。事実、RuCl3 が担持されたも
のとルテニウム酸塩が担持されたものを比較すると、同
一担持量であっても吸着剤100g当たりに吸着される
NOの量は、前者の場合は最大でも1.1〜1.3gに
過ぎないのに対し、後者では1.9〜2.3gが吸着さ
れることを確認している。
Ru in RuCl 3 or ruthenium nitrate is +3, whereas Ru in alkali or alkaline earth metal salts of ruthenic acid is +3 in a highly oxidized state.
It is hexavalent and the oxidation activity itself is much stronger. Therefore NO
It is thought that oxidation to NO + easily occurs, and the formation of the Ru nitrosyl complex is accelerated, which contributes to the improvement of the adsorption performance. In fact, when comparing the case where RuCl 3 is supported and the case where ruthenate is supported, the amount of NO adsorbed per 100 g of the adsorbent is at most 1. In the latter, it is confirmed that 1.9 to 2.3 g is adsorbed, while only 1 to 1.3 g.

【0026】そしてこうした作用効果は、Mn酸化物と
ルテニウム酸のアルカリあるいはアルカリ土類金属塩が
同一吸着剤中に存在(共存)している場合に有効に発揮
されるのであって、被処理ガスをMn酸化物等からなる
吸着剤に通した後で上記ルテニウム酸塩に通すなど、M
n酸化物とルテニウム酸塩とを共存させない場合には、
かかる作用効果は得られず、ましてやMn酸化物等とル
テニウム酸塩のいずれか一方しか存在しない場合には、
かかる作用効果は得られない。
Such an effect can be exhibited effectively when the Mn oxide and the alkali or alkaline earth metal salt of ruthenic acid are present (coexisting) in the same adsorbent. Is passed through an adsorbent composed of Mn oxide or the like, and then passed through the above ruthenate.
When n oxide and ruthenate do not coexist,
Such an effect cannot be obtained, and even more, when only one of the Mn oxide or the like and the ruthenate is present,
Such an effect cannot be obtained.

【0027】即ち本発明の吸着剤は、上記Mn酸化物と
ルテニウム酸塩との相乗効果によって優れた除去性能を
発揮するのであり、しかもこの吸着剤は、優れた吸着性
能に加えて、比較的低い温度(例えば200℃程度)で
熱風再生することにより繰り返し使用できるという作用
効果も備えている。
That is, the adsorbent of the present invention exhibits excellent removal performance due to the synergistic effect of the above Mn oxide and ruthenate. It also has the effect of being able to use repeatedly by regenerating hot air at a low temperature (for example, about 200 ° C.).

【0028】また本発明者らが更に研究を重ねたところ
によると、上記Mn酸化物に代えてMn−Cu複合酸化
物またはMn−Fe複合酸化物を使用すると、Mn単独
の酸化物を用いた場合よりも一段と優れた除去活性が得
られることが確認された。ここで複合酸化物とは、2種
の金属酸化物の単純な混合物ではなく、O原子を介して
の両金属の結合が形成された別種の酸化物である。
According to further studies by the present inventors, when a Mn-Cu composite oxide or a Mn-Fe composite oxide was used instead of the Mn oxide, an oxide of Mn alone was used. It was confirmed that more excellent removal activity was obtained than in the case. Here, the composite oxide is not a simple mixture of two types of metal oxides, but another type of oxide in which a bond between both metals is formed via an O atom.

【0029】上記複合酸化物は、代表的には次の様な共
沈法によって製造することができる。即ち、2種の金属
の塩を溶解した水溶液にアルカリを加え、両金属の水酸
化物が分子スケールで混合した沈殿を生成させ、それを
酸化することによって複合酸化物が得られる。この場合
に、両金属の水酸化物の粉末あるいはスラリーを機械的
に混合した程度では十分とは言えず、NOの酸化性能に
大きな差が現れる。
The above composite oxide can be typically produced by the following coprecipitation method. That is, an alkali is added to an aqueous solution in which salts of two metals are dissolved, and a precipitate in which hydroxides of both metals are mixed on a molecular scale is formed, and the precipitate is oxidized to obtain a composite oxide. In this case, it is not sufficient to mechanically mix the powder or slurry of the hydroxides of both metals, and a large difference appears in the oxidation performance of NO.

【0030】複合酸化物の効果は、次の理由に基づくと
考えられる。即ち、複合酸化物とすることによって酸化
物中のO原子が移動し易くなり、酸化物中のO原子の供
与と空気中のO2 からO原子の補給が容易になるため、
触媒能が向上するためと考えられる。
The effect of the composite oxide is considered to be based on the following reasons. That is, by making a composite oxide, O atoms in the oxide are easily moved, and donation of O atoms in the oxide and replenishment of O atoms from O 2 in the air become easy.
It is considered that the catalytic ability is improved.

【0031】ここで、CuとMnの複合酸化物における
Mnの含有量は、Mn/(Cu+Mn)(質量比)で
0.15以上、より好ましくは0.45以上とすべきで
あり、0.15未満ではMn量の不足によりMn単独の
酸化物よりも吸着性能が劣ることになる。但し、上記質
量比が高くなり過ぎると、Cuとの複合効果が有効に発
揮され難くなって吸着性能が低下傾向を示す様になるの
で、好ましくは0.95以下に抑えることが望ましい。
同様に、FeとMnの複合酸化物におけるMnの含有量
は、Mn/(Fe+Mn)(質量比)で0.10以上、
より好ましくは0.30以上、好ましい上限は0.85
である。
Here, the content of Mn in the composite oxide of Cu and Mn should be 0.15 or more, more preferably 0.45 or more, in terms of Mn / (Cu + Mn) (mass ratio). If it is less than 15, the adsorption performance will be inferior to that of the oxide of Mn alone due to the shortage of Mn. However, if the mass ratio is too high, it becomes difficult to effectively exhibit the composite effect with Cu, and the adsorbing performance tends to decrease. Therefore, it is preferable to suppress the mass ratio to 0.95 or less.
Similarly, the content of Mn in the composite oxide of Fe and Mn is 0.10 or more in Mn / (Fe + Mn) (mass ratio),
More preferably 0.30 or more, and a preferable upper limit is 0.85.
It is.

【0032】本発明の更に他の構成では、前記Mn酸化
物、Mn−Cu複合酸化物またはMn−Fe複合酸化物
とルテニウム酸のアルカリあるいはアルカリ土類金属塩
に加えて、更に上記以外のアルカリ金属化合物を配合す
ることにより、NOx 吸着剤としての性能を更に高める
ことが可能となる。
In still another configuration of the present invention, in addition to the above-mentioned Mn oxide, Mn-Cu composite oxide or Mn-Fe composite oxide and an alkali or alkaline earth metal salt of ruthenic acid, an alkali other than the above is further added. by blending a metal compound, it is possible to further improve the performance as the NO x adsorption material.

【0033】即ち、上記Mn酸化物や複合酸化物とルテ
ニウム酸塩に加えてアルカリ金属化合物、好ましくはア
ルカリ金属の水酸化物、炭酸塩、重炭酸塩等を適量併用
すると、被処理ガス中に共存するSOx による吸着剤の
被毒が抑制されて耐久性を高める効果が発揮されると共
に、SOx 除去性能を高めるという効果も得られる。即
ち、Mn酸化物や前記複合酸化物は、SO2 をSO3
酸化する活性も顕著であり、酸化により生成するSO3
は、共存する水分と反応して硫酸が生成する。そして、
本発明の吸着剤中にアルカリ金属化合物を存在させてお
くと、容易に硫酸塩が生成するためMn酸化物の硫酸塩
化が抑制され、しかも、SO3 が硫酸アルカリとして除
去されるため、SOx の吸着性能も高くなる。これに対
し、アルカリ金属化合物が共存しない場合には、上記S
3 によってMn酸化物や前記複合酸化物が徐々に硫酸
塩化されるため、Mn酸化物や前記複合酸化物の触媒活
性が減退する原因となる。即ち、アルカリ金属化合物
は、被処理ガス中に混入することの多いSOx による吸
着剤の被毒を抑制してNOx 吸着性能の劣化を抑えると
共に、SOx 除去性能を高めるうえでも極めて有効とな
る。
That is, when an appropriate amount of an alkali metal compound, preferably an alkali metal hydroxide, carbonate, bicarbonate, or the like is used in addition to the above Mn oxide or composite oxide and ruthenate, the gas to be treated becomes Poisoning of the adsorbent by coexisting SO x is suppressed, and an effect of increasing durability is exhibited, and an effect of enhancing SO x removal performance is also obtained. That is, the activity of oxidizing SO 2 to SO 3 is remarkable in the Mn oxide and the composite oxide, and the SO 3 generated by the oxidation is
Reacts with coexisting moisture to produce sulfuric acid. And
If you leave the presence of an alkali metal compound in the adsorbent of the present invention are easily suppressed sulfating the Mn oxides to produce sulfates, moreover, since the SO 3 is removed as alkaline sulfate, SO x Adsorption performance is also improved. On the other hand, when the alkali metal compound does not coexist, the above S
Since the Mn oxide and the composite oxide are gradually sulfated by O 3 , the catalytic activity of the Mn oxide and the composite oxide is reduced. That is, an alkali metal compound, suppresses the deterioration of the NO x adsorption performance by suppressing the poisoning of the adsorbent due to high SO x be mixed into the gas to be treated, and also very effective in increasing the SO x removal performance Become.

【0034】尚アルカリ金属化合物としては、水酸化
物、炭酸塩、重炭酸塩が好ましいものとして例示され、
また、該アルカリ金属化合物を構成するアルカリ金属の
中でも特に好ましいのはカリウム、ナトリウムである。
該アルカリ金属化合物の本発明吸着剤中に占める好まし
い含有量は、アルカリ金属換算で0.1〜6.0質量%
であり、0.1質量%未満では有為な性能向上効果が発
揮され難く、6.0質量%を超えて過度に配合してもそ
れ以上の向上効果は得られず、むしろ吸着剤が吸湿し易
くなって吸着性能に悪影響を及ぼす傾向が生じてくる。
この様な観点から、アルカリ金属化合物のより好ましい
含有率は、アルカリ金属換算で0.5〜4.0質量%の
範囲である。
As the alkali metal compound, hydroxide, carbonate and bicarbonate are preferred.
Among the alkali metals constituting the alkali metal compound, particularly preferred are potassium and sodium.
The preferred content of the alkali metal compound in the adsorbent of the present invention is 0.1 to 6.0% by mass in terms of alkali metal.
If the content is less than 0.1% by mass, it is difficult to exert a significant effect of improving the performance, and if the content is more than 6.0% by mass, no further improvement effect can be obtained. This tends to adversely affect the adsorption performance.
From such a viewpoint, a more preferable content of the alkali metal compound is in a range of 0.5 to 4.0% by mass in terms of the alkali metal.

【0035】上記ルテニウム酸塩を構成するアルカリ金
属としては、Na,K,Rbなどが例示され、アルカリ
土類金属としては、Ca,Ba,Sr等が挙げられる
が、それらの中でも、Na(Na2 RuO4 )やK(K
2 RuO4 )は特に好ましいルテニウム酸塩として推奨
される。しかしてこれらのルテニウム酸塩は水への溶解
度が高く、混練法や含浸法などによってMn酸化物や複
合酸化物に容易に担持させることができ、しかも比較的
安価に入手できるからである。
Examples of the alkali metal constituting the ruthenate include Na, K, Rb and the like, and examples of the alkaline earth metal include Ca, Ba, Sr and the like. 2 RuO 4 ) and K (K
2 RuO 4 ) is recommended as a particularly preferred ruthenate. Therefore, these ruthenates have high solubility in water, can be easily supported on Mn oxides and composite oxides by a kneading method, an impregnation method, and the like, and can be obtained at relatively low cost.

【0036】また、本発明にかかる吸着剤中に占める上
記ルテニウム酸塩の好ましい含有率は、ルテニウム金属
換算で0.05質量%以上であり、0.05質量%未満
では十分なNOx 吸着性能が得られ難くなる傾向があ
る。但し、約2質量%を超えて過度に多く配合しても、
それ以上のNOx 吸着性能の向上は認められないので不
経済である。吸着性能と経済性の両面を考慮してより好
ましい含有率の下限は0.1質量%以上、更に好ましく
は0.3質量%以上、好ましい上限は1.5質量%であ
る。
The preferable content of the above ruthenate in the adsorbent according to the present invention is 0.05% by mass or more in terms of ruthenium metal, and when it is less than 0.05% by mass, sufficient NO x adsorption performance is obtained. Tends to be difficult to obtain. However, even if it is added in excess of about 2% by mass,
Further improvement in NO x adsorption performance is not recognized, which is uneconomical. The lower limit of the content is more preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and the preferable upper limit is 1.5% by mass in consideration of both the adsorption performance and the economic efficiency.

【0037】本発明にかかる吸着剤の形状には特に制限
がなく、押出成形法や打錠成形法等によって顆粒状や錠
剤としたり、押出成形法や抄紙法によってハニカム状や
シート状等とすることもでき、その成形法や形状は使用
目的等に応じて適宜選択すればよい。吸着剤の成形は、
MnあるいはこれとCuやFeの水酸化物や炭酸塩を酸
化物や複合酸化物にした後はどの段階で行ってもよい
が、ルテニウム酸塩は高価な原料であるため、Mn酸化
物や複合酸化物よりなる成形体の表面近傍に担持させる
ことが好ましく、そのためにはルテニウム酸塩の担持前
に成形処理を行うのがよい。いずれにしても、ルテニウ
ム酸塩の担持後に高温焼成しない様な成形処理法を採用
することが、NOx 吸着性能を高める上で好ましい。
又、アルカリ金属化合物を担持させる場合も、それらを
成形体の表層側に存在させてその複合効果を有効に発揮
させるため、成形体とした後に担持させることが望まし
い。
There is no particular limitation on the shape of the adsorbent according to the present invention. The adsorbent may be formed into granules or tablets by extrusion molding or tableting, or into a honeycomb or sheet by extrusion molding or papermaking. The molding method and shape may be appropriately selected according to the purpose of use. The molding of the adsorbent
After forming Mn or a hydroxide or carbonate of Cu or Fe and an oxide or a composite oxide, Mn may be performed at any stage. However, since ruthenate is an expensive raw material, Mn oxide or composite oxide may be used. It is preferable that the oxide is supported near the surface of a molded body made of an oxide. For this purpose, it is preferable to perform a molding treatment before supporting the ruthenate. In any case, adopting the molding treatment such as not to high temperature firing after loading of ruthenium salt is preferable for enhancing the NO x adsorbing performance.
Also, when an alkali metal compound is carried, it is desirable to carry the alkali metal compound after forming the molded body in order to make them exist on the surface layer side of the molded body and effectively exhibit the combined effect.

【0038】また本発明に係るNOx 吸着剤は、前述の
如く任意の形状・構造として処理容器内へ充填し該充填
層に適当な空間速度で被処理ガスを流し、該ガス中のN
xを吸着除去するものであり、該吸着剤の性能は被処
理ガスとの接触有効面積にも影響を及ぼす。こうした観
点から、本発明のNOx 吸着剤は、その比表面積が70
2 /g以上であるものが好ましく、より好ましくは1
00m2 /g以上、更に好ましくは120m2 /g以上
である。
As described above, the NO x adsorbent according to the present invention is filled into a processing vessel in an arbitrary shape and structure, and the gas to be processed is caused to flow through the packed bed at an appropriate space velocity.
It adsorbs and removes O x , and the performance of the adsorbent affects the effective contact area with the gas to be treated. From such a viewpoint, the NO x adsorbent of the present invention has a specific surface area of 70%.
m 2 / g or more, more preferably 1
00m 2 / g or more, further preferably 120 m 2 / g or more.

【0039】[0039]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更を加えて実施することも勿論可能であ
り、それらはいずれも本発明の技術的範囲に包含され
る。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited thereto. Of course, the present invention can be embodied with modifications, all of which are included in the technical scope of the present invention.

【0040】実施例1 硝酸マンガン[Mn(NO32 ・6H2 O]670g
を5リットルのビーカー中に秤り取り、これに純水2リ
ットルを加えた後、撹拌溶解して沈殿母液(A液)とし
た。一方、水酸化カリウム(KOH)137gを秤取
し、純水1リットルを入れた2リットルのビーカー中に
撹拌下に添加して溶解し、沈殿剤液(B液)を調製し
た。このA液とB液を、純水1リットルを入れた5リッ
トルのビーカー中に撹拌下に同時添加し、一定のpH下
で水酸化マンガンの沈殿物を調製した。
Example 1 670 g of manganese nitrate [Mn (NO 3 ) 2 .6H 2 O]
Was weighed into a 5 liter beaker, 2 liters of pure water was added thereto, and the mixture was stirred and dissolved to obtain a precipitated mother liquor (solution A). On the other hand, 137 g of potassium hydroxide (KOH) was weighed and added to a 2 liter beaker containing 1 liter of pure water with stirring to dissolve, thereby preparing a precipitant solution (solution B). The solution A and the solution B were simultaneously added to a 5 liter beaker containing 1 liter of pure water with stirring to prepare a precipitate of manganese hydroxide at a constant pH.

【0041】これと並行して、過マンガン酸カリウム
(KMnO4 )74gを2リットルのビーカーに秤取
し、これに純水2リットルを加え撹拌溶解して過マンガ
ン酸カリウム水溶液を得た。次に、この水溶液を前記水
酸化マンガンの沈殿物に撹拌下に加えた後、60分間撹
拌を継続し、水酸化マンガンを液相中で酸化処理した。
次いで、得られたマンガン酸化物の沈殿物に濾過、水洗
を繰り返して不純物を除去し、水洗終了後、乾燥器中に
移して110℃×20時間の条件で乾燥した。しかる
後、このマンガン酸化物を破砕して顆粒とし、滑沢剤と
してグラファイトを少量加えて混合した後、打錠機によ
って直径1/8インチの錠剤とした。
At the same time, 74 g of potassium permanganate (KMnO 4 ) was weighed into a 2 liter beaker, and 2 liters of pure water was added thereto and dissolved by stirring to obtain an aqueous solution of potassium permanganate. Next, after this aqueous solution was added to the manganese hydroxide precipitate with stirring, stirring was continued for 60 minutes to oxidize the manganese hydroxide in the liquid phase.
Next, the obtained precipitate of manganese oxide was repeatedly filtered and washed with water to remove impurities. After washing with water, the precipitate was transferred to a drier and dried at 110 ° C. for 20 hours. Thereafter, the manganese oxide was crushed into granules, a small amount of graphite was added as a lubricant and mixed, and then tablets having a diameter of 1/8 inch were produced by a tableting machine.

【0042】ルテニウム酸カリウム(K2 RuO4 )を
1.63g含む40ccの水溶液を調製し、これを前記
マンガン酸化物の錠剤にスプレー法によって担持させた
後、乾燥器で110℃×4時間の条件で乾燥することに
より、実施例1の吸着剤を得た。この吸着剤の組成は、
Mn:66.1質量%、Ru:0.30質量%であり、
比表面積は110m2 /g、細孔容積は0.46cc/
gであった。
A 40 cc aqueous solution containing 1.63 g of potassium ruthenate (K 2 RuO 4 ) was prepared, and the manganese oxide tablet was supported on the manganese oxide tablet by a spray method. The adsorbent of Example 1 was obtained by drying under conditions. The composition of this adsorbent is
Mn: 66.1% by mass, Ru: 0.30% by mass,
The specific surface area is 110 m 2 / g and the pore volume is 0.46 cc /
g.

【0043】実施例2 上記実施例1において、ルテニウム酸カリウム(K2
uO4 )を1.63g含む40ccの水溶液に代えて、
ルテニウム酸ナトリウム(Na2 RuO4 )を1.40
g含む40ccの水溶液を使用した以外は、前記実施例
1と全く同様にして実施例2の吸着剤を得た。この吸着
剤の組成は、Mn:66.2質量%、Ru:0.29質
量%であり、比表面積は103m2 /g、細孔容積は
0.44cc/gであった。
Example 2 In Example 1, potassium ruthenate (K 2 R) was used.
uO 4 ) instead of a 40 cc aqueous solution containing 1.63 g,
1.40% sodium ruthenate (Na 2 RuO 4 )
The adsorbent of Example 2 was obtained in exactly the same manner as in Example 1 except that a 40 cc aqueous solution containing g was used. The composition of this adsorbent was Mn: 66.2% by mass, Ru: 0.29% by mass, the specific surface area was 103 m 2 / g, and the pore volume was 0.44 cc / g.

【0044】比較例1 上記実施例1において、ルテニウム酸カリウム(K2
uO4 )を1.63g含む40ccの水溶液に代えて、
塩化ルテニウム1.39gを30ccの純水に溶解した
塩化ルテニウム水溶液を使用した以外は、前記実施例1
と全く同様にして比較例1の吸着剤を得た。この吸着剤
の組成は、Mn:65.8質量%、Ru:0.30質量
%であり、比表面積は105m2 /g、細孔容積は0.
44cc/gであった。
Comparative Example 1 In Example 1, potassium ruthenate (K 2 R) was used.
uO 4 ) instead of a 40 cc aqueous solution containing 1.63 g,
Example 1 except that a ruthenium chloride aqueous solution in which 1.39 g of ruthenium chloride was dissolved in 30 cc of pure water was used.
And the adsorbent of Comparative Example 1 was obtained. The composition of the adsorbent was Mn: 65.8% by mass, Ru: 0.30% by mass, the specific surface area was 105 m 2 / g, and the pore volume was 0.1%.
It was 44 cc / g.

【0045】実施例3 硫酸マンガン[MnSO4 ・5H2 O]380gと硫酸
銅(CuSO4 ・5H 2 O)125gを5リットルのビ
ーカー中に秤り取り、これに純水2リットルを加えてか
ら、撹拌溶解して沈殿母液(A液)とした。一方、水酸
化ナトリウム(NaOH)230gを秤取し、純水1リ
ットルを入れた2リットルのビーカー中に撹拌下にゆっ
くり添加し、NaOHを完全に溶解して沈殿剤液(B
液)とした。次に、このA液を攪拌しつつ、これにB液
を徐々に添加することにより水酸化マンガンと水酸化銅
の共沈殿を生成させ、約60分でB液の添加を終了し
た。
Example 3 Manganese sulfate [MnSOFour ・ 5HTwo O] 380g and sulfuric acid
Copper (CuSOFour ・ 5H Two O) 125 g to 5 liter
Weigh it into a car and add 2 liters of pure water to it.
Then, the mixture was stirred and dissolved to give a precipitated mother liquor (solution A). On the other hand, hydroxyl
Weigh 230 g of sodium chloride (NaOH) and add 1 l of pure water.
In a 2 liter beaker containing
The NaOH was completely dissolved and the precipitant solution (B
Liquid). Next, while stirring the solution A, add the solution B
Manganese hydroxide and copper hydroxide
And the addition of solution B was completed in about 60 minutes.
Was.

【0046】次いでこの共沈殿物を液相中で酸化処理す
るため、過硫酸アンモニウム[(NH4228
210gを純水に溶解して2リットルとした水溶液を、
該共沈殿物スラリー中に徐々に加え、撹拌下に60分間
保持し、共沈殿物の液相酸化処理を行なった。次いで、
この酸化処理終了物に濾過、水洗を繰り返して不純物を
除去し、水洗終了後、乾燥機中に移して乾燥した。この
乾燥物をアルミナゾル(日産化学社製、#200)と均
一に混合しつつ必要に応じて水分調節を行ない、湿式成
形に適した水分状態とし、これをスクリュー式押出機に
よって直径1/8インチの押出し品に成形した。成形処
理終了後、乾燥器中で110℃×20時間乾燥し、Mn
−Cu複合酸化物の押出し品を得た。
Next, in order to oxidize this coprecipitate in the liquid phase, ammonium persulfate [(NH 4 ) 2 S 2 O 8 ] was used.
An aqueous solution was prepared by dissolving 210 g in pure water to make 2 liters.
The coprecipitate was gradually added to the slurry and kept under stirring for 60 minutes to perform a liquid phase oxidation treatment of the coprecipitate. Then
The oxidized product was filtered and washed repeatedly to remove impurities. After washing, the product was transferred to a drier and dried. The dried product is uniformly mixed with alumina sol (# 200, manufactured by Nissan Chemical Industries, Ltd.) while adjusting the water content as necessary to obtain a water condition suitable for wet molding, and this is 1/8 inch in diameter by a screw extruder. Into an extruded product. After completion of the molding process, the product was dried at 110 ° C. for 20 hours in a drier to obtain Mn.
-An extruded product of a Cu composite oxide was obtained.

【0047】ルテニウム酸カリウム(K2 RuO4 )を
1.63g含む40ccの水溶液を調製し、これを前記
複合酸化物の押出し品にスプレー法によって担持させた
後、乾燥器中で110℃×4時間の条件で乾燥すること
により、実施例3の吸着剤を得た。この吸着剤の組成
は、Mn:52.8質量%、Cu:13.2質量%、R
u:0.30質量%であり、比表面積は160m2
g、細孔容積は0.45cc/gであった。
A 40 cc aqueous solution containing 1.63 g of potassium ruthenate (K 2 RuO 4 ) was prepared and supported on the extruded composite oxide by a spray method. The adsorbent of Example 3 was obtained by drying under the condition of time. The composition of this adsorbent is as follows: Mn: 52.8% by mass, Cu: 13.2% by mass, R
u: 0.30% by mass, and the specific surface area is 160 m 2 /
g and the pore volume were 0.45 cc / g.

【0048】比較例2 上記実施例3において、ルテニウム酸カリウム(K2
uO4 )を1.63g含む40ccの水溶液に代えて、
塩化ルテニウム1.39gを30ccの純水に溶解した
塩化ルテニウム水溶液を使用した以外は、前記実施例3
と全く同様にして比較例2の吸着剤を得た。この吸着剤
の組成は、Mn:53.9質量%、Cu:13.6質量
%、Ru:0.29質量%であり、比表面積は154m
2 /g、細孔容積は0.43cc/gであった。
Comparative Example 2 In Example 3, potassium ruthenate (K 2 R) was used.
uO 4 ) instead of a 40 cc aqueous solution containing 1.63 g,
Example 3 except that a ruthenium chloride aqueous solution in which 1.39 g of ruthenium chloride was dissolved in 30 cc of pure water was used.
And the adsorbent of Comparative Example 2 was obtained. The composition of this adsorbent was Mn: 53.9% by mass, Cu: 13.6% by mass, Ru: 0.29% by mass, and the specific surface area was 154 m.
2 / g and the pore volume was 0.43 cc / g.

【0049】実施例4 前記実施例3における液相酸化処理済みの複合酸化物を
押出し成形する前の湿式混練時に、炭酸カリウム3.0
gを添加し、それ以外は前記実施例3と同様にして実施
例4の吸着剤を得た。この吸着剤の組成は、Mn:5
3.0質量%、Cu:12.9質量%、Ru:0.30
質量%、K:0.69質量%であり、比表面積は141
2 /g、細孔容積は0.40cc/gであった。
Example 4 In the wet kneading before extrusion molding of the liquid phase oxidized composite oxide in Example 3, potassium carbonate 3.0 was used.
g was added, and otherwise the procedure of Example 3 was repeated to obtain an adsorbent of Example 4. The composition of this adsorbent is Mn: 5
3.0% by mass, Cu: 12.9% by mass, Ru: 0.30
% By mass, K: 0.69% by mass, and the specific surface area was 141.
m 2 / g, and the pore volume was 0.40 cc / g.

【0050】比較例3 前記比較例2における液相酸化処理済みの複合酸化物を
押出し成形する前の湿式混練時に、炭酸カリウム3.0
gを添加し、それ以外は前記比較例2と同様にして比較
例3の吸着剤を得た。この吸着剤の組成は、Mn:5
3.2質量%、Cu:13.1質量%、Ru:0.29
質量%、K:0.73質量%であり、比表面積は135
2 /g、細孔容積は0.38cc/gであった。
COMPARATIVE EXAMPLE 3 In the wet kneading before extrusion molding the liquid phase oxidized composite oxide in Comparative Example 2, potassium carbonate was added to 3.0.
g was added and the other conditions were the same as in Comparative Example 2 to obtain an adsorbent of Comparative Example 3. The composition of this adsorbent is Mn: 5
3.2% by mass, Cu: 13.1% by mass, Ru: 0.29
% By mass, K: 0.73% by mass, and the specific surface area was 135.
m 2 / g, and the pore volume was 0.38 cc / g.

【0051】実施例5 硫酸マンガン143gと硫酸第一鉄(FeSO4 ・7H
2 O)487gを5リットルのビーカー中に秤り取り、
これに純水2リットルを加えた後、撹拌溶解して沈殿母
液(A液)とした。一方、炭酸ナトリウム303gを秤
取し、純水1リットルを入れた2リットルのビーカー中
に撹拌下に添加して溶解し、沈殿剤液(B液)を調製し
た。次にA液を攪拌しつつ、これに上記で得たB液を添
加し、マンガンと鉄の塩基性炭酸塩からなる共沈殿を生
成させ、約60分でB液の添加を終了した。次いで該共
沈殿物スラリーを攪拌しつつ、これに過硫酸アンモニウ
ム210gを純水で希釈した水溶液2リットルを加え、
撹拌下に60分間保持し、共沈殿物の液相酸化処理を終
了し、Mn−Fe複合酸化物スラリーを得た。このスラ
リーを濾過、水洗、乾燥した後、破砕して顆粒とし、こ
れにグラファイトを少量添加して混合した後、打錠機に
よって直径1/8インチの錠剤とした。
[0051] Example 5 manganese sulfate 143g of ferrous sulfate (FeSO 4 · 7H
2 O) Weigh 487 g into a 5 liter beaker,
After adding 2 liters of pure water thereto, the mixture was stirred and dissolved to obtain a precipitated mother liquor (solution A). On the other hand, 303 g of sodium carbonate was weighed, added to a 2 liter beaker containing 1 liter of pure water with stirring to dissolve, and a precipitant solution (solution B) was prepared. Next, while stirring the solution A, the solution B obtained above was added thereto to form a coprecipitate comprising a basic carbonate of manganese and iron, and the addition of the solution B was completed in about 60 minutes. Then, while stirring the coprecipitate slurry, 2 liters of an aqueous solution obtained by diluting 210 g of ammonium persulfate with pure water was added thereto,
The mixture was kept under stirring for 60 minutes to complete the liquid phase oxidation treatment of the coprecipitate to obtain a Mn-Fe composite oxide slurry. The slurry was filtered, washed with water, dried, and then crushed to obtain granules. A small amount of graphite was added to the granules and mixed.

【0052】次にこの錠剤に対し、前記実施例1と同様
にして、ルテニウム酸カリウム(K 2 RuO4 )を1.
63g含む40ccの水溶液をスプレー法によって担持
させた後、乾燥機で110℃×4時間の条件で乾燥する
ことにより、実施例5の吸着剤を得た。この吸着剤の組
成は、Mn:20.7質量%、Fe:44.9質量%、
Ru:0.30質量%であり、比表面積は125m2
g、細孔容積は0.41cc/gであった。
Next, this tablet was treated in the same manner as in Example 1 above.
And potassium ruthenate (K Two RuOFour ) To 1.
Carrying 40cc aqueous solution containing 63g by spray method
After drying, dry at 110 ° C for 4 hours using a dryer.
Thereby, the adsorbent of Example 5 was obtained. This set of adsorbents
The composition was as follows: Mn: 20.7% by mass, Fe: 44.9% by mass,
Ru: 0.30% by mass, specific surface area: 125 mTwo /
g and the pore volume were 0.41 cc / g.

【0053】比較例4 前記実施例5において、ルテニウム酸カリウム(K2
uO4 )を1.63g含む40ccの水溶液に代えて、
塩化ルテニウム1.39gを30ccの純水に溶解した
塩化ルテニウム水溶液を使用した以外は、前記実施例5
と全く同様にして比較例4の吸着剤を得た。この吸着剤
の組成は、Mn:21.1質量%、Fe:44.6質量
%、Ru:0.31質量%であり、比表面積は122m
2 /g、細孔容積は0.38cc/gであった。
Comparative Example 4 In Example 5, potassium ruthenate (K 2 R) was used.
uO 4 ) instead of a 40 cc aqueous solution containing 1.63 g,
Example 5 except that a ruthenium chloride aqueous solution in which 1.39 g of ruthenium chloride was dissolved in 30 cc of pure water was used.
The adsorbent of Comparative Example 4 was obtained in exactly the same manner as in Example 1. The composition of the adsorbent was Mn: 21.1% by mass, Fe: 44.6% by mass, Ru: 0.31% by mass, and the specific surface area was 122 m2.
2 / g and the pore volume was 0.38 cc / g.

【0054】性能評価実験1 上記の実施例1〜5および比較例1〜4の各吸着剤を
「水冷ジャケット及び加熱ヒータを取り付け、一定温度
での吸着除去と一定温度での再生をできる様にしたステ
ンレス鋼製吸着管」に充填し、次の条件と方法でNOx
吸着性能を測定した。即ち「吸着剤充填量:16.0c
3 (充填高さ:6.0cm)、供給ガス組成:NOx
合計5.0ppm(内分け:NO:4.5ppm,NO
2 :0.5ppm;空気バランス)、供給ガス流量:1
0.4Nl/min(空間速度:40000h-1)、吸
着温度:35℃、湿度:60%(相対湿度)、時間:6
時間」の条件でガスを流し、吸着管出口のNO濃度とN
x 濃度(すなわちNO+NO2 濃度)を、化学発光式
分析計で連続測定した。そして、各吸着剤について6時
間の平均NOx 吸着率と6時間の平均NO2 放出率を下
記式によって求めた。 平均NOx 吸着率=(1−出口平均NOx 濃度/入口N
x 濃度)×100(%) 平均NO2 放出率=(出口平均NO2 濃度/入口NOx
濃度)×100(%)
Performance Evaluation Experiment 1 Each of the adsorbents of Examples 1 to 5 and Comparative Examples 1 to 4 was prepared by attaching a water-cooled jacket and a heater so that adsorption removal at a constant temperature and regeneration at a constant temperature could be performed. Stainless steel adsorption tube "and fill it with NO x
The adsorption performance was measured. That is, "Adsorbent filling amount: 16.0 c
m 3 (filling height: 6.0 cm), supply gas composition: NO x
5.0 ppm in total (internal division: NO: 4.5 ppm, NO
2 : 0.5 ppm; air balance), supply gas flow rate: 1
0.4 Nl / min (space velocity: 40000 h -1 ), adsorption temperature: 35 ° C., humidity: 60% (relative humidity), time: 6
Gas under the condition of “time”, and the NO concentration and N
The O x concentration (ie, NO + NO 2 concentration) was continuously measured with a chemiluminescence analyzer. Then, the average NO x adsorption rate for 6 hours and the average NO 2 release rate for 6 hours for each adsorbent were determined by the following equations. Average NO x adsorption rate = (1−average NO x concentration at outlet / N at inlet)
O x concentration) × 100 (%) Mean NO 2 release rate = (outlet average NO 2 concentration / inlet NO x
Concentration) x 100 (%)

【0055】結果は表1に示す通りであり、RuCl3
に代えてK2 RuO4 またはNa2RuO4 を使用する
ことにより、NOx 吸着率が一段と高められると共に、
NO 2 放出率も更に小さくなることが分かる。また、適
量のアルカリ金属化合物を併用すると、NOx 吸着率の
一層の向上とNO2 放出率の低下が実現される。
The results are as shown in Table 1.Three 
K instead ofTwo RuOFour Or NaTwoRuOFour Use
NOx As the adsorption rate is further increased,
NO Two It can be seen that the release rate is further reduced. Also,
When combined with an alkali metal compound in an amount, NOx Of adsorption rate
Further improvement and NOTwo A reduced emission rate is realized.

【0056】[0056]

【表1】 [Table 1]

【0057】性能評価実験2 上記の実施例3および比較例2の吸着剤を使用し、その
NOおよびNO2 除去性能を、供給ガス流量を15.6
Nl/min(空間速度:60000h-1)、18.2
Nl/min(同:70000h-1)あるいは20.8
Nl/min(同:80000h-1)に変えた以外は、
上記性能評価実験1と同様にして測定し、表2に示す結
果を得た。
Performance Evaluation Experiment 2 The adsorbents of Example 3 and Comparative Example 2 were used, and their NO and NO 2 removal performance was evaluated by adjusting the supply gas flow rate to 15.6.
Nl / min (space velocity: 60000 h -1 ), 18.2
Nl / min (same as: 70000 h -1 ) or 20.8
Nl / min (same as above: 80000h -1 )
The measurement was performed in the same manner as in the performance evaluation experiment 1, and the results shown in Table 2 were obtained.

【0058】[0058]

【表2】 [Table 2]

【0059】表2からも明らかである様に、実施例3の
吸着剤は、比較例2の吸着剤の2倍の空間速度でも、よ
り高いNOx 除去率とより低いNO2 放出率が得られて
いる。またこの表からも明らかである様に、RuCl3
に代えてK2 RuO4 を使用すると、同レベルのNOx
除去率とNO2 放出率を得るための吸着剤充填量をほぼ
半分以下に低減できることが分かる。
As is evident from Table 2, the adsorbent of Example 3 has a higher NO x removal rate and a lower NO 2 emission rate even at twice the space velocity of the adsorbent of Comparative Example 2. Have been. As is clear from this table, RuCl 3
When K 2 RuO 4 is used instead of NOx, the same level of NO x
It can be seen that the amount of adsorbent used to obtain the removal rate and the NO 2 release rate can be reduced to about half or less.

【0060】実施例6〜11 前記実施例3における、「K2 RuO4 を1.63g含
む40ccの水溶液」に代えて、「K2 RuO4 を0.
27g、0.54g、2.72g、5.43g、8.1
5gあるいは10.9g含む40ccの水溶液」を用い
た以外は同様にして、実施例6〜11の吸着剤を得た。
[0060] in Example 6-11 Example 3, in place of the "aqueous solution of 40cc containing 1.63g of K 2 RuO 4", the "K 2 RuO 4 0.
27g, 0.54g, 2.72g, 5.43g, 8.1
The adsorbents of Examples 6 to 11 were obtained in the same manner except that "40 cc aqueous solution containing 5 g or 10.9 g" was used.

【0061】比較例5 前記実施例3における押出し品へのK2 RuO4 のスプ
レー担持を行なわなかった以外は、前記実施例3と同様
にして比較例5の吸着剤(押出し品)を得た。該吸着剤
の組成は、Mn:52.8質量%、Cu:13.4質量
%、Al:2.8質量%であり、比表面積は150m2
/g、細孔容積は0.44cc/gであった。
Comparative Example 5 An adsorbent (extruded product) of Comparative Example 5 was obtained in the same manner as in Example 3 except that the extruded product in Example 3 was not sprayed with K 2 RuO 4 . . The composition of the adsorbent was Mn: 52.8% by mass, Cu: 13.4% by mass, Al: 2.8% by mass, and the specific surface area was 150 m 2.
/ G, pore volume was 0.44 cc / g.

【0062】性能評価試験3 上記実施例6〜11および比較例5の各吸着剤につい
て、前記性能評価試験1と同様にしてNOx 吸着性能と
NO2 放出率を測定し、表3に示す結果を得た。
[0062] For each adsorbent performance evaluation tests 3 above Examples 6 to 11 and Comparative Example 5, in the same manner as in the above performance evaluation test 1 to measure the NO x adsorption performance and NO 2 release rate, the results shown in Table 3 I got

【0063】[0063]

【表3】 [Table 3]

【0064】表3からも明らかである様に、実施例の吸
着剤は、比較例の吸着剤に比べて卓越したNOx 吸着性
能と格段に低いNO2 放出率を示すことが分かる。
[0064] As is clear from Table 3, the adsorbent of the embodiment, it can be seen that excellent the NO x adsorption performance and much lower NO 2 release rate compared to the adsorbent of the comparative example.

【0065】実施例12〜17および比較例6 前記実施例3における硫酸マンガン−硫酸銅−水酸化ナ
トリウムの使用量を、460g−0g−220g,42
0g−60g−220g,340g−180g−220
g,238g−315g−233g,95g−504g
−217g,40g−550g−220gおよび0g−
600g−220gに変更し、それ以外は前記実施例3
と同様の方法で、実施例12〜17および比較例6の吸
着剤を得た。
Examples 12 to 17 and Comparative Example 6 The amount of manganese sulfate-copper sulfate-sodium hydroxide used in Example 3 was 460 g-0 g-220 g, 42
0g-60g-220g, 340g-180g-220
g, 238g-315g-233g, 95g-504g
-217g, 40g-550g-220g and 0g-
Changed from 600 g to 220 g, and otherwise changed to Example 3
In the same manner as in Example 1, adsorbents of Examples 12 to 17 and Comparative Example 6 were obtained.

【0066】[性能評価実験4]上記の実施例12〜1
7および比較例6の吸着剤のNOx 吸着性能およびNO
2 放出率を、前記性能評価実験1と同様にして測定し、
表4に示す結果を得た。
[Performance Evaluation Experiment 4] The above Examples 12 to 1
NO of adsorbent of Comparative Example 7 and Comparative Examplex Adsorption performance and NO
Two The release rate was measured in the same manner as in the performance evaluation experiment 1,
The results shown in Table 4 were obtained.

【0067】[0067]

【表4】 [Table 4]

【0068】表4からも明らかである様に、各実施例の
吸着剤はいずれも優れたNOx 吸着率と低いNO2 放出
率を示しているが、マンガン酸化物が含まれていない比
較例6の吸着剤のNOx 除去率は極端に低いことが分か
る。また、Mn−Cu複合酸化物中のMnの質量比率を
0.15以上、より好ましくは0.45以上0.95以
下にしたものは、一段と優れたNOx 吸着率を示すこと
が分かる。
As is evident from Table 4, the adsorbents of the respective examples show an excellent NO x adsorption rate and a low NO 2 emission rate, but the comparative examples containing no manganese oxide. It can be seen that the adsorbent No. 6 has an extremely low NO x removal rate. Further, Mn-Cu composite mass ratio of Mn in the oxide 0.15 or more, more preferably those in 0.45 to 0.95, it is seen that the more excellent the NO x adsorption rate.

【0069】実施例18〜22および比較例7 前記実施例5における硫酸マンガン−硫酸第一鉄−水酸
化ナトリウムの使用量を、505g−0g−300g,
425g−110g−300g,333g−210g−
317g,48g−626g−287g,25g−65
0g−300gおよび0g−680g−300gに変更
し、それ以外は前記実施例5と同様の方法で、実施例1
8〜22および比較例7の吸着剤を得た。
Examples 18 to 22 and Comparative Example 7 The amount of manganese sulfate-ferrous sulfate-sodium hydroxide used in Example 5 was 505 g-0 g-300 g,
425g-110g-300g, 333g-210g-
317 g, 48 g-626 g-287 g, 25 g-65
Example 1 was changed to 0 g-300 g and 0 g-680 g-300 g in the same manner as in Example 5 except for the above.
8 to 22 and Comparative Example 7 were obtained.

【0070】[性能評価実験5]上記の実施例18〜2
2および比較例7の吸着剤のNOx 吸着性能およびNO
2 放出率を、前記性能評価実験1と同様にして測定し、
表5に示す結果を得た。
[Performance Evaluation Experiment 5] The above Examples 18 to 2
NO of adsorbent of Comparative Example 2 and Comparative Example 7x Adsorption performance and NO
Two The release rate was measured in the same manner as in the performance evaluation experiment 1,
The results shown in Table 5 were obtained.

【0071】[0071]

【表5】 [Table 5]

【0072】表5からも明らかである様に、各実施例の
吸着剤はいずれも優れたNOx 吸着率と低いNO2 放出
率を示しているが、マンガン酸化物が含まれていない比
較例7の吸着剤のNOx 除去率は極端に低いことが分か
る。また、Mn−Fe複合酸化物中のMnの質量比率を
0.05以上、より好ましくは0.30以上0.85以
下にしたものは、一段と優れたNOx 吸着率を示すこと
が分かる。
[0072] As is clear from Table 5, Comparative Example adsorbent each embodiment shows the NO x adsorption rate and a low NO 2 release rate excellent none but does not contain manganese oxide It can be seen that the adsorbent No. 7 has an extremely low NO x removal rate. Further, Mn-Fe composite mass ratio of Mn in the oxide 0.05 or more, more preferably those in 0.30 to 0.85, it is seen that the more excellent the NO x adsorption rate.

【0073】[0073]

【発明の効果】以上の様に本発明のNOx 吸着剤によれ
ば、被処理ガス中のNOx の吸着除去を、従来の吸着剤
に比べて大きな空間速度で行うことができ、またNO2
放出率も可及的に抑えられるので、吸着装置の大幅な小
型化と、吸着剤使用量の減少による経済性向上が可能と
なる。
According to the NO x adsorbing agent of the present invention as described above, according to the present invention, the adsorption removal of the NO x in the treated gas can be performed in a large space velocity as compared to the conventional adsorbents, also NO Two
Since the release rate is suppressed as much as possible, it is possible to significantly reduce the size of the adsorption device and to improve the economic efficiency by reducing the amount of the adsorbent used.

フロントページの続き (72)発明者 山下 岳史 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 冨山 好行 東京都千代田区九段南3丁目9番14号 日 産ガードラー触媒株式会社内 (72)発明者 柴野 秀孝 富山県婦負郡婦中町笹倉635番地 日産ガ ードラー触媒株式会社技術研究所内 (72)発明者 勅使川原 聡志 富山県婦負郡婦中町笹倉635番地 日産ガ ードラー触媒株式会社技術研究所内Continued on the front page (72) Inventor Takefumi Yamashita 1-5-5 Takatsukadai, Nishi-ku, Kobe City Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Yoshiyuki Toyama 3-9 Kudanminami, Chiyoda-ku, Tokyo No. 14 Nissan Gardler Catalyst Co., Ltd. (72) Inventor Hidetaka Shibano 635 Sasakura, Funaka-machi, Nigane-gun, Toyama Pref. 635 Nissan Gadler Catalyst Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Mn酸化物、Mn−Cu複合酸化物およ
びMn−Fe複合酸化物よりなる群から選択される少な
くとも一種と、ルテニウム酸のアルカリあるいはアルカ
リ土類金属塩を含有することを特徴とする窒素酸化物用
吸着剤。
1. A composition comprising at least one selected from the group consisting of Mn oxides, Mn-Cu composite oxides and Mn-Fe composite oxides, and an alkali or alkaline earth metal salt of ruthenic acid. Adsorbent for nitrogen oxides.
【請求項2】 Mn酸化物、Mn−Cu複合酸化物およ
びMn−Fe複合酸化物よりなる群から選択される少な
くとも一種と、ルテニウム酸のアルカリあるいはアルカ
リ土類金属塩、および上記以外のアルカリ金属化合物と
を含有することを特徴とする窒素酸化物用吸着剤。
2. An alkali or alkaline earth metal salt of ruthenic acid, at least one selected from the group consisting of a Mn oxide, a Mn—Cu composite oxide and a Mn—Fe composite oxide, and an alkali metal other than the above. A nitrogen oxide adsorbent characterized by containing a compound.
【請求項3】 前記Mn−Cu複合酸化物における[M
n/(Mn+Cu)]の質量比が0.15以上、前記M
n−Fe複合酸化物における[Mn/(Mn+Fe)]
の質量比が0.10以上である請求項1または2記載の
窒素酸化物用吸着剤。
3. [M] in the Mn—Cu composite oxide
n / (Mn + Cu)] is 0.15 or more,
[Mn / (Mn + Fe)] in n-Fe composite oxide
3. The adsorbent for nitrogen oxides according to claim 1, wherein the mass ratio is 0.10 or more. 4.
【請求項4】 吸着剤中に占める前記ルテニウム酸塩の
含有率が、ルテニウム金属換算で0.05質量%以上で
ある請求項1〜3のいずれかに記載の窒素酸化物用吸着
剤。
4. The adsorbent for nitrogen oxides according to claim 1, wherein the content of the ruthenate in the adsorbent is 0.05% by mass or more in terms of ruthenium metal.
【請求項5】 前記ルテニウム酸塩が、ルテニウム酸カ
リウムおよび/またはルテニウム酸ナトリウムである請
求項1〜4のいずれかに記載の窒素酸化物用吸着剤。
5. The nitrogen oxide adsorbent according to claim 1, wherein the ruthenate is potassium ruthenate and / or sodium ruthenate.
JP29746597A 1997-10-29 1997-10-29 Adsorbent for nitrogen oxides Expired - Lifetime JP3474409B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29746597A JP3474409B2 (en) 1997-10-29 1997-10-29 Adsorbent for nitrogen oxides
DE1998149928 DE19849928A1 (en) 1997-10-29 1998-10-29 Adsorption agent for removal of nitrogen oxides from road tunnels and underground garages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29746597A JP3474409B2 (en) 1997-10-29 1997-10-29 Adsorbent for nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH11128736A true JPH11128736A (en) 1999-05-18
JP3474409B2 JP3474409B2 (en) 2003-12-08

Family

ID=17846853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29746597A Expired - Lifetime JP3474409B2 (en) 1997-10-29 1997-10-29 Adsorbent for nitrogen oxides

Country Status (2)

Country Link
JP (1) JP3474409B2 (en)
DE (1) DE19849928A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097542A (en) * 2003-08-28 2005-04-14 Kobe Steel Ltd Apparatus for treating hydrocarbon-containing gas and method for treating hydrocarbon-containing gas
JP2007287393A (en) * 2006-04-13 2007-11-01 Kobe Steel Ltd Contamination prevention method of fuel cell air electrode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20042455A1 (en) * 2004-12-22 2005-03-22 Sued Chemie Mt Srl PROCEDURE FOR THE REMOVAL OF NITROGEN OXIDES WITH ABSORBENT MATERIAL OF OXIDES OF SAME
CN102895865A (en) * 2011-07-25 2013-01-30 琳德股份公司 Method for removing contaminant in gas stream

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263634A (en) * 1985-05-16 1986-11-21 Toa Nenryo Kogyo Kk Removing method for minor sulfur compound
WO1997011779A1 (en) * 1995-09-26 1997-04-03 Kabushiki Kaisha Kobe Seiko Sho Poisonous gas removing agent
JPH09141088A (en) * 1995-11-20 1997-06-03 Sakai Chem Ind Co Ltd Nitrogen oxides adsorbent
JPH10128105A (en) * 1996-11-01 1998-05-19 Nippon Shokubai Co Ltd Nitrogen oxide adsorbent and removal of nitrogen oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263634A (en) * 1985-05-16 1986-11-21 Toa Nenryo Kogyo Kk Removing method for minor sulfur compound
WO1997011779A1 (en) * 1995-09-26 1997-04-03 Kabushiki Kaisha Kobe Seiko Sho Poisonous gas removing agent
JPH09141088A (en) * 1995-11-20 1997-06-03 Sakai Chem Ind Co Ltd Nitrogen oxides adsorbent
JPH10128105A (en) * 1996-11-01 1998-05-19 Nippon Shokubai Co Ltd Nitrogen oxide adsorbent and removal of nitrogen oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097542A (en) * 2003-08-28 2005-04-14 Kobe Steel Ltd Apparatus for treating hydrocarbon-containing gas and method for treating hydrocarbon-containing gas
JP2007287393A (en) * 2006-04-13 2007-11-01 Kobe Steel Ltd Contamination prevention method of fuel cell air electrode

Also Published As

Publication number Publication date
DE19849928A1 (en) 1999-05-06
JP3474409B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
JP3924322B2 (en) Hazardous gas removal agent
WO2004052536A1 (en) Composite catalyst for removing carbon monoxide and method for removing carbon monoxide using the same
CN104888845B (en) Platinum/cerium aluminum molecular screen catalyst for catalysis oxidation ammonia and preparation method thereof
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
US6068824A (en) Adsorbent for nitrogen oxides and method for removal of nitrogen oxides by use thereof
JP4861018B2 (en) Nitric oxide oxidation catalyst and nitric oxide oxidation method
JP3474409B2 (en) Adsorbent for nitrogen oxides
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3339204B2 (en) Nitrogen oxide oxidation adsorbent and nitrogen oxide removal method
JP2010172849A (en) Carbon monoxide oxidation catalyst, method of manufacturing the same and carbon monoxide removal filter
JP3244520B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP2007313451A (en) Structure for clarifying diesel exhaust gas and method for clarifying exhaust gas by using the same
JPH09935A (en) Catalyst for treatment of water
JP3031823B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JPH07743A (en) Adsorbent and removing method for nitrogen oxide using adsorbent
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JP3582141B2 (en) Nitrogen oxide removal method
JP3548481B2 (en) Adsorbent regeneration method
JP2002320847A (en) Adsorbent for nitrogen oxide and/or sulfur oxide and method for removing nitrogen oxide and/or sulfur oxide
JP2597252B2 (en) Adsorption remover for low concentration nitrogen oxides
WO2010073350A1 (en) Nox absorbent, method for production of the same, and method for removal of nox
JP3779459B2 (en) Nitrogen dioxide adsorption / reduction remover and nitrogen dioxide removal method
JP2743043B2 (en) Adsorption remover for low concentration nitrogen oxides
JP4822049B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2001046866A (en) Removing material and removing method of nitrogen oxide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

EXPY Cancellation because of completion of term