JPS605523B2 - Manufacturing method of graphite base material for oxidation-resistant coating - Google Patents
Manufacturing method of graphite base material for oxidation-resistant coatingInfo
- Publication number
- JPS605523B2 JPS605523B2 JP51133656A JP13365676A JPS605523B2 JP S605523 B2 JPS605523 B2 JP S605523B2 JP 51133656 A JP51133656 A JP 51133656A JP 13365676 A JP13365676 A JP 13365676A JP S605523 B2 JPS605523 B2 JP S605523B2
- Authority
- JP
- Japan
- Prior art keywords
- coke
- thermal expansion
- coefficient
- graphite
- oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】
本発明は耐酸化皮膜「耐蝕性皮膜を施こすに通した黒鉛
基材の製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a graphite substrate which has been subjected to an oxidation-resistant coating.
黒鉛材料は熱的に安定なこと、高温強度の大きいことに
よって極めてユニークな高温材料と考えられている。し
かし、高温で使用するに当って酸素の存在する場合は、
比較的低い温度で酸化してしまうといった致命的な欠陥
がある。このため黒鉛材料の表面にSIC、NOCなど
の耐酸化性の皮膜を被覆することが行なわれている。こ
の際、黒鉛材料を構成する黒鉛結晶が六角網面が層状に
積み重なった異方的な構造を持つことから、困難な事態
を生じる。Graphite material is considered to be an extremely unique high-temperature material due to its thermal stability and high high-temperature strength. However, in the presence of oxygen when used at high temperatures,
It has a fatal flaw: it oxidizes at relatively low temperatures. For this reason, the surface of graphite material is coated with an oxidation-resistant film such as SIC or NOC. At this time, a difficult situation arises because the graphite crystal constituting the graphite material has an anisotropic structure in which hexagonal mesh planes are stacked in layers.
その1つは、黒鉛結晶の層平面の方向における熱膨張係
数は〜0×10‐6/℃であるのに対し、これに直角の
方向では28×10‐6/℃にも達する異方性を持つこ
とである。今1つは、このような異方膨張ないいま収縮
のため黒鉛化処理からの冷却時に不可避的な微細気孔を
生じ、これが熱膨夕張のかなりの部分を吸収し、黒鉛材
の熱膨張係数を低下させることである。このため黒鉛結
晶の平均熱膨張係数は理論的には〜9.4×10‐6/
℃で、従ってこれから出釆ている黒鉛材もかなり熱膨張
係数は高くなるべきであるが、市販されている黒鉛材は
遥かに低い2〜3×10‐6/℃程度の熱膨張係数をを
示すにすぎない。このため、例えば4.5〜5×10−
6/℃の熱膨張係数をもつSICを黒鉛材に被覆すると
、異万性と熱膨張係数の不一致によって加熱サイクルの
間に皮膜がこわれ、保護皮膜としての役割を果さなくな
る。One of them is that the coefficient of thermal expansion in the direction of the layer plane of graphite crystal is ~0×10-6/℃, whereas in the direction perpendicular to this, the coefficient of thermal expansion is as high as 28×10-6/℃. It is to have. Another reason is that such anisotropic expansion or contraction creates unavoidable fine pores during cooling from the graphitization process, which absorbs a significant portion of the thermal expansion coefficient and changes the thermal expansion coefficient of the graphite material. It is to lower the Therefore, the average thermal expansion coefficient of graphite crystal is theoretically ~9.4×10-6/
Therefore, the graphite materials that will be produced in the future should have a fairly high coefficient of thermal expansion, but commercially available graphite materials have a much lower coefficient of thermal expansion of about 2 to 3 × 10-6/℃. It only shows. For this reason, for example, 4.5 to 5 x 10-
When a graphite material is coated with SIC, which has a coefficient of thermal expansion of 6/° C., the coating breaks down during heating cycles due to the thermal expansion coefficient mismatch and the thermal expansion coefficient, and it no longer serves as a protective coating.
従って耐酸化性皮膜を施こすための黒鉛基村としては、
等万性で熱膨張係数をかなりの範囲で調節しうるもので
あることが必要である。そしてそのためには、微細な気
孔が熱膨張を吸収するように作動する光学的異方性領域
を等万質の組織の炭素で包囲し、粒子全体としては熱膨
張の吸収効果を示さないような、徴晶質構造の骨材を使
用することが必須の要件と思われる。またこのような徴
晶質の骨材は組織的に等方性であるから等方質の黒鉛材
を得る上にも望ましいことである。このような条件を満
たすものとしては微細なモザイク構造単位が十数仏以下
の徴晶質石油コークス、徴晶質ピッチコークス、フェナ
ンスレンコークス、ナフタレンコークス、クマリンコー
クス、さらにはポリスチロールコークスなどが考えられ
る。Therefore, as a graphite base material for applying an oxidation-resistant film,
It is necessary that the material is isomerophilic and that the coefficient of thermal expansion can be adjusted within a considerable range. To achieve this, the optically anisotropic region in which fine pores act to absorb thermal expansion must be surrounded by carbon with a homogeneous structure, and the particle as a whole should not exhibit any thermal expansion absorption effect. , it appears to be an essential requirement to use aggregate with a crystalline structure. Furthermore, since such a crystalline aggregate is isotropic in structure, it is desirable for obtaining an isotropic graphite material. Examples of materials that meet these conditions include crystalline petroleum coke, crystalline pitch coke, phenanthrene coke, naphthalene coke, coumarin coke, and even polystyrene coke, each of which has a fine mosaic structural unit of less than ten French. Conceivable.
例えばフェナンスレンコークスは数山程度の微小なモザ
イク構造単位から成るが、これを骨村として成形体を作
ると熱膨張係数7.2×10‐6/℃の等方性の黒鉛材
を得ることができる。従って上記のごときコークスと低
い熱膨張係数をもつ市販の石油コークス、ピッチコーク
スを適宜に混合すれば、それぞれの保護皮膜に合致した
熱膨咳張係数をもつ基材黒鉛が得られるはずである。そ
して、熱膨張係数としては1.0〜8.0×10‐6/
℃の範囲で自由に変えることができよう。実施例 1
フェナンスレソコークスと市販のレギュラー級石油コー
クスを−200メッシュに粉砕し、いろいろの割合で十
分混合し、これに結合材としてコール夕−ルピッチを加
え、湯摸し800kg/地の成形圧でモールド成形する
。For example, phenanthrene coke consists of several small mosaic structural units, and if a compact is made from this as a skeleton, an isotropic graphite material with a coefficient of thermal expansion of 7.2 x 10-6/°C can be obtained. be able to. Therefore, by appropriately mixing the above-mentioned coke with commercially available petroleum coke or pitch coke having a low coefficient of thermal expansion, a graphite base material having a coefficient of thermal expansion and cough matching the respective protective coatings should be obtained. And the coefficient of thermal expansion is 1.0 to 8.0×10-6/
It can be freely changed within the range of °C. Example 1 Fenance reso coke and commercially available regular grade petroleum coke were pulverized to -200 mesh, thoroughly mixed in various proportions, coal coal pitch was added as a binder, and the mixture was boiled to produce a powder of 800 kg/ground. Mold with molding pressure.
成形品は焼成した後、2600℃で黒鉛化したが、その
熱膨張係数とコークスの混合比の関係は次のように変化
し、かなりの範囲で自由に調節しうろことを示した。フ
ェナンスレ 市販レギュラ 黒鉛材の熱膨張係ンコ
ークス −級コークス 数(350℃、450℃
)100 0 6.9xlo−6
〆C80 20 5.860
40 5.250 5
0 4.940 60
4.620 80 3.60
100 3.4実施例 2
上記フヱナンスレンコークス5碇部、レギュラーコーク
ス5碇部を混合して骨材に使用した黒鉛材の表面に化学
的蒸気沈着法でSIC被覆し、1000qoに保持した
電気炉中で30分酸化する実験を繰り返した。After the molded product was fired, it was graphitized at 2600°C, and the relationship between its coefficient of thermal expansion and the mixing ratio of coke changed as shown below, indicating that it could be freely adjusted within a considerable range. Fenancere Commercial regular Coke with thermal expansion coefficient of graphite material - grade coke Number (350℃, 450℃
)100 0 6.9xlo-6
〆C80 20 5.860
40 5.250 5
0 4.940 60
4.620 80 3.60
100 3.4 Example 2 5 anchor parts of the above-mentioned finanthrene coke and 5 anchor parts of regular coke were mixed and the surface of graphite material used as aggregate was coated with SIC by chemical vapor deposition method and maintained at 1000 qo. The experiment was repeated in which the sample was oxidized for 30 minutes in an electric furnace.
本発明品では20回の試行で重量変化は1.2%であっ
たのに対し、市販黒鉛材に被覆したものでは5回の試行
で10.8%の重量減少があった。実施例 3徴晶質ピ
ッチコークス9碇軸こ市販レギュラー級ピッチコークス
1礎部を混合して骨材とし、実施例1の場合と同様とし
て黒鉛材を作った。The weight change of the product of the present invention was 1.2% after 20 trials, whereas the weight change of the product coated on a commercially available graphite material was 10.8% after 5 trials. Example A graphite material was prepared in the same manner as in Example 1 by mixing 9 anchors of trimorphic pitch coke and 1 base of commercially available regular grade pitch coke to form an aggregate.
加熱中の伸び率を炭化ニオブと比較すると次のようにな
った。炭化ニオブ 市販黒鉛材 本発明品
200℃ 0.12% 0.05孫 0.1
0発400℃ 0.24 0.12
0.23600℃ 0.37 0.20
0.36800℃ U.53 0.2
8 0.50市販黒鉛に比べて本発明品は、遥か
に膨張率が高く、炭化ニオブのような高い膨張率を示す
皮膜材料にもよく適合する.ことがわかる。The elongation rate during heating was compared with that of niobium carbide, and the results were as follows. Niobium carbide Commercially available graphite material Invention product 200℃ 0.12% 0.05 grandchild 0.1
0 shot 400℃ 0.24 0.12
0.23600℃ 0.37 0.20
0.36800℃U. 53 0.2
8 0.50 Compared to commercially available graphite, the product of the present invention has a much higher expansion rate and is well suited to coating materials that exhibit a high expansion rate such as niobium carbide. I understand that.
実施例 4
フェナンスレンコークスと市販のピッチコークスを20
0メッシュ通過粒度に粉砕し、これ等両者を5匹重量部
ずつ混合し、これに黒鉛材としてコールタールピッチを
加え、混控し800k9/鮒の成形圧で成形する。Example 4 20% of phenanthrene coke and commercially available pitch coke
The mixture is ground to a particle size that passes through 0 mesh, and 5 parts by weight of both are mixed together. Coal tar pitch is added as a graphite material to this, mixed and molded at a molding pressure of 800k9/carp.
成形品は焼成した後、2600ooで黒鉛化した。この
黒鉛化物に化学的蒸気沈着法でSICを被覆した。この
ものについてスポーリングテストを行った。このスポー
ツリングテストは100000の炉中から室温に取り出
した場合に何回目で破壊するかを調査したものである。
また比較のために、フェナンスレンコークスと市販のピ
ッチコークスとの上記混合物に代えて市販のピッチコー
クスのみを使用し、以後同様に処理した場合、及び上記
フヱナンスレンコークスに代えてカーボンブラックを使
用し以後同様に処理した場合の夫々について、同様にス
ポ−リングテストを行った。After the molded product was fired, it was graphitized at 2600 oo. This graphitized material was coated with SIC by chemical vapor deposition. I did a spalling test on this one. This sports ring test was conducted to determine how many times it would break if 100,000 pieces were taken out of a furnace and brought to room temperature.
For comparison, a case where only commercially available pitch coke was used instead of the above mixture of phenanthrene coke and commercially available pitch coke, and the same treatment was carried out thereafter, and a case where carbon black was used instead of the above phenanthrene coke. A spalling test was conducted in the same manner for each case in which the sample was used and treated in the same manner.
Claims (1)
ザイク構造単位が十数ミクロン以下の等方質、微晶質構
造をもつコークスを、市販の低膨張性のコークスと適宜
混合して骨材とすることにより、各種の皮膜材料の熱膨
張性と合致した等方性の黒鉛材を得る方法。1. By appropriately mixing coke with an isotropic, microcrystalline structure with mosaic structural units of less than 10 microns, such as microcrystalline pitch coke and phenanthrene, with commercially available low-expansion coke to form aggregate. , a method for obtaining isotropic graphite material that matches the thermal expansion properties of various coating materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51133656A JPS605523B2 (en) | 1976-11-05 | 1976-11-05 | Manufacturing method of graphite base material for oxidation-resistant coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51133656A JPS605523B2 (en) | 1976-11-05 | 1976-11-05 | Manufacturing method of graphite base material for oxidation-resistant coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5358496A JPS5358496A (en) | 1978-05-26 |
JPS605523B2 true JPS605523B2 (en) | 1985-02-12 |
Family
ID=15109864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51133656A Expired JPS605523B2 (en) | 1976-11-05 | 1976-11-05 | Manufacturing method of graphite base material for oxidation-resistant coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS605523B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS581043B2 (en) * | 1979-04-18 | 1983-01-10 | 工業技術院長 | Manufacturing method of graphite base material |
JPS57191292A (en) * | 1981-05-19 | 1982-11-25 | Toshiba Ceramics Co Ltd | Graphite crucible for preparing single crystal of semiconductor |
JPS5978914A (en) * | 1982-10-28 | 1984-05-08 | Ibiden Co Ltd | Manufacture of special carbonaceous material |
JPS62158106A (en) * | 1985-12-30 | 1987-07-14 | Hitachi Chem Co Ltd | Production of graphite material for coating silicon carbide |
JP2608287B2 (en) * | 1987-06-12 | 1997-05-07 | イビデン 株式会社 | Graphite jig |
JPH09167817A (en) * | 1996-10-31 | 1997-06-24 | Ibiden Co Ltd | Graphite jig for ceramic package use |
CN106319569B (en) * | 2015-06-24 | 2018-03-27 | 沈阳铝镁设计研究院有限公司 | The preparation technology and application method of aluminium anode surface anti-oxidant |
CN106319570B (en) * | 2015-06-24 | 2018-10-09 | 沈阳铝镁设计研究院有限公司 | The carbon-based protectant preparation method of aluminium anode surface oxidation-resistant |
CN108083806B (en) * | 2017-12-12 | 2021-04-09 | 中国平煤神马集团开封炭素有限公司 | Superfine structure isotropic graphite and preparation method thereof |
-
1976
- 1976-11-05 JP JP51133656A patent/JPS605523B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5358496A (en) | 1978-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3174895A (en) | Graphite cloth laminates | |
US5217657A (en) | Method of making carbon-carbon composites | |
EP0335736B1 (en) | Process for producing carbon/carbon composites | |
US3407038A (en) | Shredded carbonaceous fiber compactions and method of making the same | |
JPS605523B2 (en) | Manufacturing method of graphite base material for oxidation-resistant coating | |
Walker Jr | Carbon—An old but new nmaterial | |
JP2010507550A (en) | High purity nuclear graphite | |
JPH069270A (en) | Preparation of carbon/carbon composite material part using mesophase powder | |
JPH0251412A (en) | Production of graphite crystal having high orientation characteristic | |
US3567808A (en) | Production of low density-high strength carbon | |
Marković | Use of coal tar pitch in carboncarbon composites | |
Wang et al. | Preparation of near net-shape carbon foams from allyl COPNA-modified bismaleimide resin: structures and properties | |
JP3616829B2 (en) | Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body | |
US3462522A (en) | Deposition of pyrolytic material | |
Kuroda | Studies on the Graphitization. III. The Sub-Structure of Heat-Treated Coke | |
JPS62138361A (en) | Manufacture of high density formed body from carbon material | |
JPS581043B2 (en) | Manufacturing method of graphite base material | |
Matsumura et al. | Structure and electrical conductivity of graphite fibers prepared by pyrolysis of cyanoacetylene | |
Neubert et al. | The structure and properties of artificial and natural graphite | |
JPH0735299B2 (en) | Method for producing isotropic high strength carbon material having low coefficient of thermal expansion | |
JPH01197376A (en) | Porous carbon material and production thereof | |
JP2792749B2 (en) | Oxidation resistant carbon material and method for producing the same | |
Novikova et al. | Some properties of pyrolitic boron nitride | |
JPH04325481A (en) | Oxidation resisting treatment of carbon fiber reinforced carbon composite material | |
JPH0714806B2 (en) | Carbon film coated graphite material |