JPS6054618B2 - Emission spectroscopy method - Google Patents
Emission spectroscopy methodInfo
- Publication number
- JPS6054618B2 JPS6054618B2 JP15484078A JP15484078A JPS6054618B2 JP S6054618 B2 JPS6054618 B2 JP S6054618B2 JP 15484078 A JP15484078 A JP 15484078A JP 15484078 A JP15484078 A JP 15484078A JP S6054618 B2 JPS6054618 B2 JP S6054618B2
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- capacitor
- circuit
- energy storage
- spark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/66—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
- G01N21/67—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【発明の詳細な説明】
本発明は放電電極と試料との間て繰返し放電を行つて
、放電による光を発光分光分析において、試料中におい
て、分析に関して適当する放電型が異る複数種の元素が
含まれているとき、それらの元素を一回の分析動作で同
時に行い得るための分析方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention performs repeated discharge between a discharge electrode and a sample, and uses the light produced by the discharge to perform optical emission spectroscopic analysis. This invention relates to an analysis method that allows simultaneous analysis of these elements in a single analysis operation.
発光分光分析方法は試料とそれに対向する電極との間
に形成された放電間隙にスパークライク(火花様)或は
アークライ・ク(電弧様)の放電を行す)せ、この放電
発光の光を分光するもので、一般に光源として用いられ
ている低圧スパーク放電では放電持続時間は分析結果の
再現性が良く試料の蒸発によるマトリックス効果が少い
と云うことから20〜100μ secの範囲が採用さ
れている。In the optical emission spectrometry method, a spark-like or arc-like discharge is generated in a discharge gap formed between a sample and an electrode facing it, and the light emitted by this discharge is detected. For low-pressure spark discharge, which is generally used as a light source for spectroscopy, the discharge duration is in the range of 20 to 100 μsec because the reproducibility of analysis results is good and matrix effects due to sample evaporation are small. .
しかしこのような短時間の放電では試料の金属中に微量
に含まれている元素の中の或るものについては感度が低
く十分な分析精度が得られないと云うようなことがある
。このような元素に対して分析感度及び精度を上げるに
は放電持続時間が数百μ sec以上と云うように長い
アークライク放電を用いる必要がある。このため場合に
よつては同種試料について或る元素の分析にはスパーク
ライク放電を用い、他の元素の分析にはアークライク放
電を用いると云うように分析を複数回に分けて行う必要
が生ずる。 本発明は上述したような場合に一回の分析
でスパークライク放電が適した元素もアークライク放電
が適した元素も共に分析できるような発光分光分析方法
を提供しようとするものである。However, with such a short-time discharge, sensitivity may be low for certain elements contained in trace amounts in the metal of the sample, and sufficient analytical accuracy may not be obtained. In order to increase analytical sensitivity and accuracy for such elements, it is necessary to use arc-like discharge with a long discharge duration of several hundred microseconds or more. For this reason, in some cases, it may be necessary to perform the analysis multiple times for the same type of sample, such as using spark-like discharge to analyze certain elements and arc-like discharge to analyze other elements. . The present invention aims to provide an emission spectroscopic analysis method that can analyze both elements suitable for spark-like discharge and elements suitable for arc-like discharge in a single analysis in the above-mentioned case.
発光分光分析装置の光源は放電エネルギーをコンデン
サに充電しておき、放電間隙にトリガ−電圧を印加して
コンデンサの充電電荷を放電間隙を通して放電させるよ
うになつており、このコンデンサの充電電荷量及び放電
の時定数を適当に設定することによりスパークライク放
電となつたりアークライク放電となる。The light source of the emission spectrometer is designed to charge a capacitor with discharge energy, apply a trigger voltage to the discharge gap, and discharge the charge in the capacitor through the discharge gap. By appropriately setting the time constant of discharge, it becomes spark-like discharge or arc-like discharge.
スパークライク放電とかアークライク放電と云つてもそ
れらは本質的に異るものでなく放電持続時間の長短によ
る便宜的な区別で両者間に明確な境界はない。本発明は
一つの放電間隙に対し異る静電容量及ひ放電時定数を持
つた複数の放電エネルギー蓄積回路を並列又は直列に接
続し、放電間隙にトリガ−信号を印加して放電をトリガ
ーすると上記複数のエネルギー蓄積回路が順次放電して
スパークライク放電とアークライク放電とが一つの放電
間隙において引続いて生起されるようにして、一放電毎
にスパークライク放電が適する元素とアークライク放電
が適する元素の両種の元素の発光が得られるようにし、
このような放電を繰返して一回の分析動作で両種元素の
分析を完了せしめる分析方法を提供するものてある。以
下実施例によつて本発明を説明する。第1図は本発明の
一実施例装置の回路を示す。Although they are called spark-like discharge and arc-like discharge, they are not essentially different; they are simply distinguished by the length of the discharge duration, and there is no clear boundary between the two. In the present invention, a plurality of discharge energy storage circuits having different capacitances and discharge time constants are connected in parallel or series to one discharge gap, and a trigger signal is applied to the discharge gap to trigger the discharge. The plurality of energy storage circuits are sequentially discharged so that a spark-like discharge and an arc-like discharge occur successively in one discharge gap, so that an element suitable for spark-like discharge and an arc-like discharge are generated in each discharge. Ensure that the luminescence of both types of suitable elements is obtained,
An analysis method is provided in which such discharge is repeated to complete the analysis of both types of elements in one analysis operation. The present invention will be explained below with reference to Examples. FIG. 1 shows a circuit of an apparatus according to an embodiment of the present invention.
この実施例は一つの放電間隙Gに二つのエネルギー蓄積
回路を並列に接続したものである。エネルギー蓄積回路
の一つは整流回路1とコンデンサC1と抵抗R1、チョ
ークコイルL1、ダイオードD1よりなつており、もう
一つのエネルギー蓄積回路は整流回路2とコンデンサC
2と抵抗R2、チョークコイルL2、ダイオードD2よ
りなつている。ACは整流回路1,2に対する共通の交
流電源で、整流回路1はこの交流電源電圧を整流してV
1なる直流電圧を発生し、この整流回路に接続されたコ
ンデンサC1を電圧■1まで充電する。S1はコンデン
サC1と直列に充電回路に挿入された充電スイッチで光
源使用時に閉成する。コンデンサC1と抵抗R1、チョ
ークL1、ダイオードD1、チョークL3、放電間隙G
1コンデンサC1の閉回路が一つの放電回路で、この放
電回路の時定数はコンデンサC1の容量と抵抗R1、チ
ョークLl,L3のインダクタンスによつて定まる。同
様にして整流回路2は電圧V2の直.流電圧を発生しコ
ンデンサC2を電圧■2まで充電する。S2はコンデン
サC2と直列に充電回路に挿入されたスイッチで光源使
用時に閉じるものでスイッチS1と同等のものであるが
Sl,S2は各々独立に開閉できる。Sl,S2が独立
であ.ることの利点は後述する。コンデンサC2を主体
とするエネルギー蓄積回路もC1を主体とするそれも全
く同様の構成て両者はダイオードDl,D2より放電間
隙G寄りでチョークL3の手前で互に接続され、ダイオ
ードDl,D2は共に放電間・隙Gに向つて導通する向
きになつている。C3は二つのエネルギー蓄積回路の接
続点に両エネルギー蓄積回路の接続点に両エネルギー蓄
積回路と並列に接続されたコンデンサである。以上の構
成で設計上の選択としてV1〉V2,ClくC2,Rl
くR2,LlくL2に設定してある。In this embodiment, two energy storage circuits are connected in parallel to one discharge gap G. One of the energy storage circuits is made up of a rectifier circuit 1, a capacitor C1, a resistor R1, a choke coil L1, and a diode D1, and the other energy storage circuit is made up of a rectifier circuit 2 and a capacitor C.
2, a resistor R2, a choke coil L2, and a diode D2. AC is a common alternating current power supply for rectifier circuits 1 and 2, and rectifier circuit 1 rectifies this alternating current power supply voltage to V
A DC voltage of 1 is generated, and a capacitor C1 connected to this rectifier circuit is charged to a voltage of 1. S1 is a charging switch inserted in the charging circuit in series with the capacitor C1, and is closed when the light source is used. Capacitor C1, resistor R1, choke L1, diode D1, choke L3, discharge gap G
A closed circuit of one capacitor C1 is one discharge circuit, and the time constant of this discharge circuit is determined by the capacitance of the capacitor C1, the resistor R1, and the inductance of the chokes Ll and L3. Similarly, the rectifier circuit 2 is connected to the voltage V2. A current voltage is generated and the capacitor C2 is charged to voltage 2. S2 is a switch inserted in the charging circuit in series with the capacitor C2, and is closed when the light source is used, and is equivalent to the switch S1, but S1 and S2 can be opened and closed independently. Sl and S2 are independent. The advantages of this will be discussed later. The energy storage circuit mainly composed of the capacitor C2 and the one mainly composed of the capacitor C1 have exactly the same configuration, and both are connected to each other closer to the discharge gap G than the diodes D1 and D2 and before the choke L3, and both the diodes D1 and D2 are connected to each other in front of the choke L3. The direction is such that conduction is directed toward the discharge gap/gap G. C3 is a capacitor connected in parallel to both energy storage circuits at the connection point between the two energy storage circuits. With the above configuration, the design selection is V1>V2, Cl, C2, Rl
It is set to R2 and L2.
上の関係によりニつのエネルギー蓄積回路においてC1
を主体とするエネルギー蓄積回路の方が放電の時定数が
C2を主体とするエネルギー蓄積回路の放電時定数より
小さい。従つてC1を主体とするエネルギー蓄積回路の
充電電荷のみを放電させるときの放電はスパークライク
となり、反対にC2を主体とするエネルギー蓄積回路の
放゛電はアークライク放電となる。コンデンサC1は電
圧V1まで充電され、C2はV2まで充電されて■1〉
V2であるがダイオードDl,D2があるためCl,C
2は互に無関係に充電され、当初放電間隙Gの懐隙間に
はV1の電圧が作用している。この状態で枚電間隙Gに
トリガー電圧を印加して放電をトリガーするとコンデン
サC1が放電し、C1の充電電圧がC2のそれより高い
間はC2の放電を押えている。C1の充電電圧が低下し
て■2以下になるとC2も放電も開始し、放電間隙Gに
はCl,C2の両方の放電電流が流れることになる。第
2図は上述した動作をグラフで示したものである。Due to the above relationship, C1 in the two energy storage circuits
The discharge time constant of the energy storage circuit mainly composed of C2 is smaller than the discharge time constant of the energy storage circuit mainly composed of C2. Therefore, the discharge when only the charge of the energy storage circuit mainly composed of C1 is discharged is spark-like, and on the contrary, the discharge of the energy storage circuit mainly composed of C2 is arc-like discharge. Capacitor C1 is charged to voltage V1, C2 is charged to V2, and ■1>
V2, but since there are diodes Dl and D2, Cl and C
2 are charged independently of each other, and the voltage V1 is initially acting on the discharge gap G. In this state, when a trigger voltage is applied to the gap G to trigger discharge, the capacitor C1 is discharged, and as long as the charging voltage of C1 is higher than that of C2, the discharge of C2 is suppressed. When the charging voltage of C1 decreases to 2 or less, C2 also starts discharging, and discharge currents of both Cl and C2 flow through the discharge gap G. FIG. 2 is a graphical representation of the operation described above.
Tはトリガー電圧波形、v1はコンデンサC1の充電電
圧正確にはD1のカソード側電圧■1て飽和しており、
トリガー電圧が放電間隙Gに印加されると放電として急
に低下する。i1はコンデンサC1の放電電流である。
V2はコンデンサC2の充電電圧正確にはD2のカソー
ド側電圧で電圧■2で飽和している。コンデンサC1が
放電を始めてその充電電圧が■1以下になるまではC2
の放電は押えられているが、v1が■2になつた時点t
でコンデンサC2は放電を開始する。12はコンデンサ
C2の放電電流である。T is the trigger voltage waveform, and v1 is the charging voltage of the capacitor C1. To be more precise, the cathode side voltage of D1 is saturated.
When the trigger voltage is applied to the discharge gap G, it suddenly drops as a discharge. i1 is the discharge current of capacitor C1.
V2 is the charging voltage of the capacitor C2, more precisely the cathode side voltage of D2, which is saturated at voltage 2. C2 until capacitor C1 starts discharging and its charging voltage becomes less than ■1.
The discharge of is suppressed, but at the time t when v1 becomes ■2
Then capacitor C2 starts discharging. 12 is the discharge current of the capacitor C2.
コンンデンサC2が放電を始めた時点t以後はv1とV
2とは互に同じレベルを保つて低下して行きt″時点で
放電間隙Gにおける放電が停止し、コンデンサCl,C
2の充電が開始される。IOはコンデンサCl,C2各
々の放電電流を加え合せたもので、放電間隙Gにおける
放電電流を表わしており、aの範囲はスパークライク放
電に相当し、bは範囲はアークライク放電に相当してい
て同一の放電間隙で一回の放電の間にスパークライク放
電とアークライク放電とが実現されている。第1図にお
ける回路定数の関係を変えてC1〉C2,Rl〉R2,
Ll〉L2とするとコンデンサC1を主体とするエネル
ギー蓄積回路の方がC2を主体とするそれより放電の時
定数が大となり、V1〉■2の関係の下ではアークライ
ク放電が先に開始され、その放電の途中でスパークライ
ク放電が重なつて放電間隙Gにおける電流は第2図1『
に示すような形となる。After time t when capacitor C2 starts discharging, v1 and V
2 and 2 decrease while maintaining the same level, and at time t'' the discharge in the discharge gap G stops, and the capacitors Cl and C
2 charging starts. IO is the sum of the discharge currents of capacitors Cl and C2, and represents the discharge current in the discharge gap G, where the range a corresponds to spark-like discharge, and the range b corresponds to arc-like discharge. Spark-like discharge and arc-like discharge are realized during one discharge in the same discharge gap. By changing the relationship of circuit constants in Fig. 1, C1>C2, Rl>R2,
When Ll>L2, the energy storage circuit mainly composed of capacitor C1 has a larger discharge time constant than the one mainly composed of C2, and under the relationship V1>■2, arc-like discharge starts first, In the middle of the discharge, spark-like discharge overlaps, and the current in the discharge gap G is shown in Figure 2 1.
The shape will be as shown in .
第3図は本発明の他の実施例を示し、二つのエネルギー
蓄積回路を直列に接続した型である。FIG. 3 shows another embodiment of the invention, in which two energy storage circuits are connected in series.
第1図の例と対応する部分は同じ符号をつけ一々の説明
は省略する。回路構成全体はコンデンサを並列要素とし
チョークを直列要素とした(1)の逆L字形回路を直列
接続した形になつており、各コンデンサCl,C2と並
列にダイオードDl,D2を充電電圧に対抗する方向に
挿入してある。この構成でインダクタンスはL2〉L1
でありコンデンサの容量はC1≧C2であるとする。コ
ンデンサC2を主体とするエネルギー蓄積回路では放電
回路に二つのチョークが直列に入るので放電の時定数を
C1を主体とするエネルギー蓄積回路のそれより大きく
することができる。この回路構成においてはコンデンサ
Cl,C2の飽和充電電圧は等しく、今放電間隙Gで放
電がトリガーされたとすると、コンデンサCl,C2の
放電電流は第4図11,i2のように変化する。I2の
変化はチーヨークL2の両端電圧によつて規定され、こ
の値は当初小さ次第に大となり、コンデンサC1が放電
してi1が極大値を過ぎるとC1の上側端子電圧はマイ
ナスになろうとするがそれはダイオードD1によつて阻
止され従つてチョークL1内の電.流は減少が阻止され
る。このチョークL1内の電流の減少の阻止はコンデン
サC2の放電電流12によつてまかなわれる。従つて放
電間隙Gの放電電流は第4図10のように変化し、aの
範囲がスパークライク、bの範囲がアークライクの放電
となる。本発明発光分光分析方法は上述したような構成
で一つの放電間隙に複数個のエネルギー蓄積回路を接続
し、一回の発光中にこれらのエネルギー蓄積回路を順次
放電するようにしたので一つの放電間隙における一回の
発光の間にスパークライクの放電とアークライクの放電
とを共に実現させるこ“とができ、各放電形の何れかに
適した元素を同一試料につき同時に分析することができ
るようになつた。Portions corresponding to those in the example of FIG. 1 are given the same reference numerals, and individual explanations will be omitted. The entire circuit configuration is a series connection of the inverted L-shaped circuit of (1), in which the capacitor is a parallel element and the choke is a series element, and diodes Dl and D2 are connected in parallel with each capacitor Cl and C2 to counter the charging voltage. It is inserted in the direction shown. In this configuration, the inductance is L2>L1
It is assumed that the capacitance of the capacitor is C1≧C2. In the energy storage circuit mainly composed of the capacitor C2, two chokes are connected in series to the discharge circuit, so that the discharge time constant can be made larger than that of the energy storage circuit mainly composed of the capacitor C1. In this circuit configuration, the saturation charging voltages of the capacitors Cl and C2 are equal, and if discharge is now triggered in the discharge gap G, the discharge currents of the capacitors Cl and C2 change as shown in FIG. 4, 11, i2. The change in I2 is determined by the voltage across the Qi yoke L2, and this value is initially small and gradually increases. When the capacitor C1 is discharged and i1 exceeds the maximum value, the voltage at the upper terminal of C1 tends to become negative. The current in choke L1 is blocked by diode D1. The flow is prevented from decreasing. This prevention of current reduction in the choke L1 is provided by the discharge current 12 of the capacitor C2. Therefore, the discharge current in the discharge gap G changes as shown in FIG. 4, with the range a being a spark-like discharge and the range b being an arc-like discharge. The optical emission spectrometry analysis method of the present invention has the above-described configuration, in which a plurality of energy storage circuits are connected to one discharge gap, and these energy storage circuits are sequentially discharged during one light emission. It is possible to achieve both spark-like discharge and arc-like discharge during a single light emission in the gap, and it is possible to simultaneously analyze the same sample for elements suitable for either of the discharge types. It became.
又例えば鋳鉄とか銑鉄の分析でスパークライク或はアー
クライクの何れか単独の放電では安定な試料の蒸発状態
が実現困難であつたのが安定な蒸発が可能となり、P,
S,Pb,Sn,Sbなどの微量成分元素の検出感度が
大きく向上しかつ分析の再現性の向上に伴つて分析精度
も向上した。なおスイッチSl,S2はコンデンサCl
,C2と直列でコンデンサCl,C2を使用するかしな
いかの切換えを行うもので、これらのスイッチの一方を
開いておくと、それと直列のコンデンサは回路全体から
外されたのと等しく、回路は一つのエネルギー蓄積回路
のみを有する回路と等しくなり、例えばスパークライク
の放電のみ或はアークライクの放電のみを行わせること
ができる。For example, when analyzing cast iron or pig iron, it was difficult to achieve a stable evaporation state of the sample using either spark-like or arc-like discharge alone, but now stable evaporation is possible, and P,
The detection sensitivity of trace element elements such as S, Pb, Sn, and Sb has been greatly improved, and the accuracy of analysis has also improved as the reproducibility of analysis has improved. Note that the switches Sl and S2 are capacitors Cl.
, C2 in series with the capacitors Cl and C2. If one of these switches is left open, the capacitors in series with it are removed from the entire circuit, and the circuit is closed. This is equivalent to a circuit having only one energy storage circuit, and for example, only spark-like discharge or arc-like discharge can be performed.
第1図は本発明の一実施例装置の回路図、第2図は上記
回路の動作を説明するグラス、第3図は本発明の他の一
実施例装置の回路図、第4図は上記回路の動作を説明す
るグラフである。
G・・・・・・放電間隙、1,2・・・・・整流回路、
Cl,C2・・・・・・エネルギー蓄積回路の主体をな
すコンデンサ。FIG. 1 is a circuit diagram of a device according to one embodiment of the present invention, FIG. 2 is a glass for explaining the operation of the above circuit, FIG. 3 is a circuit diagram of another embodiment of the device according to the present invention, and FIG. It is a graph explaining the operation of the circuit. G: discharge gap, 1, 2: rectifier circuit,
Cl, C2... Capacitors that form the main body of the energy storage circuit.
Claims (1)
電エネルギー蓄積回路を並列又は直列に接続して、一つ
の放電間隙に一周期の間にスパークライク放電とアーク
ライク放電とが共存する放電を行わせ、スパークライク
放電が適する元素とアークライク放電が適する元素の何
れをも同時に分析可能とすることを特徴とする発光分光
分析方法。1. A discharge in which spark-like discharge and arc-like discharge coexist in one period in one discharge gap by connecting multiple types of discharge energy storage circuits with different discharge time constants in parallel or in series in one discharge gap. 1. An emission spectroscopic analysis method characterized in that it enables simultaneous analysis of both elements suitable for spark-like discharge and elements suitable for arc-like discharge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15484078A JPS6054618B2 (en) | 1978-12-13 | 1978-12-13 | Emission spectroscopy method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15484078A JPS6054618B2 (en) | 1978-12-13 | 1978-12-13 | Emission spectroscopy method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5580040A JPS5580040A (en) | 1980-06-16 |
JPS6054618B2 true JPS6054618B2 (en) | 1985-11-30 |
Family
ID=15593027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15484078A Expired JPS6054618B2 (en) | 1978-12-13 | 1978-12-13 | Emission spectroscopy method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6054618B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6047944A (en) * | 1983-08-26 | 1985-03-15 | Shimadzu Corp | Emission spectroscopic analytical apparatus |
JP2713272B2 (en) * | 1987-11-30 | 1998-02-16 | 株式会社島津製作所 | Emission spectrometer |
JPH04326043A (en) * | 1991-04-25 | 1992-11-16 | Shimadzu Corp | Emission light spectrum analizer |
-
1978
- 1978-12-13 JP JP15484078A patent/JPS6054618B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5580040A (en) | 1980-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5611908A (en) | Method of operating and amperometric measuring cell | |
US4012665A (en) | Electronic flash device with capacitor discharge cut-off before full discharge | |
JPS6054618B2 (en) | Emission spectroscopy method | |
JPS645265B2 (en) | ||
JPH04324983A (en) | Light emitting element drive power supply circuit | |
JPH04326043A (en) | Emission light spectrum analizer | |
JP3511707B2 (en) | Spark discharge emission analyzer | |
JPS592865B2 (en) | Pulse generation circuit for gas-filled lightning arrester test equipment | |
US11686282B2 (en) | Electronic device to control an ignition coil of an internal combustion engine and electronic ignition system thereof for detecting a preignition in the internal combustion engine | |
JPS5760593A (en) | Sample holding circuit | |
RU1830558C (en) | Method for determination of volt-ampere characteristic of chemical constant-current source | |
JPS61189471A (en) | Method for impressing test voltage for capacitor | |
JP2610298B2 (en) | Battery charging circuit | |
JPS6022574Y2 (en) | solenoid drive circuit | |
SU1062582A1 (en) | Pulse radio spectrometer pickup | |
SU1339518A1 (en) | Multichannel supply source | |
JPS6146448Y2 (en) | ||
SU426252A1 (en) | METHOD FOR DETERMINING THE ELECTRICAL STRENGTH OF MAGNETIC CONTROLLED CONTACTS | |
SU1211660A1 (en) | Current-to-pulse frequency converter | |
SU428479A1 (en) | ||
JPH0147751B2 (en) | ||
US3593098A (en) | Spectrometer integrator system for providing overlapping integration periods | |
SU126188A1 (en) | Electronic Measuring Amplifier | |
JPS5843215Y2 (en) | Plunger drive circuit | |
JPS63201586A (en) | Ion chamber type discriminating device for radiation energy quantity |