JPS6026927A - Optical control element - Google Patents
Optical control elementInfo
- Publication number
- JPS6026927A JPS6026927A JP58136330A JP13633083A JPS6026927A JP S6026927 A JPS6026927 A JP S6026927A JP 58136330 A JP58136330 A JP 58136330A JP 13633083 A JP13633083 A JP 13633083A JP S6026927 A JPS6026927 A JP S6026927A
- Authority
- JP
- Japan
- Prior art keywords
- light
- electrode
- mask
- thin film
- control element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/055—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic
- G02F1/0551—Constructional details
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、各種光情報処理機器に用いられ、光信号を連
続的に制御する光制御素子に関するものである。DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to an optical control element that is used in various optical information processing devices and continuously controls optical signals.
従来例の構成とその問題点
近年、情報処理技術の分野の発展は目ざましいものがあ
る。こういう情勢の中で、情報の出力機器としてのプリ
ンターの役割が重要になってきている。現在、各種のプ
リンターが開発されてきているが、その中で最も注目さ
れているのが非衝撃形(ノンインパクト形)のプリンタ
ーであり、その中でも固体の電気光学効果を用いた光制
御素子(光シヤツター素子)が注目を集めている。この
ような光制御素子として従来知られているものは、La
添加のチタン酸ジルコン酸鉛(PLzT)等ノ透光性磁
器の平板上に、少なくとも片面に複数個の帯状電極を設
けた基板を、前記帯状電極に電圧を印加した時に生じる
電界ベクトルの方向に対して±45°の偏光軸を有する
偏光板で挾んだ構造を有したものである。このような従
来の光制御素子について第1図を用いて説明する。第1
図(3)は従来の光制御素子の分解斜視図で、(1)は
P L Z T平板、り2)は門、ZT平板(1)上に
設けられた共通電極、(3)は電圧印加用電極群、(4
)は光シヤツタ一部である。(5)は偏光素子、(6)
は検光子であり、共通電極(2)とH土圧印加用電極#
(a)との間に電圧を印加した時に生じる電界ベクト
ルの方向に対して±45°の方向に偏向軸を有する様に
構成されている。(υは光源である 第1図(匂は光制
御素子の光シヤツタ一部(4)の動作状態の説明図で、
(8)は動作部(理論的シャッタ一部)、(9)は光シ
ヤツタ一部(4)の実際の動作時の光の透過部を示す。Conventional Structure and Problems There has been remarkable progress in the field of information processing technology in recent years. Under these circumstances, the role of printers as information output devices is becoming increasingly important. Currently, various types of printers are being developed, but the one that is attracting the most attention is the non-impact printer. (optical shutter element) is attracting attention. Conventionally known such light control elements include La
A substrate with a plurality of strip electrodes provided on at least one side is placed on a flat plate of translucent porcelain such as doped lead zirconate titanate (PLzT) in the direction of the electric field vector generated when a voltage is applied to the strip electrodes. On the other hand, it has a structure in which it is sandwiched between polarizing plates having polarization axes of ±45°. Such a conventional light control element will be explained using FIG. 1. 1st
Figure (3) is an exploded perspective view of a conventional light control element, where (1) is a P L Z T flat plate, 2) is a gate, a common electrode provided on the ZT flat plate (1), and (3) is a voltage Group of electrodes for application, (4
) is part of the optical shutter. (5) is a polarizing element, (6)
is an analyzer, and the common electrode (2) and the H earth pressure applying electrode #
(a) and is configured to have a deflection axis in a direction of ±45° with respect to the direction of an electric field vector generated when a voltage is applied between it and (a). (υ is the light source. Figure 1 is an explanatory diagram of the operating state of the light shutter part (4) of the light control element.
(8) shows the operating part (theoretical shutter part), and (9) shows the light transmitting part of the optical shutter part (4) during actual operation.
偏光子(5)の後部に設けられた5400Aの波長を有
する光源(7)から光を照射した場合、PLZT平板(
1)上に形成された電圧印加用電極群(3)と共通電極
(2)との間にV<圧を印加しない時は、電気光学効果
による複屈折は生じず、偏光子(5)および検光子(6
)によって光は遮断されるが、電圧印加用電極ff18
(3)に電圧を印加すると、電気光学効果によって複屈
折を生じ、光の偏光状態が変化し、光シヤツタ一部(4
)において光が透過する。従つて電圧印加用電極群(3
)の任意の電極に電圧を印加すれば任意の部分の光を透
過することができ、検光子(6)の前部に感光体などを
置いておけば、任意のパターンを表示することが可能で
あり、ノンインパクト形の光プリンターの書き込み・\
ラドとして利用できる。When irradiated with light from a light source (7) with a wavelength of 5400A provided at the rear of the polarizer (5), the PLZT flat plate (
1) When V<pressure is not applied between the voltage applying electrode group (3) formed above and the common electrode (2), birefringence due to the electro-optic effect does not occur, and the polarizer (5) and Analyzer (6
), but the voltage application electrode ff18
When a voltage is applied to (3), birefringence occurs due to the electro-optic effect, the polarization state of the light changes, and a part of the optical shutter (4
), the light is transmitted through it. Therefore, the voltage application electrode group (3
) can transmit light from any part by applying a voltage to any electrode, and by placing a photoreceptor etc. in front of the analyzer (6), it is possible to display any pattern. This is the writing of a non-impact optical printer.
Can be used as a rad.
ところで、現在プリンター等に利用される書き込み用ヘ
ッドには、少なくとも10ライン/酎以上の分解能が要
求され、かつ上記固体の光シヤツターアレイを利用する
場合などでは、200龍以上の長尺の光シヤツター・\
ラドが要求される。しかしながら、第1図(A)に示す
ような電極構造であれば、@1図(B)に示すように、
電界が動作部(8)以外にも印加されるため、光のもれ
が発生して透過部(9)のようになり、高分解能なパタ
ーンを感光体上に書き込むことはできなかった。Incidentally, the writing heads currently used in printers are required to have a resolution of at least 10 lines per line, and when using the above-mentioned solid-state optical shutter array, a long light beam of 200 lines or more is required. Shutter・\
Rad is required. However, if the electrode structure is as shown in Figure 1 (A), as shown in @ Figure 1 (B),
Since the electric field is applied to areas other than the active part (8), light leakage occurs, resulting in a transparent part (9), making it impossible to write a high-resolution pattern on the photoreceptor.
このような欠点をなくす方法として、動作部(8)のみ
光が通過するように透明の絶縁物(ガラス、SiO2、
AI!208等)を介して金属の薄膜マスクを設ければ
良いと考えられる。しかし2QQ14Nの光制御素子に
は、例えば10ライン/闘と考えるト2000本もの電
極があす、薄い絶縁膜を介して上部に金属のマスクがあ
るいわゆるザンドイツチタイプの電極構造では、1箇所
もピンホールなしに素子を作るのは非常に困難である。As a way to eliminate this drawback, a transparent insulator (glass, SiO2,
AI! It is considered that a metal thin film mask may be provided via a mask (such as 208). However, the light control element of 2QQ14N has as many as 2,000 electrodes, for example, 10 lines per line.In the so-called Sanderuch type electrode structure, which has a metal mask on top through a thin insulating film, there is not even one electrode. It is very difficult to make devices without pinholes.
また金属のマスクを接着剤により貼り付けても、接着剤
のはみ出しの問題があり、また200闘以上のマスクを
位置精度良く光シヤツタ一部(4)に張り付けることも
困難である。Furthermore, even if a metal mask is attached with adhesive, there is a problem of the adhesive protruding, and it is also difficult to attach a mask of 200 or more to the part of the optical shutter (4) with good positional accuracy.
発明の目的
本発明は上記従来の欠点を解消するもので、光シヤツタ
一部の光もれを確実に防止できる、高分解能な光制御素
子を提供することを目的とする。OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and aims to provide a high-resolution light control element that can reliably prevent light leakage from a part of the light shutter.
発明の構成
上記目的を達成するため、本発明の光87!I御素子は
、電気光学効果を有する透明基板と、この透明基板上に
形成された対向電極対と、この対向成極対間の所定部分
の周囲を覆う絶縁性を有しかつ可視光を遮断する薄膜マ
スクと、これら薄膜マスク及び対向電極対が形成された
前記透明基板を挾む一対の偏光板とを備えた構成である
。Structure of the Invention In order to achieve the above object, the light 87! of the present invention! The I element includes a transparent substrate having an electro-optical effect, a pair of opposing electrodes formed on this transparent substrate, and an insulating property that covers the periphery of a predetermined portion between the opposing polarized pairs and blocks visible light. This configuration includes a thin film mask, and a pair of polarizing plates that sandwich the transparent substrate on which the thin film mask and a pair of opposing electrodes are formed.
実施例の説明
以下、本発明の一実施例について、図面に基づいて説明
する。第2図は光制御素子の分解斜視図で、(10ハP
LZT平板、cll)はPLZT平板01上ニア 、t
トリレグラフイー法によって設けられた共通電極、(2
)は同じくフォトリングラフイー法によって設けられた
電圧印加用電極群である。Qlは光の漏れを防止し、必
要な所だけ光を通すための薄膜マスクで、アモルファス
シリコン、アモルファスゲルマニウム、するいはアモル
ファスガリウム砒累ノいずれか一つからなり、絶縁性で
可視光を通さない性質を有する。α4は偏光子、0υは
検光子、Hは光源である。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Figure 2 is an exploded perspective view of the light control element.
LZT flat plate, cll) is PLZT flat plate 01 upper near, t
Common electrode provided by triregraphy method, (2
) is a voltage application electrode group also provided by the photophosphorography method. Ql is a thin film mask that prevents light leakage and allows light to pass only where necessary. It is made of one of amorphous silicon, amorphous germanium, or amorphous gallium arsenide, and is insulating and allows visible light to pass through. It has the property of not having. α4 is a polarizer, 0υ is an analyzer, and H is a light source.
偏光子α婚の後部に設けられた光源oQから光を照射し
た場合、電圧印加用電極!1¥Oaに電圧を印加すると
、電気光学効果によって複屈折が生じ、その部分の光が
透過する。When light is irradiated from the light source oQ provided at the rear of the polarizer α, the voltage application electrode! When a voltage is applied to 1 Oa, birefringence occurs due to the electro-optic effect, and light in that area is transmitted.
@8図(A)は従来構成の電極構造による動作説明図、
第8図(□□□は本実施例にわけるマスクを設けた電極
構造による動作説明図で例えば従来の構成においては、
電圧印加用電極群(3)のうちの電極(a)に1u圧を
印加した場合、tu界のベクトルが共通電極(2)に必
ずしも垂直で4rいため、図中の斜線の部分のように光
が透過してし才う。一方実施例の構成においては、電圧
印加用電画Y404のうちの電極(1〕)に電圧を印加
すれば、薄膜マスクθ謙のために必要シャッタ一部(図
中のドツト部)のみ光が透過する。@8 Figure (A) is an explanatory diagram of the operation using the conventional electrode structure.
FIG. 8 (□□□ is an explanatory diagram of the operation of the electrode structure provided with a mask according to this embodiment. For example, in the conventional configuration,
When 1u pressure is applied to electrode (a) of the voltage application electrode group (3), the vector of the tu field is not necessarily perpendicular to the common electrode (2) and is 4r, so light is generated as shown by the diagonal line in the figure. It's easy to see through. On the other hand, in the configuration of the embodiment, if a voltage is applied to the electrode (1) of the voltage application electric image Y404, only the part of the shutter (the dot part in the figure) required for thin film mask θ is exposed. To Penetrate.
このように従来の11℃成における光制御素子は、光の
もれが大きいため、1(1ライン/闘以上の解像度を得
るのは光の2’Aれのために困難であ・ったが、本実施
例では、必要な所のみ光が透過するので、10ライン/
闘以」―の解像度が得られる。In this way, the conventional light control element at 11°C has a large amount of light leakage, and it is difficult to obtain a resolution of 1 (1 line/frame) or higher due to the 2'A of light. However, in this example, the light is transmitted only where it is needed, so 10 lines/
You can get the resolution of "fighting".
第4図は本発明の一実施例における光制御素子を光プリ
ンターの掛き込み用ヘッドとして用いた場合の概略斜視
図で、07)は感光体ドラム、θ榎はセルフォック1/
ンズアレイ、olは光制御素子である。FIG. 4 is a schematic perspective view when the light control element according to an embodiment of the present invention is used as a hooking head of an optical printer, where 07) is a photosensitive drum, θ Eno is a SELFOC 1/
In the lens array, ol is a light control element.
Fi4.ooAの波長を有する光隙oQからの光は、光
制御素子0りによつ゛C特定の部分のみが、透過し7、
透過光は、セルフォックレンズアレイ(ト)により感光
体ドラム(ロ)の面上に結像される。従ってこのような
構成にすれば、第3図(B)からもわかるように高分解
能を有する印字が可能となる。Fi4. The light from the optical gap oQ having a wavelength of ooA is transmitted only in a specific part 7 by the light control element 0.
The transmitted light is imaged by the SELFOC lens array (g) onto the surface of the photoreceptor drum (b). Therefore, with such a configuration, printing with high resolution becomes possible, as can be seen from FIG. 3(B).
なお、上記実施例においては、電圧印加用電極ハ#aS
のz (ilil全幅0μmとし、電圧印加用電極群0
櫓と共通電極αυとの間の電極間隔を30μmとした。In addition, in the above embodiment, the voltage application electrode H#aS
z (ilil total width 0 μm, voltage application electrode group 0
The electrode interval between the tower and the common electrode αυ was set to 30 μm.
また電極0の(6)の形成は、スパッタ法により金を付
着させた。マスク用の材料としてのアモルファスシリコ
ン(α−5i)、アモルファスゲルマニウム(α−Ge
)、アモルファスガリウム砒素(α−GaAs )の作
成は、すべてスパッタ法にて行なった。これらマスク材
の場合は、通常行なわれるアルゴンガス中でのスパッタ
では高絶縁性の膜が得られないため、水素を5〜10%
含んだアルゴンガスをスパッタガスとしてスパッタリン
グを行ない、これにより、約1μmの膜厚で、α−5i
で1012Ω゛cm 、 (1!−Geで109Ω・c
ln 、α−GaAsで1010Ω・鑞の絶縁性の膜が
得られ、しかも600nm以下の可視光の透過率をすべ
て0.1%以下におさえることができた。Further, to form electrode 0 (6), gold was deposited by sputtering. Amorphous silicon (α-5i) and amorphous germanium (α-Ge) as materials for masks
) and amorphous gallium arsenide (α-GaAs) were all produced by sputtering. In the case of these mask materials, since a highly insulating film cannot be obtained by sputtering normally performed in argon gas, 5 to 10% hydrogen is added.
Sputtering is performed using argon gas as a sputtering gas, and as a result, α-5i is formed with a film thickness of approximately 1 μm.
1012 Ωcm, (1!-109 Ω・c in Ge
An insulating film of 1010 Ω/sol was obtained using ln, α-GaAs, and the transmittance of all visible light of 600 nm or less was suppressed to 0.1% or less.
このように本実施例によれば、従来のように光制御素子
にマスクを形成せずに光プリンターに書き込みを行なっ
た場合よりもはるかに分解能の良い書き込みが行なえる
ばかりでなく、従来のように絶縁物層を介することなく
、直接電極上にマスクが可能となり、工数の低減と20
0隨以上の長尺の素子においてもピンホールの問題なし
に素子が作成でき、歩留り向上にも役立つ。As described above, according to this embodiment, not only can writing be performed with much better resolution than when writing is performed on an optical printer without forming a mask on the light control element as in the past, but also It is now possible to mask directly on the electrode without using an insulator layer, reducing the number of man-hours and increasing the
Even devices with a length of 0 mm or more can be manufactured without the problem of pinholes, and are also useful for improving yield.
発明の詳細
な説明したように本発明によれば、分解能の向上、素子
作成の工数の低減、及び歩留りの向上を実現し得る。As described in detail, according to the present invention, it is possible to improve the resolution, reduce the number of steps for manufacturing elements, and improve the yield.
第1図(A)は従来の光制御素子の分解斜視図、同図(
B)は同光制御素子の動作説明図、第2図は本発明の一
実施例における光制御素子の分解斜視図、第8図(A)
は従来の光制御素子の電極構造の正面図、同図(B)は
本発明の一実施例における光制御素子の電極構造の正面
図、第4図は本発明の一実施例における光制御素子を用
いた光プリンターの斜視図である。
01・・・PLZT平板(透明基板)、0υ・・・共通
電極(対向電極対)、aa・・・電圧印加用電極(対向
電極対)、04・・薄膜マスク、(141・・・閾尤子
(偏光板)、(15°゛検光子(偏光板)
代理人 森 本 義 弘
第7図
(A)
(β)
第2図
第3図
第4図Figure 1 (A) is an exploded perspective view of a conventional light control element;
B) is an explanatory diagram of the operation of the light control element, FIG. 2 is an exploded perspective view of the light control element in one embodiment of the present invention, and FIG. 8(A)
4 is a front view of an electrode structure of a conventional light control element, FIG. 4B is a front view of an electrode structure of a light control element according to an embodiment of the present invention, and FIG. 1 is a perspective view of an optical printer using 01... PLZT flat plate (transparent substrate), 0υ... common electrode (counter electrode pair), aa... voltage application electrode (counter electrode pair), 04... thin film mask, (141... threshold voltage (Polarizing plate), (15°゛ Analyzer (Polarizing plate) Agent Yoshihiro MorimotoFigure 7 (A) (β) Figure 2 Figure 3 Figure 4
Claims (1)
に形成された対向電極対と、この対向電極対間の所定部
分の周囲を覆う絶縁性を有しかつ可視光を遮断する薄膜
マスクと、これら薄膜マスク及び対向電極対が形成され
た前記透明基板を挾む一対の偏光板とを備えた光制御素
子。 2、薄膜マスクとして、アモルファスシリコンを用いる
構成とした特許請求の範囲第1項記載の光制御素子。 8、 薄膜マスクとして、アモルファスゲルマニウムを
用いる構成とした特許請求の範囲第1項記載の光制御素
子。 4、薄膜マスクとして、アモルファスガリウム砒素を用
いる構成とした特許請求の範囲第1項記載の光制御素子
。[Scope of Claims] 1. A transparent substrate having an electro-optic effect, a pair of opposing electrodes formed on the transparent substrate, and having an insulating property that covers the periphery of a predetermined portion between the pair of opposing electrodes, and a visible light source. A light control element comprising: a thin film mask that blocks light; and a pair of polarizing plates that sandwich the transparent substrate on which the thin film mask and a pair of opposing electrodes are formed. 2. The light control element according to claim 1, wherein amorphous silicon is used as the thin film mask. 8. The light control element according to claim 1, wherein amorphous germanium is used as the thin film mask. 4. The light control element according to claim 1, wherein amorphous gallium arsenide is used as the thin film mask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58136330A JPS6026927A (en) | 1983-07-25 | 1983-07-25 | Optical control element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58136330A JPS6026927A (en) | 1983-07-25 | 1983-07-25 | Optical control element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6026927A true JPS6026927A (en) | 1985-02-09 |
Family
ID=15172698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58136330A Pending JPS6026927A (en) | 1983-07-25 | 1983-07-25 | Optical control element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6026927A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63179416U (en) * | 1987-05-07 | 1988-11-21 | ||
JPS63184312U (en) * | 1987-05-21 | 1988-11-28 | ||
JPS6445821U (en) * | 1987-09-11 | 1989-03-20 | ||
WO2000054096A1 (en) * | 1999-03-12 | 2000-09-14 | Kodak Polychrome Graphics Company Ltd. | Imaging device and method for eliminating edge effects in spatial modulators |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895321A (en) * | 1981-12-01 | 1983-06-06 | Ricoh Co Ltd | Optical switching array |
JPS58107514A (en) * | 1981-12-22 | 1983-06-27 | Ricoh Co Ltd | Optical shutter array |
-
1983
- 1983-07-25 JP JP58136330A patent/JPS6026927A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895321A (en) * | 1981-12-01 | 1983-06-06 | Ricoh Co Ltd | Optical switching array |
JPS58107514A (en) * | 1981-12-22 | 1983-06-27 | Ricoh Co Ltd | Optical shutter array |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63179416U (en) * | 1987-05-07 | 1988-11-21 | ||
JPS63184312U (en) * | 1987-05-21 | 1988-11-28 | ||
JPS6445821U (en) * | 1987-09-11 | 1989-03-20 | ||
WO2000054096A1 (en) * | 1999-03-12 | 2000-09-14 | Kodak Polychrome Graphics Company Ltd. | Imaging device and method for eliminating edge effects in spatial modulators |
US6222666B1 (en) | 1999-03-12 | 2001-04-24 | Kodak Polychrome Graphics Llc | Electro-optic modulator and imaging device |
JP2003524196A (en) * | 1999-03-12 | 2003-08-12 | コダック ポリクロム グラフィックス カンパニーリミテッド | Imaging device and method for eliminating edge effects in a spatial modulator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4367925A (en) | Integrated electronics for proximity coupled electro-optic devices | |
EP0534426B1 (en) | Liquid crystal display panel and projector utilizing the same | |
CA1171508A (en) | Proximity coupled electro-optic devices | |
US6043857A (en) | Liquid crystal display apparatus | |
JPH11153798A (en) | Active matrix type liquid crystal display device | |
JPS6026927A (en) | Optical control element | |
KR100462376B1 (en) | reflective type LCD and method for fabricating the same | |
KR960003481B1 (en) | Liquid crystal display elements and its manufacturing process | |
JPS6026928A (en) | Optical control element | |
JPH07134290A (en) | Liquid crystal display device and its production | |
JPS60129726A (en) | Optical control element | |
JPH0611674A (en) | Optical shutter element | |
JP2547976B2 (en) | Liquid crystal display | |
KR100736629B1 (en) | color filter panel for liquid crystal display and manufacturing method of the same | |
JPS61204613A (en) | Optical shutter element | |
JPS6344625A (en) | Image recording method by liquid crystal | |
JPH0677119B2 (en) | Liquid crystal display | |
JPS60144718A (en) | Optical shutter element | |
JPS6358379A (en) | Time-division driven liquid crystal optical switch array for printer | |
JPH09101540A (en) | Active matrix type liquid crystal display device | |
JPH0720659Y2 (en) | Liquid crystal display element | |
JPS601606B2 (en) | image conversion element | |
JPS59111130A (en) | Optical shutter element | |
JPH06102513A (en) | Liquid crystal optical shutter array | |
JPS62299937A (en) | Optical shutter array |