[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60241768A - Linear pulse motor - Google Patents

Linear pulse motor

Info

Publication number
JPS60241768A
JPS60241768A JP9734784A JP9734784A JPS60241768A JP S60241768 A JPS60241768 A JP S60241768A JP 9734784 A JP9734784 A JP 9734784A JP 9734784 A JP9734784 A JP 9734784A JP S60241768 A JPS60241768 A JP S60241768A
Authority
JP
Japan
Prior art keywords
scale
pairs
pole members
magnetic pole
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9734784A
Other languages
Japanese (ja)
Inventor
Toshiyoshi Maruyama
利喜 丸山
Hiroshi Nakagawa
洋 中川
Yutaka Maeda
豊 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP9734784A priority Critical patent/JPS60241768A/en
Priority to US06/717,081 priority patent/US4661730A/en
Publication of JPS60241768A publication Critical patent/JPS60241768A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To reduce a leakage magnetic flux by coupling two pairs of pole members disposed at the prescribed interval from the secondary side scale, mounting a pair of exciting coils on two pairs of pole members, and further mounting a permanent magnet on the pole members. CONSTITUTION:Two pairs of pole members 21-24 are disposed at the prescribed interval from the secondary side scale 42, and coupled by coupling members 20. A pair of exciting coils 25, 27 are disposed along the lateral direction of the scale 42 to mount the members 21-24. Further, a pair or two pairs of permanent magners 30, 31 are disposed along the longitudinal direction of the scale 42 to mount them on the two pairs of pole members 21-24. The scale 42 is moved along the longitudinal direction by supplying the prescribed pulse signal to the coils 25, 27.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリニアパルスモータに係り、特に、小形化が
要求される各種プリンタおよびフロッピーディスクドラ
イブのヘッド送り用モータ等として用いて好適なリニア
パルスモークに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a linear pulse motor, and in particular to a linear pulse motor suitable for use as a head feeding motor for various printers and floppy disk drives that require miniaturization. Regarding smoke.

〔従来技術〕[Prior art]

周知の様にリニアパルスモータは一次磁束発生装置く以
下単に磁束発生装置と称す)に供給されるパルス信号に
基づき、磁束発生装置または二次側スケール(以下単に
スケールと称す)をステップ状に歩進動作させるもので
あり、その動作原理は第2図に示す通りである。この図
において、1は長尺状の板体によって構成されるスケー
ルであり、その上面には凹凸状の歯部ia、1a・・・
が長手方向へ等間隔に形成されている。このスケール1
の上面にはローラ等からなる支持機構と、コイル2およ
び3が各々巻回されたコ字状コア4および5と、コア4
と5の間に図示する極性でlll1i!1された永久磁
石6とからなる磁束発生装置7が載置されている。この
場合、支持機構により磁束発生装置7はスケール1の長
手方向へ移動自在となっており、また、:]74.5(
7)磁極4a、4b、5a、5bの各下面と歯部1a、
1a、・・・の各上面との間には所定の間隙が各々形成
されている。また、磁極4aと4bおよび1ift極5
aと5bは各々スケール1の歯部ia、ia、・・・の
ピッチに対し、1/2ピツチずれた間隔で配置され、さ
らにコア4と5は1/4ピツチずれた間隔で配置されて
いる。そして、コイル2.3に所定のパルス信号を順次
供給(ることにより、コイル2が発生ずる磁束(図に示
す点線A)およびコイル3が発生する磁束と、永久磁石
6が発生する磁束(図に示す実線B)とが各磁極4a、
4b、5a、5bにおいて順次加減され、スケール1に
対する磁束発生装置17の磁気的安定位置が順次移動し
、これにより磁束発生装置7がスケール1の長手方向に
沿って移動する様になっている。なお、磁束発生装置7
を固定してスケール1を移動させる様にしてもよい。
As is well known, a linear pulse motor moves a magnetic flux generator or a secondary scale (hereinafter simply referred to as a scale) in steps based on a pulse signal supplied to a primary magnetic flux generator (hereinafter simply referred to as a magnetic flux generator). The principle of operation is as shown in FIG. In this figure, 1 is a scale composed of a long plate, and its upper surface has uneven teeth ia, 1a, . . .
are formed at equal intervals in the longitudinal direction. This scale 1
On the upper surface, there is a support mechanism consisting of rollers etc., U-shaped cores 4 and 5 around which coils 2 and 3 are wound, respectively, and core 4.
and 5 with the polarity illustrated between lll1i! A magnetic flux generating device 7 consisting of a permanent magnet 6 is mounted. In this case, the magnetic flux generator 7 is movable in the longitudinal direction of the scale 1 by the support mechanism, and:]74.5(
7) Each lower surface of the magnetic poles 4a, 4b, 5a, 5b and the tooth portion 1a,
A predetermined gap is formed between each of the upper surfaces of 1a, . . . . Also, magnetic poles 4a and 4b and 1ift pole 5
a and 5b are arranged at intervals of 1/2 pitch with respect to the pitch of teeth ia, ia, ... of scale 1, and cores 4 and 5 are arranged at intervals of 1/4 pitch. There is. Then, by sequentially supplying predetermined pulse signals to the coils 2.3, the magnetic flux generated by the coil 2 (dotted line A shown in the figure), the magnetic flux generated by the coil 3, and the magnetic flux generated by the permanent magnet 6 (dotted line A shown in the figure) are generated. The solid line B) shown in FIG.
4b, 5a, and 5b, the magnetically stable position of the magnetic flux generating device 17 relative to the scale 1 is sequentially moved, and thereby the magnetic flux generating device 7 is moved along the longitudinal direction of the scale 1. Note that the magnetic flux generator 7
It is also possible to fix the scale 1 and move the scale 1.

ところr1リニアパルスモータは入力されたパルス信号
に応じて所定距離ずつ直線的に歩進動作するため、直線
動作機能および位置決め機構が要求される各穆プリンタ
およびフロッピーディスクドライブのヘッド送り用モー
タ等として利用されているが、近年これらプリンタおよ
びフロッピーディスクドライブ等の小形化に対する市場
の要求に伴なって、リニアパルスモータの小形化が強く
要望されている。
However, the R1 linear pulse motor linearly advances by a predetermined distance according to the input pulse signal, so it can be used as a head feed motor for printers and floppy disk drives that require a linear motion function and a positioning mechanism. However, in recent years, along with the market demand for downsizing of printers, floppy disk drives, etc., there has been a strong demand for downsizing of linear pulse motors.

そこで従来、第3図に示す様なリニアパルスモータが開
発され実用化されている。この図において、10および
11は中央部に」イル12および13が、各々巻回され
た]字状のコアユニットであり、これらは水平に、かつ
各磁極10a、10bと11a、11bとを互いに対向
させた状態に配置され、永久磁石16へ接着等により固
定されている。また、各Ii!1極10a、10b、1
1a、11bの上面には櫛歯状の歯部10a−,10b
 −。
Therefore, a linear pulse motor as shown in FIG. 3 has been developed and put into practical use. In this figure, 10 and 11 are character-shaped core units in which coils 12 and 13 are wound, respectively, in the center, and these are arranged horizontally, and each magnetic pole 10a, 10b and 11a, 11b are connected to each other. They are arranged in a state where they face each other and are fixed to the permanent magnet 16 by adhesive or the like. Also, each Ii! 1 pole 10a, 10b, 1
The upper surfaces of 1a and 11b have comb-like teeth 10a- and 10b.
−.

11a ”、11b−が各々形成されている。永久磁石
16は第4図に示で様な極性に着磁されており、取り付
は部材17は永久磁石16の下面に取り付けられ、磁気
回路を形成する。以上によって磁束発生装置118が構
成されており、この磁束発生装置18を取り付部材17
を用いて固定し、案内部材14.15と、磁極10a、
10b、11a、11bの各上面とによって形成される
案内路にボール19.19・・・を介してスケール1を
載冒し、コイル12および13に所定のパルス信号を供
給することにより、第2図に示した動作原理と同様の原
理でスケール1がその長手方向に沿って移1PIJづる
11a'' and 11b- are formed respectively.The permanent magnet 16 is magnetized with various polarities as shown in FIG. The magnetic flux generating device 118 is configured as described above, and this magnetic flux generating device 18 is attached to the mounting member 17.
and the guide member 14.15, the magnetic pole 10a,
10b, 11a, and the upper surfaces of 11b through balls 19, 19..., and by supplying predetermined pulse signals to coils 12 and 13, as shown in FIG. The scale 1 moves 1 PIJ along its longitudinal direction using the same operating principle as shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、第3図に示した従来のリニアパルスモータは
小形化に対する要求をある程度満足させ得るものの、未
だ次に述べる様な欠点を有していlこ 。
By the way, although the conventional linear pulse motor shown in FIG. 3 can satisfy the demand for miniaturization to some extent, it still has the following drawbacks.

■ 永久磁石16は所望の形状に加工を施すことが困難
であるにもかかわらず、これを溝道部材どして用いるた
め、その形状が必要以上に大となり、この結果、永久磁
石16からの漏洩磁束が増加してしまう欠点がある。
■ Although it is difficult to process the permanent magnet 16 into the desired shape, since it is used as a channel member, its shape becomes larger than necessary, and as a result, the permanent magnet 16 becomes There is a drawback that leakage magnetic flux increases.

■ 永久磁石16が磁極10a、10b、11a。■ The permanent magnet 16 has magnetic poles 10a, 10b, and 11a.

11bの下方を占有しているため、コイル12および1
3が永久磁石16の側りに位置する構造となり、この結
果、磁束発生装置18の寸法がスケール1の長手方向に
沿って長くなってしまう欠点がある。
Coils 12 and 1 occupy the lower part of coil 11b.
3 is located on the side of the permanent magnet 16, and as a result, the size of the magnetic flux generating device 18 becomes long along the longitudinal direction of the scale 1, which is a drawback.

〔問題を解決するための手段〕[Means to solve the problem]

二次側スケールと所定の間隔を隔てて配置された2対の
磁極部材を連結部材によって相互に連結し、1対の励磁
用コイルを前記二次側スケールの幅方向に沿って配置し
て前記2対の磁極部材に各々磁気的接続手段を介して装
着し、さらに1対若しくは2対の永久磁石を前記二次側
スケールの長手方向に沿って配置して前記2対の磁極部
材に各々取り付ける構成とした。
Two pairs of magnetic pole members arranged at a predetermined distance from the secondary scale are connected to each other by a connecting member, and a pair of excitation coils are arranged along the width direction of the secondary scale. Each of the two pairs of magnetic pole members is attached via a magnetic connection means, and one or two pairs of permanent magnets are arranged along the longitudinal direction of the secondary scale and attached to each of the two pairs of magnetic pole members. The structure is as follows.

(作用) これによって、永久磁石からの漏洩磁束が低減し、磁束
発生装置の二次側スケールの長手方向に沿う寸法が短縮
される。
(Function) As a result, leakage magnetic flux from the permanent magnet is reduced, and the dimension along the longitudinal direction of the secondary scale of the magnetic flux generator is shortened.

〔実施例〕〔Example〕

以上、図面を参照し、この発明の実施例について説明す
る。第1図はこの発明の一実施例によるリニアパルスモ
ータの構成を示づ分解斜視図である。この図において、
20は方形板状の非磁性体によって構成される連結部材
であり、その−側面には1対の磁極部材21および22
が各々固着されると共に、他側面には1対の磁極部材2
3および224が各々固着されている。この場合、固着
方法は接着剤による方法、焼結による方法またはプラス
チックを介在させる方法などが適宜取られている。また
、各磁極部材21〜24の連結部材20の側面と平行な
各側面下端部には水平方向に伸びる凹状の切り欠き部2
1a〜24aが各々形成されている。これら切り欠き部
21aおよび22aには中央部に励磁用のコイル25が
巻回された方形状の鉄心26の両端部が各々嵌入されて
おり、同様に切り欠き部23aおよび24aには励磁用
のコイル27が巻回された鉄心28の両端部が各々嵌入
されている。また、各磁極部材21〜24の連結部材2
0の側面と直交する各側面には永久磁石30および31
が各々取り付けられている。この場合、永久磁石30は
N極の磁極面が磁極部材21に、S極の磁極面が磁極部
材23に各々当接する様に配置されると共に、その磁極
面の裏面には磁性体によって構成されるバックプレート
32が取り付番プられている。同様に、永久磁石31は
N極の磁極面が磁極部材22に、S極の磁極面が磁極部
材24に各々当接する様に配置されると共に、その磁極
面の裏面にはバックプレート33が取り付けられている
。一方、磁極部材21〜24の各上面には連結部材20
の側面と平行に櫛歯状の歯部21b〜24bが各々等間
隔に形成されている。この場合、歯部21bおよび23
bと、歯部22bおよび24bt&相対的に174ピツ
チの変位を有している。また、磁極部材21〜24の上
面および連結部材20の上端面にはこれらの両端縁に沿
って連結部材20の側面と直角な方向に伸びる凹状の案
内溝358および35bが各々形成されている。これら
の案内溝35aと35bの各々には2個のローラ36,
36と、これらローラ36,36を転勤自在に支持する
リテーナ37とが各々移動自在に嵌め込まれており、ま
た案内溝35aおよび35bの両端部にはリテーナ37
の移動を規制する規制部材38,38.・・が各々取り
付iノられている。さらに、磁極部材21〜24の上方
にはローラ36.36・・を介在させることにより所定
の間隙を隔てて、スリット板40と、スケールベース4
1どからなる長尺板状のスケール42が載置されている
。この場合、スケール42はスリット板40の幅方向両
端部の下面がローラ36,36.・・に当接することに
よって、その長手方向へ移動自在に支持されており、ガ
イド部材(図示路)によって幅方向の移動が規制されて
いる。また、スリット板40には幅方向中央部において
2分割された2列のスリット40a 、 4Qa 、 
−・・と4Qb 、40b 、−”が長手方向へ等間隔
に形成されている。これらのスリット40a 、40a
 、 ・・・および4Qb 、40b 、”’は歯部2
1b〜24bと平行にかつ同一ピッチに形成されると共
に、スリット40a 、40a 、・・・とスリット4
0b 、40b 、・・・とは相対的に1/2ピツチの
変位を有して形成されている。
Embodiments of the present invention will be described above with reference to the drawings. FIG. 1 is an exploded perspective view showing the configuration of a linear pulse motor according to an embodiment of the present invention. In this diagram,
Reference numeral 20 denotes a connecting member made of a rectangular plate-shaped non-magnetic material, and a pair of magnetic pole members 21 and 22 are provided on the side surfaces thereof.
are fixed respectively, and a pair of magnetic pole members 2 are attached to the other side.
3 and 224 are each fixed. In this case, the fixing method may be an adhesive method, a sintering method, or a method using plastic. Further, a concave notch 2 extending in the horizontal direction is provided at the lower end of each side surface of each of the magnetic pole members 21 to 24 parallel to the side surface of the connecting member 20.
1a to 24a are formed respectively. Both ends of a rectangular iron core 26, around which an excitation coil 25 is wound in the center, are respectively fitted into the notches 21a and 22a, and similarly, the excitation coil 25 is fitted into the notches 23a and 24a. Both ends of the iron core 28 around which the coil 27 is wound are fitted. In addition, the connecting member 2 of each magnetic pole member 21 to 24
Permanent magnets 30 and 31 are placed on each side perpendicular to the side of 0.
are attached to each. In this case, the permanent magnet 30 is arranged so that the magnetic pole face of the north pole contacts the magnetic pole member 21 and the magnetic pole face of the south pole contacts the magnetic pole member 23, and the back surface of the magnetic pole face is made of a magnetic material. The back plate 32 is attached with a mounting number. Similarly, the permanent magnet 31 is arranged so that the magnetic pole face of the north pole contacts the magnetic pole member 22 and the magnetic pole face of the south pole contacts the magnetic pole member 24, and a back plate 33 is attached to the back surface of the magnetic pole face. It is being On the other hand, a connecting member 20 is provided on the upper surface of each of the magnetic pole members 21 to 24.
Comb-shaped tooth portions 21b to 24b are formed at equal intervals in parallel with the side surface of the plate. In this case, the teeth 21b and 23
b, and the tooth portions 22b and 24bt & have a relative displacement of 174 pitches. Furthermore, concave guide grooves 358 and 35b are formed on the upper surfaces of the magnetic pole members 21 to 24 and the upper end surface of the connecting member 20, respectively, and extend along both edges thereof in a direction perpendicular to the side surface of the connecting member 20. Two rollers 36 are provided in each of these guide grooves 35a and 35b.
36 and a retainer 37 that supports these rollers 36, 36 in a movable manner are respectively fitted in a movable manner, and retainers 37 are provided at both ends of the guide grooves 35a and 35b.
regulating members 38, 38. ... are attached to each. Further, rollers 36, 36, etc. are interposed above the magnetic pole members 21 to 24, so that the slit plate 40 and the scale base 4 are separated from each other by a predetermined gap.
A long plate-shaped scale 42 made of 1 is mounted. In this case, the scale 42 has rollers 36, 36. By coming into contact with..., it is supported so as to be movable in its longitudinal direction, and its movement in the width direction is restricted by a guide member (path shown). The slit plate 40 also has two rows of slits 40a, 4Qa, which are divided into two at the center in the width direction.
-... and 4Qb, 40b, -'' are formed at equal intervals in the longitudinal direction. These slits 40a, 40a
, ... and 4Qb, 40b, "' is tooth part 2
The slits 40a, 40a, . . .
0b, 40b, . . . are formed with a displacement of 1/2 pitch relative to them.

以上の構成において、連結部材20を固定して、コイル
25および27に所定のパルス信号を供給することによ
り、第3図に示した従来のリニアパルスモータと同様に
スケール42がその長手方向に沿って移動する。
In the above configuration, by fixing the connecting member 20 and supplying predetermined pulse signals to the coils 25 and 27, the scale 42 can be moved along its longitudinal direction similarly to the conventional linear pulse motor shown in FIG. and move.

上述した実施例によれば非1af’1体によって構成さ
れる連結部材20を、磁極部材21〜24を相互に連結
する構造部材として用いると共に、磁束発生装置7を固
定するための部材として用いる構成であるから、従来の
様に永久磁石30.31を構造部材として用いる必要が
なくなり、これにより適当な寸法の永久磁石30.31
を用いることが可能となり、この結果、永久磁石30.
31からの漏洩磁束を最小限に抑えることができる。ま
た、永久磁石30.31を磁束部材21〜24の側方に
配置し、励磁用コイル25.27を!l極部材21〜2
4の下部に嵌め込む構造であるから、磁束発生装置7の
スケール42の移動方向に沿う寸法を最小限に抑えるこ
とができる。また、製作段階においては予めバックプレ
ート32.33に各々着磁された永久磁石30.31を
磁束発生装置の最終組み立て工程で磁極部材21〜24
に各々取り付ければよいので、組み立て作業が容易とな
り、作業中に鉄粉等が付着することもなくなる。
According to the embodiment described above, the connecting member 20 constituted by a non-1af' unit is used as a structural member that connects the magnetic pole members 21 to 24 with each other, and also as a member for fixing the magnetic flux generating device 7. Therefore, it is no longer necessary to use the permanent magnet 30.31 as a structural member as in the past, and this makes it possible to use the permanent magnet 30.31 with appropriate dimensions.
As a result, permanent magnets 30.
The leakage magnetic flux from 31 can be minimized. Also, permanent magnets 30, 31 are placed on the sides of the magnetic flux members 21 to 24, and excitation coils 25, 27 are installed! L pole members 21-2
4, the size of the scale 42 of the magnetic flux generating device 7 along the moving direction can be minimized. In addition, in the manufacturing stage, the permanent magnets 30 and 31, which have been magnetized in advance on the back plates 32 and 33, are attached to the magnetic pole members 21 to 24 in the final assembly process of the magnetic flux generator.
Since it is only necessary to attach them to each of the parts, the assembly work becomes easy and there is no possibility of iron powder etc. adhering to the parts during the work.

さらに、量産を行なう際は連結部材20と磁極部材21
〜24を焼結によって固定する方法を用いればよい。
Furthermore, when performing mass production, the connecting member 20 and the magnetic pole member 21 are
- 24 may be fixed by sintering.

なお、上記実施例においてはスケール42を可動側とし
たが、磁束発生装置を可動側とすることも勿論可能であ
る。また、永久磁石30.31を各々2分割して磁極部
材21〜24の各々に取り付ける構成としてもよい。
In the above embodiment, the scale 42 is on the movable side, but it is of course possible to use the magnetic flux generator on the movable side. Alternatively, each of the permanent magnets 30 and 31 may be divided into two parts and attached to each of the magnetic pole members 21 to 24.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、この発明によれば、二次側スケール
と所定の間隙を隔てて配置された2対の磁極部材を連結
部材によって相互に連結し、1対の励磁用コイルを前記
二次側スケールの幅方向に沿って配置して前記2対の磁
極部材に各々磁気的接続手段を介して装着し、さらに1
対若しくは2対の永久磁石を前記二次側スケールの長手
方向に沿って配置して前記2対の磁極部材に各々取り付
けたので、永久磁石からの漏洩磁束の低減化を図ること
ができると共に磁束発生装置の二次側スケールの長手方
向に沿う寸法の短縮化を図ることができる利点が得られ
る。
As explained above, according to the present invention, two pairs of magnetic pole members arranged at a predetermined gap from the secondary scale are connected to each other by a connecting member, and a pair of excitation coils are connected to the secondary side scale. disposed along the width direction of the side scale and attached to the two pairs of magnetic pole members via magnetic connection means, and one
Since a pair or two pairs of permanent magnets are arranged along the longitudinal direction of the secondary scale and attached to each of the two pairs of magnetic pole members, leakage magnetic flux from the permanent magnets can be reduced, and the magnetic flux This provides an advantage in that the dimension along the longitudinal direction of the secondary scale of the generator can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるリニアパルスモータ
の構成を示す分解斜視図、第2図は従来のリニアパルス
モータの動作原理を説明するための図、第3図は従来の
リニアパルスモータの構成を示す斜視図、第4図は第3
図に示した永久磁石16の構成を示す斜視図である。 20・・・・・・連結部材、21〜24・・・・・・磁
極部材、25.27・・・・・・励磁用コイル、26.
28・・・・・・鉄心、30.31・・・・・・永久磁
石、32.33・・・・・・バックプレート、36・・
・・・・ローラ、37・・・・・・リテーナ、40・・
・・・・スリット板、41・・・・・・スケールベース
、42・・・・・・二次側スケール。 出願人 神鋼電機株式会社 第1図 第2図 第3図 第4図
Fig. 1 is an exploded perspective view showing the configuration of a linear pulse motor according to an embodiment of the present invention, Fig. 2 is a diagram for explaining the operating principle of a conventional linear pulse motor, and Fig. 3 is a diagram of a conventional linear pulse motor. FIG. 4 is a perspective view showing the configuration of the third
FIG. 2 is a perspective view showing the configuration of the permanent magnet 16 shown in the figure. 20...Connection member, 21-24...Magnetic pole member, 25.27...Excitation coil, 26.
28...Iron core, 30.31...Permanent magnet, 32.33...Back plate, 36...
...Roller, 37...Retainer, 40...
... Slit plate, 41 ... Scale base, 42 ... Secondary scale. Applicant Shinko Electric Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一次側磁束発生装置と長尺板状の二次側スケールとの間
に形成された間隙に磁束を発生させることにより、前記
−次磁束発生装置または前記二次側スケールを前記二次
側スケールの長手方向に沿って直線移動させるリニアパ
ルスモータにおいて、前記二次側スケールと前記間隙を
隔てて配置された2対の磁極部材と、前記2対の磁極部
材を相互に連結する連結部材と、前記二次側スケールの
幅方向に沿って配置され、前記2対の磁極部材に各々磁
気的接続手段を介して装着された1対の励磁用コイルと
、前記二次側スケールの長手方向に沿って配置され、前
記2対の磁極部材に各々取り付けられた1対もしくは2
対の永久磁石とを具備することを特徴とするリニアパル
スモータ。
By generating magnetic flux in the gap formed between the primary magnetic flux generating device and the elongated plate-shaped secondary scale, the secondary magnetic flux generating device or the secondary scale is connected to the secondary scale. In a linear pulse motor that moves linearly along a longitudinal direction, two pairs of magnetic pole members are arranged with the secondary side scale separated from the gap, a connecting member that connects the two pairs of magnetic pole members to each other; A pair of excitation coils arranged along the width direction of the secondary scale and attached to the two pairs of magnetic pole members via magnetic connection means respectively; one or two pairs arranged and attached to the two pairs of magnetic pole members, respectively;
A linear pulse motor comprising a pair of permanent magnets.
JP9734784A 1984-03-28 1984-05-15 Linear pulse motor Pending JPS60241768A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9734784A JPS60241768A (en) 1984-05-15 1984-05-15 Linear pulse motor
US06/717,081 US4661730A (en) 1984-03-28 1985-03-28 Linear pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9734784A JPS60241768A (en) 1984-05-15 1984-05-15 Linear pulse motor

Publications (1)

Publication Number Publication Date
JPS60241768A true JPS60241768A (en) 1985-11-30

Family

ID=14189945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9734784A Pending JPS60241768A (en) 1984-03-28 1984-05-15 Linear pulse motor

Country Status (1)

Country Link
JP (1) JPS60241768A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154787U (en) * 1986-03-24 1987-10-01
JPS63181661A (en) * 1987-01-22 1988-07-26 Nec Corp Linear stepping motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855748A (en) * 1981-09-29 1983-04-02 Tsuneo Shirai Composite type covered electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855748A (en) * 1981-09-29 1983-04-02 Tsuneo Shirai Composite type covered electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154787U (en) * 1986-03-24 1987-10-01
JPS63181661A (en) * 1987-01-22 1988-07-26 Nec Corp Linear stepping motor

Similar Documents

Publication Publication Date Title
JPS61229226A (en) Actuator
JPS5583454A (en) Moving coil type linear motor
JP2001211630A (en) Linear slider
JPS5849099B2 (en) Moving coil type linear motor
JPS60241768A (en) Linear pulse motor
JPS59153457A (en) Hybrid linear stepping motor
JP4478905B2 (en) Linear motor
JPS60241767A (en) Linear pulse motor
JPS57151261A (en) Linear motor
JPS5980150A (en) Linear pulse motor
JPS5989565A (en) Linear pulse motor
JP2002096233A (en) Linear slider
JPS6347070B2 (en)
JPH0116384Y2 (en)
JPH0116385Y2 (en)
JPH01160348A (en) Linear pulse motor
JP2663576B2 (en) Pulse motor
JP2653183B2 (en) Linear motor
JPH0747987Y2 (en) Pulse motor
JPH03270670A (en) Linear motor
US4668883A (en) Linear pulse motor
JPS6380756A (en) Flat platelike linear pulse motor
JPS626863Y2 (en)
JP3458922B2 (en) Voice coil type linear motor
JPH0638503A (en) Linear motor