[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60239509A - Production of high-strength and high-modulus polyolefin based fiber - Google Patents

Production of high-strength and high-modulus polyolefin based fiber

Info

Publication number
JPS60239509A
JPS60239509A JP8836484A JP8836484A JPS60239509A JP S60239509 A JPS60239509 A JP S60239509A JP 8836484 A JP8836484 A JP 8836484A JP 8836484 A JP8836484 A JP 8836484A JP S60239509 A JPS60239509 A JP S60239509A
Authority
JP
Japan
Prior art keywords
yarn
solvent
solution
filaments
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8836484A
Other languages
Japanese (ja)
Inventor
Masaharu Mizuno
正春 水野
Yutaka Nishikawa
西河 裕
Kotaro Fujioka
藤岡 幸太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8836484A priority Critical patent/JPS60239509A/en
Publication of JPS60239509A publication Critical patent/JPS60239509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To suppress effectively the gluing between fibers and obtain the titled fibers for ropes, etc., by passing a solution of a polyolefin having a specific weight-average molecular weight through an inert gas atmosphere, extruding the resultant solution into a coagulation bath, removing a solvent from the spun filaments, and hot-drawing the resultant filaments under specific conditions. CONSTITUTION:A solution containing 0.5-15wt% polyolefin based polymer, e.g. high-density polyethylene, having >=5X10<5> weight-average molecular weight is passed through an inert gas atmosphere layer and extruded into a coagulation bath to give coagulated filaments, and a solvent is then extracted and removed therefrom to give filaments. The resultant filaments are then hot-drawn at a temperature of the melting point of the polyolefin based polymer -70 deg.C lower than the melting point at >=10 times draw ratio to afford the aimed fibers. Decalin, etc. is preferred for the solvent to be used for preparing the spinning solution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度でかつ高モジュラスの特性、を有するポ
リオレフィン系繊維の製造方法eこ関するものであり、
ざらeこ詳しくは超高分子量のポリオレフィン系重合体
の溶液を気体雰囲気層を通して凝固浴中に押し出し、凝
固糸条を形成した後脱溶媒し、次いで熱延伸を施こすこ
とeこよって、高強度でかつ高モジュラスの特性を有し
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing polyolefin fibers having high strength and high modulus characteristics,
In detail, a solution of an ultra-high molecular weight polyolefin polymer is extruded into a coagulation bath through a gas atmosphere layer, and after forming a coagulated thread, the solvent is removed, and then hot stretching is performed.Thus, high strength is obtained. It has the characteristics of large size and high modulus.

しかも単糸間の膠着がないポリオレフィン系マルチフィ
ラメントを製造する方法に関するものである。
Furthermore, the present invention relates to a method for producing a polyolefin multifilament without sticking between single filaments.

(従来技術) 近年、超高分子量のポリオレフィン系重合体の準希薄溶
液を紡糸し、冷却して一旦ゲル化させた後、脱溶媒し、
超延伸を施すことにより著しく高い強度とモジュラスを
有する繊維を製造する方法(■特開昭56−15408
号公報;■Journal of Materials
 5cience 、 Vol、 + 5 。
(Prior art) In recent years, semi-dilute solutions of ultra-high molecular weight polyolefin polymers have been spun, cooled to gel, and then desolventized.
A method for producing fibers with extremely high strength and modulus by super-stretching (Japanese Patent Application Laid-Open No. 56-15408
Issue: ■Journal of Materials
5science, Vol, +5.

pp s o s〜514(1980)、■特開昭58
−5228号公報など)が知られ、このようにして得ら
れるポリオレフィン系繊維は、その特性故に高い強度と
高いモジュラスが要求される産業用繊維としての用途1
例えばロープ、スリング、各種ゴム補強材、各種樹脂の
補強材およびコンクリート補強材などに有用性が期待さ
れている。
pp s o s ~ 514 (1980), ■ Japanese Patent Application Publication No. 1983
-5228, etc.), and the polyolefin fibers obtained in this way are used as industrial fibers that require high strength and high modulus due to their characteristics.
For example, it is expected to be useful in ropes, slings, various rubber reinforcing materials, various resin reinforcing materials, and concrete reinforcing materials.

しかる1こ、前記■、■、■の方法eこよって製造され
る高強度高モジユラスポリオレフィン系繊維は、その製
造工程中において単糸間で膠着が発生するという問題が
ある。すなわち上記■、■法においては溶液を紡糸し、
冷却して得られるゲル糸条を溶媒を乾燥させてから、あ
るいは乾燥させつつ熱延伸を施す際eこ著しい単糸間膠
着が発生し、また一方上記■法においては上記と同様に
して冷却により得られたゲル糸条を、一旦溶媒を抽出し
てから乾燥を施すことtこよってこの単糸間膠着はある
程度抑制されるものの、いまだeこ十分ではない。この
ようにして起こる単糸間の膠着は、さらに繊維のしなや
かさを欠いたり、繊維全体の強度を低下せしめたり、ま
た加熱時の強力利用率を低下させたりするなどの問題を
招くため、従来の高強度高モジユラスポリオレフィン系
繊維は前記のような期待される有用性があるにもかかわ
らず、それらの特性を十分に発揮させるには不都合が多
く、シかも工業的規模での大量生産が著しく困難となっ
ているのが実情である。
However, the high-strength, high-modulus polyolefin fibers produced by methods (e) of (1), (2), and (3) above have a problem in that sticking occurs between the single yarns during the manufacturing process. That is, in the above methods ① and ②, the solution is spun,
When the gel yarn obtained by cooling is subjected to hot stretching after drying the solvent or while drying, significant adhesion between the single yarns occurs; By first extracting the solvent from the gel threads obtained and then drying them, this agglutination between single threads can be suppressed to some extent, but this is still not sufficient. The sticking between single yarns that occurs in this way leads to problems such as a lack of fiber flexibility, a decrease in the overall strength of the fiber, and a decrease in the strength utilization rate during heating. Despite the expected usefulness of high-strength, high-modulus polyolefin fibers as described above, there are many inconveniences in making full use of their properties, and it is difficult to mass-produce them on an industrial scale. The reality is that it has become extremely difficult.

前記の単糸間での膠着生起の原因については、ff細t
こは判明していないが、溶液から紡糸して冷却によって
ゲル化した各単糸は、溶媒を多量に含んだ膨潤状態にあ
って、しかもお互いtこ密着して寄り添っているため、
これを単tこ乾燥せしめて脱溶媒するだけでは著しい膠
着が生じるものと考えられる。事実ゲル化した単糸の特
tこ結晶化していない部分においては、溶液を単に過冷
却したような状態にあり、単糸間での境目は実質的に存
在しない。
Regarding the causes of agglutination between single yarns, see ff.
Although this is not clear, the individual filaments spun from a solution and gelled by cooling are in a swollen state containing a large amount of solvent, and are nestled closely together.
It is thought that significant agglutination will occur if only a single drying and desolvation process is performed. In fact, especially in the non-crystallized portion of the gelled single filaments, the solution is simply supercooled, and there are virtually no boundaries between the single filaments.

また単eこ乾燥によって脱溶媒するのではなく、一旦溶
媒を抽出剤により抽出し、続いて乾燥を施す方法をとれ
ば、単糸間の膠着は若干緩和されるものの、いまだに不
十分である。
Moreover, instead of removing the solvent by single-layer drying, if a method is used in which the solvent is first extracted with an extractant and then drying is performed, the agglutination between the single filaments is somewhat alleviated, but it is still insufficient.

(本発明が解決しようとする問題点) 本発明者らは上記のような単糸間の膠着を効果的に抑制
して、高強度でかつ高モジュラスのポリオレフィン系マ
ルチフィラメントを製造することを目的として鋭意検討
した結果、冷却ゲル糸条が束状e乙なって乾燥あるいは
抽出tこより脱溶媒されることに膠着の原因があること
をつきとめ、まず単糸が分繊されている間tこ単糸表面
を凝固剤tこより凝固せしめ、その後残溶媒を抽出除去
して単糸表面を粗tこすることeこより。
(Problems to be Solved by the Present Invention) The present inventors aimed to effectively suppress the above-mentioned sticking between single filaments and to produce a polyolefin multifilament with high strength and high modulus. As a result of intensive investigation, we found that the cause of sticking was that the cooled gel threads were dried or extracted in bundles to remove the solvent. The surface of the yarn is coagulated with a coagulant, then the residual solvent is extracted and removed, and the surface of the single yarn is roughly rubbed.

乾燥時の単糸膠着が効果的tこ防止でき、しかもこのよ
うにして得られた乾燥糸条は、その後tこ続く熱延伸工
程でも膠着はなく、そしてまた該乾燥糸条を融点と融点
より70℃低い温度の間で10倍以上に熱延伸すること
によって高強度(20g/d以上〕でかつ高モジュラス
(400g/a以上)の繊維が得られることを見出し、
本発明に到達した。
It is possible to effectively prevent single filament sticking during drying, and the dried yarn obtained in this way does not stick even during the subsequent hot drawing process, and the dried yarn is further heated to a temperature higher than the melting point. It has been discovered that fibers with high strength (20 g/d or more) and high modulus (400 g/a or more) can be obtained by hot drawing 10 times or more at a temperature 70°C lower,
We have arrived at the present invention.

(問題点を解決するための手段) すなわち本発明は重量平均分子量が5xiO”以上のポ
リオレフィン系重合体をIIL5〜15重量%含有する
溶液を、不活性の気体雰囲気層を通して凝固浴中に押し
出し、凝固糸条となした後、さらtこ溶媒を抽出除去し
、次いで得られた繊維をポリオレフィン系重合体の融点
と融点より70℃低い温度の間で10倍以上に熱延伸す
ることを特徴とする単糸間膠着のない、高強度高モジユ
ラスポリオレフィン系繊維の製造方法を提供するもので
ある。
(Means for solving the problem) That is, the present invention extrudes a solution containing 5 to 15% by weight of a polyolefin polymer having a weight average molecular weight of 5xiO" or more through an inert gas atmosphere layer into a coagulation bath, After coagulating into a yarn, the solvent is further extracted and removed, and the resulting fiber is then hot-stretched by 10 times or more between the melting point of the polyolefin polymer and a temperature 70°C lower than the melting point. The present invention provides a method for producing high-strength, high-modulus polyolefin fibers that do not cause stickiness between single yarns.

本発明において用いるポリオレフィン系重合体とはポリ
エチレン、ポリプロピレン、ポリブテン−1およびポリ
(4−メチルペンテン−1)などに代表される重合体で
あるが、これらの混合物あるいはこれらのモノマ2種以
上の構成単位からなる共重合体であってもよい。あるい
はコレラのモノマを主成分とし他の非オレフイン系モノ
マ単位を少量共重合した共重合体、化学処理されたポリ
オレフィンであってもよい。
The polyolefin polymer used in the present invention is a polymer typified by polyethylene, polypropylene, polybutene-1, poly(4-methylpentene-1), etc., but a mixture of these or a composition of two or more of these monomers may also be used. It may also be a copolymer consisting of units. Alternatively, it may be a copolymer obtained by copolymerizing a cholera monomer as a main component with a small amount of other non-olefinic monomer units, or a chemically treated polyolefin.

なお本発明で使用するポリオレフィン系重合体の分子量
は重量平均分子量で5×10s以上。
The molecular weight of the polyolefin polymer used in the present invention is 5 x 10s or more in terms of weight average molecular weight.

と(に+ X 10’以上が好適である。重量平均分子
量が5X10”を下まわると得られる繊維の強度および
モジュラスが低くンより、その有用性を欠くことeこな
るため好ましくない。
It is preferable that the weight average molecular weight is less than 5 x 10'', since the strength and modulus of the obtained fibers will be low and the fibers will lack usefulness.

また上記ポリオレフィン系重合体の溶液を形成するため
eこ使用する溶媒としては、脂肪族炭化水素、脂環酸度
化水素、芳香族炭化水素およびこれらの混合物があげら
れるが、これらに限定されるものではない。通常ポリオ
レフィン系重合体はこれらの溶媒をもってし℃も60℃
以下では溶解しないので、100℃以上に加熱すること
が多く、このため低沸点の溶媒は好ましくない。好適な
溶媒としてはデカリン、キシレン、テトラリン、シクロ
ヘキサン、ノナン、デカンおよびパラフィンオイルなど
が挙げられる。
In addition, the solvent used to form the solution of the polyolefin polymer includes, but is not limited to, aliphatic hydrocarbons, alicyclic hydrogen acidification, aromatic hydrocarbons, and mixtures thereof. isn't it. Polyolefin polymers usually have these solvents and the temperature is 60℃.
Since it will not dissolve at temperatures below 100° C., it is often heated to 100° C. or higher, and for this reason, low boiling point solvents are not preferred. Suitable solvents include decalin, xylene, tetralin, cyclohexane, nonane, decane and paraffin oil.

また、パラフィンワックスおよびナフタリンなどの常温
で固体のものも使用し得る。
Moreover, those that are solid at room temperature such as paraffin wax and naphthalene can also be used.

ポリオレフィン系重合体溶液の重合体鎌度は、ポリオレ
フィン系重合体の分子量が大きいほど低い議席条件が選
ばれ、しかも溶解時の均一性。
The polymer sickleness of the polyolefin polymer solution is selected to be lower as the molecular weight of the polyolefin polymer is larger, and moreover, the uniformity during dissolution is selected.

紡糸時の吐出安定性、曵゛糸性および延伸時の製糸性な
どの面から適切な溶液粘度となるようtこ濃度が選択さ
れる。ただし重合体譲渡が0.5重量%を下まわると生
産性に劣るばかりでなく凝固糸条が柔かく、糸条走行性
が不安定となって外乱を受けやすく均一性3こ欠けるた
め好ましくない。また重合体濃度が高い方が生産性は高
いが、15重量%を越えると溶液中での重合体分子鎖の
からみ合い(Entanglement )が多くなる
ことに起因して溶液の粘度が高くなり、適切でな、い濃
度範囲に至ると紡糸時に曵・糸性が低下するばかりか、
脱溶媒後の延伸時に延伸倍率が充分上がらず、低い物性
しか得られないため好ましくない。したがってポリオレ
フィン系重合体溶液の重合体濃度は0.5〜15重量%
、とくに1〜8重量%が好適である。
The concentration is selected so as to provide an appropriate solution viscosity in terms of ejection stability during spinning, spinnability, and refinability during drawing. However, if the polymer transfer is less than 0.5% by weight, it is not preferable because not only is the productivity poor, but the coagulated yarn is soft and the yarn runnability becomes unstable, making it susceptible to external disturbances and lacking in uniformity. In addition, the higher the polymer concentration, the higher the productivity, but if it exceeds 15% by weight, the viscosity of the solution increases due to the increase in entanglement of polymer molecular chains in the solution. However, if the concentration range is too high, not only will the threadability and yarn properties deteriorate during spinning, but
This is not preferred because the stretching ratio cannot be increased sufficiently during stretching after solvent removal, and only poor physical properties can be obtained. Therefore, the polymer concentration of the polyolefin polymer solution is 0.5 to 15% by weight.
, particularly preferably 1 to 8% by weight.

なお溶液作製時の重合体溶解温度と紡糸時の溶液温度は
ほぼ同じくらいにするが、溶媒や重合体分子量によって
異なり、大体120〜250℃の範囲で適切な温度が設
定される。
The polymer dissolution temperature at the time of solution preparation and the solution temperature at the time of spinning are approximately the same, but vary depending on the solvent and polymer molecular weight, and an appropriate temperature is generally set in the range of 120 to 250°C.

本発明の方法を実施するに際しては、まず上記ポリオレ
フィン系重合体溶液を加熱し、これを複数個の孔を有す
るノズルから不活性の気体雰囲気を通して凝固浴中に押
し出す。ここでいう不活性の気体雰囲気とは、ノズルか
ら押し出された繊維状溶液が凝固や化学反応を生じない
ものであり、主?こ空気あるいは屋素を使用する。
In carrying out the method of the present invention, the polyolefin polymer solution is first heated and extruded into a coagulation bath through an inert gas atmosphere through a nozzle having a plurality of holes. The inert gas atmosphere referred to here is one in which the fibrous solution extruded from the nozzle does not coagulate or undergo chemical reactions. Use air or roof.

この気体雰囲気の通過距離については特に制限はないが
、3〜50!Il+の範囲が適当であり、5−OMを大
きく上回るとノズルから押し出された繊維状溶液の安定
走行が難しくなり、わずかの糸ゆれによりこの気体雰囲
気中で単糸間膠着が生ずるなどの問題が生じ易くなるた
め好ましくない。
There is no particular limit to the distance through which this gas atmosphere passes, but it is between 3 and 50! The range of Il+ is appropriate; if it greatly exceeds 5-OM, it becomes difficult for the fibrous solution extruded from the nozzle to run stably, and problems such as slight yarn wobbling can cause sticking between single yarns in this gas atmosphere. This is not preferable because it is more likely to occur.

また、この気体雰囲気中1こおいて押し出された繊維状
溶液かられずかに溶媒が蒸発してぬけることもあるが、
大半の溶媒は次の凝固浴およびこれに続く抽出浴で抽出
除去される。
In addition, the solvent may evaporate and escape from the extruded fibrous solution in this gas atmosphere, but
Most of the solvent is extracted away in the next coagulation bath and subsequent extraction bath.

本発明eこおいて凝固浴および抽出浴で使用される凝固
剤としては、炭化水素あるいは塩素紮フッ素を含む炭化
水素、例えばヘキサン、ヘプ1’7.塩化メチレン、四
塩化次素、三塩化三フッ化エタンなどやアセトンのよう
ンよケトン類やメタノールやエタノールのようなアルコ
ール類などが挙げられる。凝固浴および抽出浴の温度は
用いる凝固剤の凝固能や沸点など?こより異なるが5通
常は0〜40℃の範囲が適当である。
In the present invention, the coagulant used in the coagulation bath and extraction bath is a hydrocarbon or a hydrocarbon containing chlorinated fluorine, such as hexane, hep-1'7. Examples include methylene chloride, hypochlorite tetrachloride, ethane trichloride and trifluoride, ketones such as acetone, and alcohols such as methanol and ethanol. Does the temperature of the coagulation bath and extraction bath depend on the coagulation ability and boiling point of the coagulant used? Although the temperature varies from this point onwards, a range of 0 to 40°C is usually appropriate.

凝固浴で凝固した糸条は、次いで抽出浴に送られ、ここ
で残りの溶媒を抽出、除去した後、凝固剤(すなわち抽
出剤)を含んだままの形で乾燥工程に送られる。乾燥は
糸条を加熱ロールeこ接触させるか、加熱空気の流れに
曝して実施される。またこのとき抽出剤を第二の抽出剤
に置きかえてから乾燥することもある。例えば引火性の
第一抽出剤を引火性の低い第二抽出剤におきかえるなど
である。
The yarn coagulated in the coagulation bath is then sent to an extraction bath, where the remaining solvent is extracted and removed, and then sent to a drying process while still containing the coagulant (i.e., extractant). Drying is carried out by bringing the yarn into contact with heated rolls or by exposing it to a stream of heated air. Also, at this time, the extractant may be replaced with a second extractant and then dried. For example, replacing the flammable first extractant with a second, less flammable extractant.

このようにして乾燥された糸条は次いで延伸工程に供さ
れる。延伸には、熱板、加熱ロール、乾熱チューブなど
種々の手段があり特tこ限定されない。延伸は重合体の
融点と融点より70℃低い温度の間の温度で行なう。延
伸倍率を出来る限り高くし、強度を増大させるためtこ
は重合体の融点と融点より40℃低い温度の間の而温が
一層好適である。
The yarn thus dried is then subjected to a drawing process. Various means can be used for stretching, including a hot plate, a heated roll, and a dry heat tube, but the method is not particularly limited. Stretching is carried out at a temperature between the melting point of the polymer and 70° C. below the melting point. In order to make the stretching ratio as high as possible and increase the strength, it is more preferable to use a temperature between the melting point of the polymer and a temperature 40° C. lower than the melting point.

延伸を重合体の融点より70℃以上低い温度で行なうと
、延伸倍率が充分上がらず、低物性の糸しか得られない
。また延伸温度が融点を越えると、糸条が融解してしま
うため好ましくない。但し、乾熱チューブで延伸すると
きは、糸条が気体で加熱されるので、伝熱効率からみか
け上ポリオレフィン系重合体の融点より高い温度で延伸
できる場合もあるが、本発明で云う融点とはこの場合の
実質的tこ糸条が融解する温度を含んでいる。
If the stretching is carried out at a temperature 70°C or more lower than the melting point of the polymer, the stretching ratio will not be sufficiently increased and only threads with poor physical properties will be obtained. Furthermore, if the stretching temperature exceeds the melting point, the yarn will melt, which is not preferable. However, when drawing with a dry heat tube, the yarn is heated with gas, so it may be possible to draw at a temperature that is apparently higher than the melting point of the polyolefin polymer in terms of heat transfer efficiency, but the melting point as used in the present invention is In this case, substantially t includes the temperature at which the threads melt.

延伸倍率は10以上にすることが必要である。It is necessary to set the stretching ratio to 10 or more.

延伸倍率が10を下まわると充分大きな強度とモジュラ
スを達成できず、有用性1こ欠ける。本発明により紡糸
された糸条は特に重合体分子鎖のからみ合いが少ないの
で、高い倍率で延伸可能であり、好ましくは15以上の
延伸倍率をとるのが良い。
If the stretching ratio is less than 10, sufficiently high strength and modulus cannot be achieved, resulting in a lack of usefulness. Since the yarn spun according to the present invention has particularly little entanglement of polymer molecular chains, it can be drawn at a high stretching ratio, preferably at a stretching ratio of 15 or more.

次に本発明を実施例、比較例を用いて具体的tこ説明す
る。
Next, the present invention will be specifically explained using Examples and Comparative Examples.

なお、以下に示される糸物性は次の条件で測定した。The yarn physical properties shown below were measured under the following conditions.

糸サンプル;単糸(解繊できない糸はそのままマルチフ
ィラメント で) 紙長1250期 引張り速度;300闘/分 雰囲気120℃、65%相対湿度 実施例1 重量平均分子量3.0X10’の直鎖状高密度ポリエチ
レンをデカリンtこ160℃の温度で溶解し、40重量
%溶液とし、該溶液を孔径1票、孔数20のノズルから
空気浴へ押し出し、該空気浴を81111の距離だけ通
過させた後、10℃のアセトンからなる凝固浴で凝固さ
せた。ノズルからの総吐出量は16CC/分であり、凝
固した糸条は7.5.m7分で引き取った。
Yarn sample: Single yarn (threads that cannot be defibrated are made into multifilament as they are) Paper length: 1250 tensile speed: 300 min/min Atmosphere: 120°C, 65% relative humidity Example 1 Straight chain fiber with weight average molecular weight of 3.0 x 10' Density polyethylene was dissolved in decalin at a temperature of 160°C to make a 40% by weight solution, and the solution was extruded into an air bath through a nozzle with a hole size of 1 and a number of holes of 20, and after passing through the air bath a distance of 81111. , coagulated in a coagulation bath consisting of acetone at 10°C. The total discharge rate from the nozzle was 16 CC/min, and the coagulated yarn was 7.5 mm. I picked it up in 7 minutes.

前記糸条を引き続き10℃のアセトンからなる抽出浴を
通し、糸条中eこ残存するデカリンを抽出して、60℃
の加熱μm)vPこより乾燥し巻き収った。この乾燥糸
条を表面温度135℃、長さ12oa*の熱板により第
1辰tこ示した種々の倍率で延伸した結果、得られた延
伸糸の力学物性を第1辰tこ併せて示す。なお延伸時の
糸条の給糸速度は20α/分とした。
The yarn was then passed through an extraction bath consisting of acetone at 10°C to extract the remaining decalin in the yarn, and then heated at 60°C.
The film was dried and rolled up by heating the film (μm)vP. This dried yarn was drawn using a hot plate with a surface temperature of 135°C and a length of 12 oa* at various magnifications shown in the first axis. The mechanical properties of the obtained drawn yarn are also shown in the first axis. . Note that the yarn feeding speed during drawing was 20α/min.

第1表の結果から明らかなように、脱溶媒し乾燥した糸
条およびこれを熱延伸した糸条とも単糸間のj遥肩はな
い。また、延伸糸の強度は延伸倍率が10倍以上になっ
てはじめて20g/d以上となり、モジュラスもまた6
00g/dを上まわる値となる。
As is clear from the results in Table 1, there is no difference between the single yarns in both the yarns that have been dried after solvent removal and the yarns that have been hot-stretched. In addition, the strength of the drawn yarn becomes 20 g/d or more only when the drawing ratio is 10 times or more, and the modulus is also 6.
The value exceeds 00g/d.

第1表 延伸倍¥と糸物性の関係 比較例1 実施例1と同様の紡糸原液を、孔径1藺、孔数20のノ
ズルから8iaの空気浴を介して15℃の水中へ押し出
し、冷却すること1こよりコ゛ム状ゲル糸条を得た。ノ
ズルからの総吐出量、紡糸引き取り速度は実施例1と同
じであり、水冷却浴を出た後表面温度85℃の加熱ロー
ルに接触させて溶媒であるデカリンを乾燥eこより脱溶
媒した。これにより得られる乾燥糸条は単糸間膠着が著
しく、単糸に分繊することは全く不可能でめった。また
、上記水冷却浴を出たゲル糸条を引き続いて15℃のア
セトンからなる抽出浴を通して溶媒を抽出し、しかる後
同様に加熱ロールにより乾燥を施したが、単糸間の膠着
は幾分軽度tこなったもののいまだtこ不十分であった
。この単糸間膠着の状態は熱延伸1こよっても改良され
ず、実施例1に比較してゲル糸条の単糸が密着した形で
乾燥あるいは抽出により脱溶媒されることが脱溶媒後の
単糸の分離性(解繊性)を妨げていると考えられる。
Table 1 Relationship between drawing ratio and yarn physical properties Comparative Example 1 The same spinning stock solution as in Example 1 was extruded into 15°C water through an 8ia air bath through a nozzle with a hole diameter of 1 mm and a number of holes of 20, and cooled. From step 1, a comb-shaped gel thread was obtained. The total discharge amount from the nozzle and the spinning take-off speed were the same as in Example 1, and after leaving the water cooling bath, it was brought into contact with a heating roll whose surface temperature was 85° C. to remove the solvent, decalin, by drying. The dried yarn obtained by this method had significant adhesion between single yarns, and was completely impossible to separate into single yarns. In addition, the gel threads that had exited the water cooling bath were subsequently passed through an extraction bath of acetone at 15°C to extract the solvent, and then similarly dried using heated rolls, but the stickiness between the single threads was somewhat high. Although I was able to get some relief, it was still not enough. This state of adhesion between the single yarns was not improved even after the first hot drawing, and compared to Example 1, the single yarns of the gel yarn were removed by drying or extraction in a close contact state after the desolvation. It is thought that this hinders the separability (fibrillation property) of single filaments.

上記の二つの方法により得られた糸は解繊性が悪く単糸
が分離できないので、第2表にはマルチフィラメントと
して測定した糸物性値を載せた。
Since the yarns obtained by the above two methods have poor fibrillation properties and cannot be separated into single filaments, Table 2 lists the yarn physical property values measured as multifilaments.

第2表 製糸方式と解繊性 実施例2 重量平均分子量9.0x10’ の直鎖状高密度ポリエ
チレンをデカリンに160℃の温度で溶解して、aO重
量%溶液とし、該溶液を孔径1票、孔数20のノズルか
ら空気浴へ押し出し、該空気浴を10縣の距雅だけ通過
させた後、12℃のアセトンからなる凝固浴で凝固させ
た。
Table 2 Silk spinning method and fibrillation properties Example 2 Linear high-density polyethylene with a weight average molecular weight of 9.0 x 10' is dissolved in decalin at a temperature of 160°C to make an aO weight % solution, and the solution is mixed with a pore size of 1. The mixture was extruded into an air bath through a nozzle with 20 holes, passed through the air bath by a distance of 10 squares, and then coagulated in a coagulation bath consisting of acetone at 12°C.

ノズルからの総吐出量は16cc/分であり、凝固した
糸条は7.5m/分で引き敢った。該糸条を引き続き1
2℃のアセトンからなる抽出浴を通し、系中に残存する
デカリンを抽出して、60℃の加熱ロール1こより乾燥
し巻き取った。
The total discharge rate from the nozzle was 16 cc/min, and the coagulated thread was drawn at 7.5 m/min. Continuing the thread 1
Decalin remaining in the system was extracted through an extraction bath consisting of acetone at 2°C, dried on one heated roll at 60°C, and then wound up.

この乾燥糸条な延伸するEこ延伸倍率以外の条件を実施
例1と同様にした結果、延伸糸の物性は第3表のように
なった。第3表の結果から本発明の方法によれば単糸間
での膠着もなく、高強度高モジュラスの糸が得られるこ
とが明らかである。
The dry yarn was drawn under the same conditions as in Example 1, except for the stretching ratio. As a result, the physical properties of the drawn yarn were as shown in Table 3. From the results in Table 3, it is clear that according to the method of the present invention, yarns with high strength and high modulus can be obtained without sticking between single yarns.

第3表 比較例2 重量平均分子量tsx+o’の直鎖状高密度ポリエチレ
ンをデカリンeこ150℃の温度で溶解して、15重量
%溶液とし、この溶液を孔径1頭φ、孔数20のノズル
から空気浴へ押し出し、該空気浴を10wRの距離だけ
通過させた後、12℃のアセトンからなる凝固浴で凝固
させた。
Table 3 Comparative Example 2 Linear high-density polyethylene with a weight average molecular weight tsx+o' was dissolved in decalin e at a temperature of 150°C to make a 15% by weight solution, and this solution was applied to a nozzle with a hole diameter of 1 head and a number of holes of 20. After passing through the air bath at a distance of 10 wR, the sample was coagulated in a coagulation bath consisting of acetone at 12°C.

ノズルからの総吐出量は12CC/分であり、凝固した
糸条は75m/分で引き取った。この糸条を引き続き1
2℃のアセトンからなる抽出浴を通し、デカリンを抽出
した後、60℃の加熱ロール1こより乾燥し巻き取った
。この乾燥糸条を表面温度130℃、長さ20備の熱板
により延伸した結果第4表のようtこなった。この結果
糸の単糸間膠着は見られなかったが、得られた繊維の強
度レベルは約15g/σと低いものでめった。重合体の
分子量が本発明の範囲より低いと、置い物性が得られな
いことが明らかである。
The total discharge rate from the nozzle was 12 CC/min, and the coagulated yarn was taken off at 75 m/min. Continue this yarn by 1
After extracting decalin through an extraction bath consisting of acetone at 2°C, it was dried and rolled up using a heated roll at 60°C. This dried yarn was stretched with a hot plate having a surface temperature of 130° C. and a length of 20 mm, and the results were as shown in Table 4. As a result, no stickiness between single yarns was observed, but the strength level of the obtained fibers was as low as about 15 g/σ, which was disappointing. It is clear that if the molecular weight of the polymer is lower than the range of the present invention, the physical properties cannot be obtained.

第4表 実施例3 実施例1と同様?こして得られた脱溶媒乾燥糸条を、延
伸温度条件を第5表のように変更して、温度条件の延伸
糸の物性に及ぼす影響を調べた結果を第5表に併せて示
す。なお延伸倍率は各各の延伸温度eこおいて最も制い
値を採っており、丁なわち各延伸温度で最も高い糸物性
値を第・5表tこ記載した。
Table 4 Example 3 Same as Example 1? Table 5 also shows the results of examining the influence of the temperature conditions on the physical properties of the drawn yarn by changing the stretching temperature conditions of the thus obtained solvent-free and dried yarns as shown in Table 5. Note that the drawing ratio was set to the highest value at each drawing temperature, and the highest yarn physical property values at each drawing temperature are listed in Table 5.

第5表の結果から明らかなように延伸温度が60℃にま
で下がると延伸性は極度に低下し。
As is clear from the results in Table 5, when the stretching temperature is lowered to 60°C, the stretchability is extremely reduced.

得られる延伸糸の強度も20g/(lを下回り低いもの
となる。また延伸温度が+so’ctこなると熱板上で
溶融し切断し、糸の切断端が融清している状態になる。
The strength of the drawn yarn obtained is also low, being less than 20 g/(l). When the drawing temperature is + so'ct, it melts and breaks on the hot plate, leaving the cut end of the yarn in a melted state.

なお重合体粉末および乾燥糸条の融点をDSG(示差熱
分析計)で測定するとそれぞれ135℃、137℃であ
り、さらには延伸張力下における糸条の融点は実質的1
こ約140〜145℃であって、延伸温度が150℃に
なると溶けて流れてしまう。
Furthermore, when the melting points of the polymer powder and the dried yarn are measured using a DSG (differential thermal analyzer), they are 135°C and 137°C, respectively, and furthermore, the melting point of the yarn under stretching tension is substantially 1.
The temperature is about 140 to 145°C, and if the stretching temperature reaches 150°C, it will melt and flow.

また延伸温度が60℃では実質的な融点140℃とこれ
より70℃低い温度との範囲の本発明から外れた条件と
なり、高延伸倍率が達成できない。
Further, when the stretching temperature is 60°C, the actual melting point is 140°C and a temperature 70°C lower than this, which is outside the scope of the present invention, and a high stretching ratio cannot be achieved.

第5表 (本発明の効果) 以上説明したように、本発明の方法によれば、きわめて
高強度、蕎モジュラスでかつ単糸間膠看のないポリオレ
フィン系繊維が得られ、しかも得られる繊維は上記に加
えてしなやかで加熱時の強力の利用率低下や結節時の切
fI強度低下がないため、各4産業用途、とくeこ各種
補強材用途eこおいてきわめて有用である。
Table 5 (Effects of the present invention) As explained above, according to the method of the present invention, polyolefin fibers with extremely high strength, soba modulus, and no glue between single filaments can be obtained, and the resulting fibers are In addition to the above, it is flexible and does not reduce the strength utilization rate during heating or reduce the cut fI strength when knotting, making it extremely useful for each of the four industrial applications, especially for various reinforcing material applications.

特許出願人 東 し 株 式 会 社Patent applicant Higashi Shikikai Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 重量平均分子量が5X’IO’以上のポリオレフィン系
重合体を05〜15重量%含有する溶液を、不活性の気
体雰囲気層を通して凝固浴中eこ押し出し、凝固糸条と
なした後、さらtこ溶媒を抽出除去し、次いで得られた
繊維をポリオレフィン系重合体の融点と融点より70℃
低い温度の間で10倍以上に熱延伸することを特徴とす
る高強度高モジユラスポリオレフィン系繊維の製造方法
A solution containing 05 to 15% by weight of a polyolefin polymer having a weight average molecular weight of 5X'IO' or more is extruded into a coagulation bath through an inert gas atmosphere layer to form a coagulated thread, and then further The solvent is extracted and removed, and the resulting fiber is heated at 70°C below the melting point of the polyolefin polymer.
A method for producing a high-strength, high-modulus polyolefin fiber, which comprises hot-stretching the fiber by 10 times or more at a low temperature.
JP8836484A 1984-05-04 1984-05-04 Production of high-strength and high-modulus polyolefin based fiber Pending JPS60239509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8836484A JPS60239509A (en) 1984-05-04 1984-05-04 Production of high-strength and high-modulus polyolefin based fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8836484A JPS60239509A (en) 1984-05-04 1984-05-04 Production of high-strength and high-modulus polyolefin based fiber

Publications (1)

Publication Number Publication Date
JPS60239509A true JPS60239509A (en) 1985-11-28

Family

ID=13940746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8836484A Pending JPS60239509A (en) 1984-05-04 1984-05-04 Production of high-strength and high-modulus polyolefin based fiber

Country Status (1)

Country Link
JP (1) JPS60239509A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004936A1 (en) * 1985-02-15 1986-08-28 Toray Industries, Inc. Polyethylene multifilament yarn
JPS62101200A (en) * 1985-10-28 1987-05-11 Kenwood Corp Edge attaching structure of speaker
JP2008512573A (en) * 2004-09-03 2008-04-24 ハネウェル・インターナショナル・インコーポレーテッド Stretched gel spun polyethylene yarn and method for stretching
CN110791821A (en) * 2019-11-13 2020-02-14 浙江金昊新材料有限公司 Method for preparing novel ultrahigh-strength high-modulus polyethylene fiber by one-step method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS59130313A (en) * 1982-12-28 1984-07-26 Mitsui Petrochem Ind Ltd Manufacture of drawn ultra-high-molecular-weight polyethylene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS59130313A (en) * 1982-12-28 1984-07-26 Mitsui Petrochem Ind Ltd Manufacture of drawn ultra-high-molecular-weight polyethylene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004936A1 (en) * 1985-02-15 1986-08-28 Toray Industries, Inc. Polyethylene multifilament yarn
JPS62101200A (en) * 1985-10-28 1987-05-11 Kenwood Corp Edge attaching structure of speaker
JP2008512573A (en) * 2004-09-03 2008-04-24 ハネウェル・インターナショナル・インコーポレーテッド Stretched gel spun polyethylene yarn and method for stretching
CN110791821A (en) * 2019-11-13 2020-02-14 浙江金昊新材料有限公司 Method for preparing novel ultrahigh-strength high-modulus polyethylene fiber by one-step method

Similar Documents

Publication Publication Date Title
EP0213208B1 (en) Polyethylene multifilament yarn
JP4935690B2 (en) Method for producing carbon fiber precursor fiber
TWI775244B (en) Polyethylene yarn of high tenacity having high dimensional stability and method for manufacturing the same
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS61215708A (en) Production of multifilament yarn
JPH07238416A (en) Production of high-strength polyethylene fiber
JP3161546B2 (en) Method for producing high strength, low shrinkage polyester fiber
JPH064923B2 (en) Manufacturing method of high strength and high modulus polyacrylonitrile fiber
JPS5891811A (en) Spinning
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS6353286B2 (en)
JPH01162819A (en) Production of novel polyethylene fiber
JPS6147809A (en) Production of high-strength and high-modulus polyolefin based fiber
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPH02175913A (en) New polyethylene yarn and production thereof
JPS59216914A (en) Production of polyethylene fiber having ultrahigh tenacity
JPS61611A (en) Preparation of polyolefinic yarn having high strength and high modulus
JPH0429765B2 (en)
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPH03137215A (en) Production of polyethylene fiber
JPS6241230A (en) Production of high tensile and high modulus polyolefin by dissolving particles and molding solution
JPH03807A (en) Polyvinyl alcohol monofilament yarn and production thereof
JPH0319913A (en) Production of polyether ketone fiber