JPH07238416A - Production of high-strength polyethylene fiber - Google Patents
Production of high-strength polyethylene fiberInfo
- Publication number
- JPH07238416A JPH07238416A JP2544594A JP2544594A JPH07238416A JP H07238416 A JPH07238416 A JP H07238416A JP 2544594 A JP2544594 A JP 2544594A JP 2544594 A JP2544594 A JP 2544594A JP H07238416 A JPH07238416 A JP H07238416A
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- strength
- temperature
- polyethylene fiber
- stretching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えばコンポジット補
強材、ロープ、釣り糸、防弾材などの高い強度を必要と
する用途に適している高強度ポリエチレン繊維に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-strength polyethylene fibers suitable for applications requiring high strength such as composite reinforcing materials, ropes, fishing lines, bulletproof materials and the like.
【0002】[0002]
【従来の技術】高強度ポリエチレン繊維を製造する従来
の方法においては、超高分子量のポリマーを溶剤に溶解
して紡糸するいわゆる「ゲル紡糸法」なる手法が、例え
ば特公昭60−47922号公報や特公平1−2488
7号公報などに開示されている。しかしながら従来技術
は、紡糸において溶剤をできる限り除去しないことが必
要で、積極的に溶媒を除去した場合、例えば特公平1−
24887号公報の比較例に見るように延伸に好ましく
ないとされてきた。2. Description of the Related Art In the conventional method for producing high-strength polyethylene fibers, a so-called "gel spinning method", in which an ultrahigh molecular weight polymer is dissolved in a solvent and spun, is disclosed in, for example, Japanese Patent Publication No. 60-47922. Japanese Patent Fair 1-2488
No. 7, for example. However, in the prior art, it is necessary to remove the solvent as much as possible in spinning, and when the solvent is actively removed, for example, Japanese Patent Publication No.
As seen in the comparative example of Japanese Patent No. 24887, it has been considered unfavorable for stretching.
【0003】延伸の前に積極的に溶剤を抽出ないし洗浄
する技術としては特公昭58−5228号公報にその開
示が見られるが、この先行技術も紡出されてから一度冷
却されるまではほとんど溶剤が除去されていなかった。
かかる冷却までに溶剤を実質上除去できないのはエネル
ギー的にロスが大きくなり、効率的な製造方法が求めら
れてきた。溶媒をほとんど除去せずに冷却、巻き取りを
行うと延伸工程以降で溶媒を完全に除去することが困難
になる。As a technique for actively extracting or washing a solvent before stretching, its disclosure is found in Japanese Patent Publication No. 58-5228. However, this prior art is almost always until it is once cooled after being spun. The solvent was not removed.
Since the solvent cannot be substantially removed by such cooling, energy loss becomes large, and an efficient manufacturing method has been demanded. If cooling and winding are performed without removing the solvent, it becomes difficult to completely remove the solvent after the stretching step.
【0004】また、溶媒をほとんど除去せずに高温で延
伸を行うと融着が生じるため、延伸槽の温度を下げるこ
とが必要となるが、低温では強度の優れたポリエチレン
繊維を得るために必要な高延伸倍率で延伸することが不
可能となる。また多段延伸を行うにしても、一段目で延
伸倍率を高くすることができなければ、高強度を得るた
めには二段目以後でかなり高い延伸倍率で延伸すること
が必要となるが、ポリマーの緩和時間より変形速度が大
きくなり延伸できなくなるといった問題点があった。Further, when the drawing is carried out at a high temperature without removing the solvent, fusion occurs, so that it is necessary to lower the temperature of the drawing tank, but at a low temperature it is necessary to obtain a polyethylene fiber having excellent strength. It becomes impossible to stretch at a high stretch ratio. Even if multi-stage stretching is performed, if the stretching ratio cannot be increased in the first stage, it is necessary to stretch at a considerably high stretching ratio in the second and subsequent stages to obtain high strength. There is a problem that the deformation rate becomes larger than the relaxation time and the film cannot be stretched.
【0005】[0005]
【発明が解決しようとする課題】上述した問題点に基づ
き本発明では、高い強度を有するポリエチレン繊維を安
定に製造するための製造技術を提供する。On the basis of the above-mentioned problems, the present invention provides a manufacturing technique for stably manufacturing polyethylene fibers having high strength.
【0006】[0006]
【課題を解決するための手段】すなわち本発明は、超高
分子量ポリエチレン重合体を5ないし50重量部と揮発
性溶媒を95ないし50重量部含む混合体を加熱溶解
し、溶解物を紡出した後、溶媒を積極的に除去しその後
延伸して強度35g/d以上の強度を有する高強度ポリ
エチレン繊維の製造方法を提供する。That is, according to the present invention, a mixture containing 5 to 50 parts by weight of an ultra high molecular weight polyethylene polymer and 95 to 50 parts by weight of a volatile solvent is heated and dissolved, and a melt is spun out. Then, the solvent is positively removed and then stretched to provide a method for producing a high-strength polyethylene fiber having a strength of 35 g / d or more.
【0007】また上記製造方法における溶媒除去の際、
加熱気体を用いて積極的に除去する方法、または少なく
とも2段階の温度又は風速に調整された気体流にて溶剤
が除去される高強度ポリエチレン繊維の製造方法を提供
する。When removing the solvent in the above production method,
There is provided a method for actively removing a solvent using a heated gas, or a method for producing a high-strength polyethylene fiber in which a solvent is removed by a gas flow adjusted to at least two stages of temperature or wind speed.
【0008】また上記製造方法の延伸工程において溶媒
を除去しつつ延伸を行うことを特徴とする高強度ポリエ
チレン繊維の製造方法を提供する。Also provided is a method for producing a high-strength polyethylene fiber, which comprises performing the stretching while removing the solvent in the stretching step of the above-mentioned production method.
【0009】本発明における超高分子量ポリエチレンと
は、その繰り返し単位が実質的にはエチレンであること
を特徴とし、少量の他のモノマー例えばα−オレフィ
ン、アクリル酸及びその誘導体、ビニルシラン及びその
誘導体との共重合体であってもよいし、これらの共重合
体同士、あるいはエチレンホモポリマーと共重合体、さ
らには他のαオレフィン等のホモポリマーとのブレンド
体であってもよいし、もちろんエチレン単独のホモポリ
マーであっても良い。The ultrahigh molecular weight polyethylene in the present invention is characterized in that its repeating unit is substantially ethylene, and a small amount of another monomer such as α-olefin, acrylic acid and its derivative, vinylsilane and its derivative. May be a copolymer of these, or may be a copolymer of these copolymers, or a blend of ethylene homopolymers and copolymers, and further homopolymers such as other α-olefins, and of course ethylene It may be a single homopolymer.
【0010】かかる超高分子量ポリエチレンは、一般に
前述した「ゲル紡糸法」なる方法により紡糸される。例
えば紡糸ノズルを通して溶解物を押し出しすると延伸用
フィラメントが得られる。押し出された溶解物は加熱気
体により溶媒を除去される。加熱気体の温度は好ましく
は50℃ないし130℃、さらに好ましくは60℃ない
し120℃で用いるのがよい。上記範囲よりも温度が低
いと溶媒除去が不十分となり、延伸工程において融着し
やすくなる。また延伸槽温度を下げる必要性から延伸槽
で高延伸倍率で延伸することが不可能となる。また上記
範囲よりも温度が高いと繊維の物性が低下する。風速は
0.2m/秒ないし2.0m/秒、さらに好ましくは
0.5m/秒ないし1.5m/秒で用いるのが良い。上
記範囲よりも風速が低いと溶媒除去が困難となり、また
風速が高いと繊維の斑が大きくなる。Such ultra-high molecular weight polyethylene is generally spun by the above-mentioned "gel spinning method". For example, extruding the melt through a spinning nozzle gives a drawing filament. The solvent is removed from the extruded melt by heating gas. The temperature of the heated gas is preferably 50 ° C to 130 ° C, more preferably 60 ° C to 120 ° C. If the temperature is lower than the above range, the removal of the solvent will be insufficient, and fusion will easily occur in the stretching step. Further, it becomes impossible to perform drawing at a high draw ratio in the drawing tank because it is necessary to lower the drawing tank temperature. Further, if the temperature is higher than the above range, the physical properties of the fiber deteriorate. The wind speed is 0.2 m / sec to 2.0 m / sec, more preferably 0.5 m / sec to 1.5 m / sec. When the wind speed is lower than the above range, it becomes difficult to remove the solvent, and when the wind speed is high, the unevenness of the fiber becomes large.
【0011】また気体流を二段階以上の温度、風速で用
いるときは、一段目の気体流温度は10℃ないし50
℃、さらに好ましくは20℃ないし40℃が良い。上記
範囲より温度を下げるのは設備上困難であり、またノズ
ルが冷却される恐れがある。また上記範囲より気体流温
度を高くすると優れた強度を有する繊維が得られにくく
なる。一段目以後の気体流温度は60℃ないし130
℃、さらに好ましくは90℃ないし120℃とするのが
良い。上記範囲より温度が低いと溶媒除去が不十分とな
り延伸工程において融着しやすくなる。上気範囲よりも
温度が高いと重合体の劣化の原因となる。風速は0.2
m/秒ないし2.0m/秒さらに好ましくは0. 5m/
秒ないし1.5m/秒で用いるのが良い。上記範囲より
風速が低いと溶媒除去が困難となり、また風速が高いと
繊維の斑が大きくなる。When the gas flow is used in two or more stages of temperature and wind speed, the temperature of the first stage gas flow is 10 ° C to 50 ° C.
C., more preferably 20.degree. C. to 40.degree. It is difficult for the equipment to lower the temperature from the above range, and the nozzle may be cooled. Further, if the gas flow temperature is higher than the above range, it becomes difficult to obtain fibers having excellent strength. The gas flow temperature after the first step is 60 ° C to 130
C., and more preferably 90.degree. C. to 120.degree. If the temperature is lower than the above range, the removal of the solvent is insufficient and the fusion is apt to occur in the stretching step. When the temperature is higher than the upper range, it causes deterioration of the polymer. Wind speed is 0.2
m / sec to 2.0 m / sec, more preferably 0.5 m / sec
It is preferable to use it at a rate of 1 to 1.5 m / sec. When the wind speed is lower than the above range, it becomes difficult to remove the solvent, and when the wind speed is high, the irregularities of the fibers become large.
【0012】本製造法で言う積極的に溶媒を除去すると
は40%以上、好ましくは50%以上除去することを言
う。上記規定より溶媒含有量が高いと延伸工程で融着し
易くなり、融着を防ぐため延伸槽温度を下げると延伸性
が低下し、最初の延伸工程での延伸速度を上げることが
できないために高強度の繊維を得ることができない。The positive removal of the solvent referred to in the present production method means removal of 40% or more, preferably 50% or more. If the solvent content is higher than the above regulation, it will be easy to fuse in the stretching step, and if the temperature of the stretching bath is lowered to prevent fusion, the stretchability will decrease, and the stretching speed in the first stretching step cannot be increased. High strength fibers cannot be obtained.
【0013】この様にして得られた未延伸成形体を延伸
処理する。本発明において延伸操作は一段ないし二段以
上の多段で行う。延伸倍率は各延伸槽で2ないし10
倍、特に3ないし8倍で延伸操作を行うことが可能であ
る。二段以上の多段延伸を行う場合、通常前延伸槽の温
度より高い温度に設定する。The unstretched molded body thus obtained is stretched. In the present invention, the stretching operation is carried out in multiple stages of one stage or two or more stages. The draw ratio is 2 to 10 in each draw tank.
It is possible to carry out the stretching operation at a fold, particularly 3 to 8 times. When performing multi-stage drawing of two or more stages, the temperature is usually set higher than the temperature of the pre-drawing tank.
【0014】本発明の高強度ポリエチレン繊維の製造方
法の一例を図1の工程図に示す。図1において3はノズ
ルであり、加熱溶解された超高分子量ポリエチレン、揮
発性溶剤溶液は3より紡出され、延伸する前に加熱気体
により溶剤を積極的に40%以上除去する。紡糸筒を通
過した糸状は4の駆動ローラーを通じてオンラインで延
伸槽に送られる。延伸槽は被延伸物の融点近くまで加熱
されており、延伸されると同時に残存溶剤も除去され、
駆動ローラー6により巻き取られる。巻き取られたポリ
エチレンフィラメントは必要であれば更に1段以上で多
段延伸される。An example of the method for producing the high-strength polyethylene fiber of the present invention is shown in the process chart of FIG. In FIG. 1, reference numeral 3 denotes a nozzle, and the ultra-high molecular weight polyethylene melted by heating and the volatile solvent solution are spun out from 3 and the solvent is positively removed by 40% or more by heating gas before stretching. The filaments that have passed through the spinning cylinder are sent online to the drawing tank through the driving roller 4 (4). The stretching tank is heated to near the melting point of the stretched object, the residual solvent is removed at the same time as stretching,
It is wound up by the drive roller 6. If necessary, the wound polyethylene filament is further stretched in one or more stages in multiple stages.
【0015】本発明のポリエチレン繊維製造方法の他の
好適な例の工程図を図2に示す。図2において紡出ノズ
ル、駆動ローラー、延伸槽の配置等は図1と変わりはな
いが、この例の特徴は紡出直後の溶解物が紡糸筒を通過
する際、二段階の温度、風速に調整された気体流により
溶剤が除去されるところにある。この方法によれば一段
目の気体温度を二段目より低く設定することにより、溶
剤を多量に含んだ状態で固化し、その後二段目の気体流
の温度を高く設定することにより積極的に溶剤を除去す
るため、より良好な繊維構造が形成され、かつ延伸槽で
高延伸倍率で延伸することが可能となる。本発明で用い
た評価項目は以下の手順でおこなった。FIG. 2 shows a process chart of another preferred example of the method for producing polyethylene fiber of the present invention. The arrangement of the spinning nozzle, driving roller, and stretching tank in FIG. 2 is the same as that in FIG. 1, but the feature of this example is that when the melt immediately after spinning passes through the spinning tube, two stages of temperature and wind speed are applied. The solvent is removed by the conditioned gas flow. According to this method, by setting the gas temperature of the first stage lower than that of the second stage, it solidifies in the state of containing a large amount of solvent, and then by positively setting the temperature of the gas flow of the second stage high. Since the solvent is removed, a better fiber structure is formed, and it becomes possible to draw at a high draw ratio in a drawing tank. The evaluation items used in the present invention were performed in the following procedure.
【0016】(強度)本明細書での強度はオリエンテッ
ク社製「テンシロン」を用い、試料長200mm、延伸
速度100%/分の条件で歪−応力曲線を雰囲気温度2
0℃、相対湿度65%条件下で測定し曲線の破断点での
応力を強度(g/d)として求めた。なお、各値は10回
の測定値の平均値を使用した。(Strength) The strength in this specification is "Tensilon" manufactured by Orientec Co., Ltd., and the strain-stress curve is measured at an ambient temperature of 2 with a sample length of 200 mm and a stretching speed of 100% / min.
The stress was measured at 0 ° C. and 65% relative humidity, and the stress at the breaking point of the curve was determined as the strength (g / d). In addition, each value used the average value of the measured value of 10 times.
【0017】(極限粘度)135℃デカリンにてウベロ
ーデ型毛細粘度管により、種々の希薄溶液の比粘度を測
定し、その粘度の濃度にたいするプロットの最小2乗近
似で得られる直線の原点への外挿点より極限粘度を決定
した。測定に際し、原料ポリマーがパウダー状の場合は
その形状のまま、パウダーが塊状であったり糸状サンプ
ルの場合は約5mm長の長さにサンプルを分割または切
断し、ポリマーに対して1wt%の酸化防止剤(商標名
「ヨシノックスBHT」吉富製薬製)を添加し、135
℃で4時間撹はん溶解して測定溶液を調整した。(Intrinsic Viscosity) The specific viscosity of various dilute solutions was measured with an Ubbelohde-type capillary viscous tube at 135 ° C. decalin, and the line outside the origin of the straight line obtained by the least square approximation of the plot of the viscosity concentration was measured. The intrinsic viscosity was determined from the interpolated points. In the case of measurement, when the raw material polymer is powdery, the shape is kept as it is, and when the powder is lumpy or filamentous sample, the sample is divided or cut into a length of about 5 mm, and 1 wt% of the polymer is prevented from oxidation. Agent (trade name "Yoshinox BHT" made by Yoshitomi Pharmaceutical Co., Ltd.) was added, and 135
A measurement solution was prepared by dissolving with stirring at ℃ for 4 hours.
【0018】[0018]
【実施例】以下実施例により本発明を説明するが本発明
は実施例に限定されるものではない。 実施例1 極限粘度が18.5、主鎖炭素原子1000個あたり
0.8個のメチル分岐を有する超高分子量ポリエチレン
を10重量部とデカヒドロナフタレン90重量部を混合
したスラリー状液体をスクリュー型押し出し機(30m
mφ)に供給した。引き続き押出機により溶解物を0.
7φ、96孔のノズルより温度175℃で押し出した。
その後紡出した糸条に長さ1mの紡糸筒で温度90℃、
風速1.0m/秒の加熱気体をあてることにより溶媒を
除去しながら75m/分で駆動ローラーにより引き取っ
た。紡糸筒を出た糸条の溶媒含有量は76重量部であ
り、元の溶媒の65%除去することができた。このよう
にして得られた未延伸糸をオンラインで温度135℃に
設定した一段延伸槽において溶剤を除去しつつ延伸倍率
3倍で延伸した。得られた延伸糸の残存溶剤は1%以下
であった。一段目で延伸した糸をさらに145℃に調節
された二段延伸槽で延伸速度250m/分の高速度で延
伸したところ、5.5倍まで延伸することができ強度4
5g/dの高強度ポリエチレン繊維が得られた。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples. Example 1 A screw-type slurry liquid obtained by mixing 10 parts by weight of ultra-high molecular weight polyethylene having an intrinsic viscosity of 18.5 and 0.8 methyl branch per 1000 main chain carbon atoms with 90 parts by weight of decahydronaphthalene. Extruder (30m
mφ). Subsequently, the melt was melted to 0.
It was extruded at a temperature of 175 ° C. from a nozzle having 7 holes and 96 holes.
After that, the spun yarn was spun at a temperature of 90 ° C. in a spinning tube with a length of 1 m.
The solvent was removed by applying a heated gas having a wind speed of 1.0 m / sec, and the solvent was removed at 75 m / min by a driving roller. The solvent content of the yarn discharged from the spinning cylinder was 76 parts by weight, and 65% of the original solvent could be removed. The undrawn yarn thus obtained was drawn at a draw ratio of 3 times while removing the solvent in a single-stage drawing tank set at a temperature of 135 ° C. online. The residual solvent of the obtained drawn yarn was 1% or less. When the yarn drawn in the first step was further drawn in a two-step drawing tank adjusted to 145 ° C at a high drawing speed of 250 m / min, it could be drawn up to 5.5 times and had a strength of 4
A high strength polyethylene fiber of 5 g / d was obtained.
【0019】実施例2 スラリー調整、押し出し条件は実施例1で示したとおり
であるが、溶媒除去において気体流温度を二段階ににわ
けて紡糸を行った。つまり紡出直後の混合溶解物に一段
目で温度30℃、風速1m/秒の気体流を長さ1mの紡
糸筒で糸条に吹き付けた後、温度120℃、風速1m/
秒の気体流を長さ1mの紡糸筒で吹き付けた。紡糸筒を
出た後の未延伸糸の溶媒含有量は75部であり、元の含
有量の60%を除去することができた。これを実施例1
と同様な条件で延伸を行ったところ6.5倍まで延伸す
ることができ、強度50g/dの高強度ポリエチレン繊
維を得ることができた。Example 2 Slurry preparation and extrusion conditions were as shown in Example 1, but spinning was carried out by dividing the gas flow temperature into two stages in solvent removal. That is, a gas stream having a temperature of 30 ° C. and a wind speed of 1 m / sec was sprayed onto the yarn immediately after spinning at a temperature of 30 ° C. and a wind speed of 1 m / sec.
A second gas stream was blown through a spinning tube 1 m long. The solvent content of the undrawn yarn after exiting the spinning cylinder was 75 parts, and 60% of the original content could be removed. This is Example 1
When stretched under the same conditions as above, it was possible to stretch up to 6.5 times, and high-strength polyethylene fiber having a strength of 50 g / d could be obtained.
【0020】比較例1 実施例と同様な条件でノズルより溶解物を押し出した
後、紡糸筒において温度25℃、風速1.0m/秒の気
体を吹き付けた。紡糸筒を出た直後の未延伸糸は85重
量部の溶媒を含んでいた。この未延伸糸を実施例1で示
した条件で延伸すると融着した。また延伸槽の温度を1
00℃まで下げると延伸倍率3倍で延伸することができ
なかった。そのため一段延伸槽で温度100℃、延伸倍
率を2倍で延伸した。これを実施例と同様の延伸条件で
二段延伸を行ったところ、延伸倍率6倍まで延伸できた
が、総延伸倍率(一段延伸倍率×二段延伸倍率)が実施
例で示した延伸糸より低いものしか得られず、強度33
g/dのポリエチレン繊維しか得ることができなかっ
た。Comparative Example 1 After the melt was extruded from a nozzle under the same conditions as in Example, a gas having a temperature of 25 ° C. and a wind speed of 1.0 m / sec was blown in a spinning cylinder. Immediately after leaving the spinning tube, the undrawn yarn contained 85 parts by weight of solvent. When this undrawn yarn was drawn under the conditions shown in Example 1, it was fused. In addition, the temperature of the drawing tank is 1
When the temperature was lowered to 00 ° C., it was impossible to stretch at a stretch ratio of 3 times. Therefore, the film was drawn in a single-stage drawing tank at a temperature of 100 ° C. and a draw ratio of 2 times. When this was subjected to two-stage drawing under the same drawing conditions as in the example, it was possible to draw up to a draw ratio of 6 times, but the total draw ratio (one-step draw ratio x two-step draw ratio) Only low strength is obtained, strength 33
Only g / d polyethylene fibers could be obtained.
【0021】[0021]
【発明の効果】本発明の紡糸口金よりポリマー溶液を気
体中に紡糸し、糸条を形成させる乾式紡糸法において、
延伸槽で延伸を行う前に紡糸筒において溶媒を積極的に
除去することにより、従来知られている技術より優れた
物性の繊維を安定に製造することができる。INDUSTRIAL APPLICABILITY In the dry spinning method in which the polymer solution is spun into gas from the spinneret of the present invention to form a yarn,
By positively removing the solvent in the spinning tube before performing the drawing in the drawing tank, it is possible to stably produce fibers having physical properties superior to those of the conventionally known techniques.
【図1】本発明の製造方法に係る製造装置の概略図。FIG. 1 is a schematic view of a manufacturing apparatus according to a manufacturing method of the present invention.
【図2】本発明の製造方法に係る製造装置の概略図。FIG. 2 is a schematic view of a manufacturing apparatus according to the manufacturing method of the present invention.
1:スラリータンク、2:押出機、3:ノズル、4,
6,7,9:駆動ローラ 5:第一延伸槽、8:第二延伸槽、A:加熱気体、a:
加熱気体1、b:加熱気体21: Slurry tank, 2: Extruder, 3: Nozzle, 4,
6, 7, 9: Drive roller 5: First stretching tank, 8: Second stretching tank, A: heated gas, a:
Heating gas 1, b: Heating gas 2
Claims (4)
し50重量部と揮発性溶剤を95ないし50重量部含む
混合体を加熱溶解し、溶解物を紡出した後溶剤を積極的
に除去し、その後延伸して強度35g/d以上の強度を
有する高強度ポリエチレン繊維の製造方法。1. A mixture containing 5 to 50 parts by weight of an ultra high molecular weight polyethylene polymer and 95 to 50 parts by weight of a volatile solvent is heated and dissolved, and the melt is spun out, and then the solvent is positively removed. A method for producing a high-strength polyethylene fiber, which is then stretched and has a strength of 35 g / d or more.
媒を積極的に除去する高強度ポリエチレン繊維の製造方
法。2. The method for producing a high-strength polyethylene fiber according to claim 1, wherein the solvent is positively removed by using heated gas.
る際に、少なくとも2段階の温度又は風速に調整された
気体流にて、溶剤が除去されることを特徴とする高強度
ポリエチレン繊維の製造方法。3. The high-strength polyethylene fiber according to claim 2, wherein when the solvent is positively removed, the solvent is removed by a gas flow adjusted to at least two stages of temperature or wind speed. Production method.
除去しつつ延伸を行うことを特徴とする高強度ポリエチ
レン繊維の製造方法。4. The method for producing a high-strength polyethylene fiber according to claim 1, wherein the stretching is performed while removing the solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2544594A JPH07238416A (en) | 1994-02-23 | 1994-02-23 | Production of high-strength polyethylene fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2544594A JPH07238416A (en) | 1994-02-23 | 1994-02-23 | Production of high-strength polyethylene fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07238416A true JPH07238416A (en) | 1995-09-12 |
Family
ID=12166210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2544594A Pending JPH07238416A (en) | 1994-02-23 | 1994-02-23 | Production of high-strength polyethylene fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07238416A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001012885A1 (en) * | 1999-08-11 | 2001-02-22 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fiber and its use |
JP2008527185A (en) * | 2005-01-03 | 2008-07-24 | ハネウェル・インターナショナル・インコーポレーテッド | Solution spinning of ultra-high molecular weight poly (α-olefin) with recovery and recycling of volatile spinning solvents |
WO2009105925A1 (en) | 2008-02-26 | 2009-09-03 | 山东爱地高分子材料有限公司 | Colored high strength polyethylene fiber and preparation method thereof |
CN102226300A (en) * | 2011-06-07 | 2011-10-26 | 江苏六甲高分子材料有限公司 | Preparation method of high strength polyethylene fiber and special device thereof |
US8361366B2 (en) | 2006-08-23 | 2013-01-29 | Honeywell International Inc. | Process for the preparation of UHMW multi-filament poly(alpha-olefin) yarns |
US8999866B2 (en) | 2004-01-01 | 2015-04-07 | Dsm Ip Assets B.V. | Ballistic-resistant assemblies with monolayers of high-performance polyethylene multifilament yarns |
-
1994
- 1994-02-23 JP JP2544594A patent/JPH07238416A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4141686B2 (en) * | 1999-08-11 | 2008-08-27 | 東洋紡績株式会社 | High-strength polyethylene fiber and its use |
EP1335048A1 (en) * | 1999-08-11 | 2003-08-13 | Toyo Boseki Kabushiki Kaisha | A ballistic material comprising high strength polyethylene fibers |
WO2001012885A1 (en) * | 1999-08-11 | 2001-02-22 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fiber and its use |
EP1335046A1 (en) * | 1999-08-11 | 2003-08-13 | Toyo Boseki Kabushiki Kaisha | A rope comprising high strength polyethylene fibers |
EP1335049A1 (en) * | 1999-08-11 | 2003-08-13 | Toyo Boseki Kabushiki Kaisha | A protective glove comprising high strength polyethylene fibers |
US6770362B2 (en) | 1999-08-11 | 2004-08-03 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fibers and their applications |
US6770363B2 (en) | 1999-08-11 | 2004-08-03 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fibers and their applications |
JP2004293030A (en) * | 1999-08-11 | 2004-10-21 | Toyobo Co Ltd | Net comprising high strength polyethylene fiber |
JP2004308105A (en) * | 1999-08-11 | 2004-11-04 | Toyobo Co Ltd | Bulletproof/protective clothes comprising high strength polyethylene fiber |
US6958187B2 (en) | 1999-08-11 | 2005-10-25 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fibers and their applications |
US7235285B2 (en) | 1999-08-11 | 2007-06-26 | Toyo Boseki Kabushiki Kaisha | High strength polyethylene fibers and their applications |
EP1335047A1 (en) * | 1999-08-11 | 2003-08-13 | Toyo Boseki Kabushiki Kaisha | A net comprising high strength polyethylene fibers |
US10557690B2 (en) | 2004-01-01 | 2020-02-11 | Dsm Ip Assets B.V. | Process for making high-performance polyethylene multifilament yarn |
US10557689B2 (en) | 2004-01-01 | 2020-02-11 | Dsm Ip Assets B.V. | Process for making high-performance polyethylene multifilament yarn |
US11505879B2 (en) | 2004-01-01 | 2022-11-22 | Dsm Ip Assets B.V. | High-performance polyethylene multifilament yarn |
US10711375B2 (en) | 2004-01-01 | 2020-07-14 | Dsm Ip Assets B.V. | High-performance polyethylene multifilament yarn |
US8999866B2 (en) | 2004-01-01 | 2015-04-07 | Dsm Ip Assets B.V. | Ballistic-resistant assemblies with monolayers of high-performance polyethylene multifilament yarns |
US11661678B2 (en) | 2004-01-01 | 2023-05-30 | Avient Protective Materials B.V. | High-performance polyethylene multifilament yarn |
US10612892B2 (en) | 2004-01-01 | 2020-04-07 | Dsm Ip Assets B.V. | Preformed sheet layers of multiple high-performance polyethylene (HPPE) multifilament yarn monolayers and ballistic-resistant assemblies comprising the same |
US9759525B2 (en) | 2004-01-01 | 2017-09-12 | Dsm Ip Assets B.V. | Process for making high-performance polyethylene multifilament yarn |
JP2008527185A (en) * | 2005-01-03 | 2008-07-24 | ハネウェル・インターナショナル・インコーポレーテッド | Solution spinning of ultra-high molecular weight poly (α-olefin) with recovery and recycling of volatile spinning solvents |
JP4840784B2 (en) * | 2005-01-03 | 2011-12-21 | ハネウェル・インターナショナル・インコーポレーテッド | Solution spinning of ultra-high molecular weight poly (α-olefin) with recovery and recycling of volatile spinning solvents |
US8361366B2 (en) | 2006-08-23 | 2013-01-29 | Honeywell International Inc. | Process for the preparation of UHMW multi-filament poly(alpha-olefin) yarns |
US8623245B2 (en) | 2008-02-26 | 2014-01-07 | Shandong Icd High Performance Fibres Co., Ltd. | Process of making colored high strength polyethylene fiber |
WO2009105925A1 (en) | 2008-02-26 | 2009-09-03 | 山东爱地高分子材料有限公司 | Colored high strength polyethylene fiber and preparation method thereof |
CN102226300A (en) * | 2011-06-07 | 2011-10-26 | 江苏六甲高分子材料有限公司 | Preparation method of high strength polyethylene fiber and special device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1986004936A1 (en) | Polyethylene multifilament yarn | |
JPH1181035A (en) | Formed product of polyolefin | |
JPH06102846B2 (en) | Method for producing ultra-high molecular weight polyethylene stretched product | |
JPH0124888B2 (en) | ||
FI93865C (en) | Melt-spun strong polyethylene fiber | |
JPH07102413A (en) | Polytetrafluoroethylene filament | |
JPH0240763B2 (en) | ||
EP0019566B1 (en) | Shapable solutions, shaped articles obtained therefrom and process for producing them | |
US5302453A (en) | Molecular orientation articles molded from high-molecular weight polyethylene and processes for preparing same | |
JPS648083B2 (en) | ||
JPS59100710A (en) | Production of yarn having high toughness | |
JPH07238416A (en) | Production of high-strength polyethylene fiber | |
JPS60189420A (en) | Manufacture of oriented article of ultra-high-molocular polyethylene | |
JPS6241341A (en) | High speed stretching of gel fiber | |
JP3997613B2 (en) | High-strength polypropylene fiber and method for producing the same | |
JPS61215708A (en) | Production of multifilament yarn | |
JPS60239509A (en) | Production of high-strength and high-modulus polyolefin based fiber | |
Rudin et al. | New process for ultradrawn polyethylene structures | |
JPS61108712A (en) | Production of polyvinyl alcohol fiber of high strength and high elastic modulus | |
JPH04108108A (en) | Drawn propylene polymer and production thereof | |
JPH03279413A (en) | Molecularly oriented molded body of high-molecular weight polyethylene | |
JPS62184112A (en) | Production of high-tenacity high-modulus polyethylene fiber | |
JP2967935B2 (en) | Method for producing polyethylene molded article and stretch molded article | |
JPH0541723B2 (en) | ||
JPS61611A (en) | Preparation of polyolefinic yarn having high strength and high modulus |