[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60238975A - Correcting method of time-series data - Google Patents

Correcting method of time-series data

Info

Publication number
JPS60238975A
JPS60238975A JP9536084A JP9536084A JPS60238975A JP S60238975 A JPS60238975 A JP S60238975A JP 9536084 A JP9536084 A JP 9536084A JP 9536084 A JP9536084 A JP 9536084A JP S60238975 A JPS60238975 A JP S60238975A
Authority
JP
Japan
Prior art keywords
average value
data input
index
value
moving average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9536084A
Other languages
Japanese (ja)
Other versions
JPH0323947B2 (en
Inventor
Yasuo Mishima
三島 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP9536084A priority Critical patent/JPS60238975A/en
Publication of JPS60238975A publication Critical patent/JPS60238975A/en
Publication of JPH0323947B2 publication Critical patent/JPH0323947B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Algebra (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Complex Calculations (AREA)

Abstract

PURPOSE:To increase the stability of a data input to variation and to speed up the response by using a moving average method and an index smoothing method in combination. CONSTITUTION:An index smoothed average value is calculated by the index smoothing method between the up-to-date moving average value and the preceding index average value after the moving averaging arithmetic of data inputs in time series is performed for every specified numbers constant all the time, and this is used as a data correction output. Namely, a variable C corresponding to the counted number of data inputs is set to ''0'' in a step 1 and a data input value D is read in the next step 2. Further, the moving average value is calculated in stpes 3-5, the index smoothed average value is calculated in steps 6-9, and the index smoothed average value Xe calculated in the step 8 or 9 is displayed on a display device. A regression to the step 2 is made after the display and a next data input value D is red and operations in the step 3 and succeeding steps are repeated.

Description

【発明の詳細な説明】 本発明は、魚群探知器、海底深度測定装置、潮流計等の
各種計測装置における時系列である計測データを処理す
るに当たって、その計測データを補正する方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for correcting measurement data when processing time-series measurement data from various measuring devices such as a fish finder, a seabed depth measuring device, and a tidal current meter.

一般に計測装置の検出部の計測データ出力は、外乱によ
る電気的なノイズや系統的誤差を含んでいるから、まず
この出力に補正を加えて次の処理装置なり送信装置、表
示装置に送る必要があり、従来はこの補正方法として移
動平均法が、もしくは指数平滑法のいずれか一方を採用
していた。
Generally, the measurement data output from the detection section of a measurement device contains electrical noise and systematic errors caused by disturbances, so it is necessary to first correct this output and send it to the next processing device, transmitter, or display device. Conventionally, either the moving average method or the exponential smoothing method has been adopted as this correction method.

移動平均法は、言うまでもなく最新の所定個数の時系列
の間で平均値を算出するものであって、安定性に優れて
いるものの、常時所定個数の時系列データを記憶するた
め、その個数に応じたシフトレジスタを要するばかりで
なく、時系列データの変動に対する追随性に劣り応答が
遅いという欠点がある。たとえば第1図に示すようにデ
ータ人力りが時点Taにおいて急激に落ち込んだ場合、
その移動平均値Xmは緩やかな下降線を描いて下降し、
時点Taからかなりの時間を経た時点TI)において、
データ人力りが落ち込んだレベルに達する。この例で移
動平均するデータ入力値の個数は28である。
Needless to say, the moving average method calculates the average value between a predetermined number of latest time series data, and has excellent stability. However, since a predetermined number of time series data are always stored, Not only does this require a corresponding shift register, but it also has the disadvantage of poor ability to follow changes in time-series data and slow response. For example, as shown in Figure 1, if data labor suddenly drops at time Ta,
The moving average value Xm falls in a gentle downward line,
At time point TI), which is a considerable amount of time after time point Ta,
Data manpower reaches a depressed level. In this example, the number of data input values to be moving averaged is 28.

これに対して指数平滑法は、今回のデータ入力値と前回
のデータ入力値(計算上は前回の指数平滑平均値)とを
重みを加えて平均化するもので、その指数平滑平均値X
eoの計算式は次の式で与えられLo Xeo=[(R1)Xeo’+Xn)/R−(イ)上記
の式において、Rは予め与えられる比例定数、Xeo’
は前回の指数平滑平均値、Xnは今回のデータ入力値で
ある。この式から分かるように今回のデータ入力Xnに
加えられる重みは1/Rであり、その前のデータ入力へ
の重みは(R−1)/R2,2回前のデータ入力への重
みは(R−1)2/R3となり、順次その重みが減少す
る。この指数平滑平均法では、多くのシフトレジスタを
必要とせず、前回の指数平滑平均値Xeo’と今回のデ
ータ入力値X口とを記憶するシフトレジスタがあればよ
く、しかも第1図に示すようにデータ人力りが急激に低
下しても、その指数平滑平均値Xeo(比例定数R=4
として計算)はほとんど即時的にデータ入力が落ち込ん
だレベルに達し、データ入力の変化に対する応答が速い
のであるが、安定性に欠ける欠点がある。
On the other hand, the exponential smoothing method weights and averages the current data input value and the previous data input value (calculated as the previous exponential smoothing average value), and the exponential smoothing average value
The calculation formula for eo is given by the following formula: Lo Xeo = [(R1)
is the previous exponential smoothed average value, and Xn is the current data input value. As can be seen from this equation, the weight added to the current data input Xn is 1/R, the weight to the previous data input is (R-1)/R2, and the weight to the two previous data inputs is ( R-1)2/R3, and its weight decreases sequentially. This exponential smoothing averaging method does not require many shift registers; all that is required is a shift register that stores the previous exponential smoothing average value Xeo' and the current data input value X; Even if the data processing rate suddenly decreases, the exponential smoothed average value Xeo (proportionality constant R = 4
(calculated as ) reaches a depressed level of data input almost instantaneously, and is quick to respond to changes in data input, but suffers from a lack of stability.

本発明は」二記従米の欠点に鑑みて、データ入力の変動
に対する応答が速く、しかも安定性に優れたデータ補正
方法を提供することを目的とするものであって、その要
旨とするところは、時系列であるデータ入力を常時一定
数ずつ移動平均演算を行なった後、その最新の移動平均
値と前回の指数平滑平均値との間で指数平滑法により指
数平滑平了 均値を算出し瞥これをデータ補正出力とすることにある
In view of the drawbacks mentioned above, the present invention aims to provide a data correction method that responds quickly to fluctuations in data input and has excellent stability. , after always performing a moving average calculation on a fixed number of time-series data inputs, the exponential smoothing average value is calculated using the exponential smoothing method between the latest moving average value and the previous exponential smoothing average value. The main purpose is to use this as a data correction output.

しかして」二記移動平均値Xmの計算式は、n個のデー
タ入力値Xo、X、、X2・・・・・・Xn−、を取り
込むものとして、次のようになる。
Therefore, the formula for calculating the moving average value Xm is as follows, assuming that n data input values Xo, X, , X2, . . . , Xn- are taken in.

Xm=(Xo + X + + X 2 +−−+ X
n −1)/ n・・・・・・・・・・・・(ロ) また上記指数平滑平均値Xeの計算式は、前回の指数平
滑平均値をXe’とし、比例定数をR1最新の移動平均
値をXmとして、次の式で与えられる。
Xm=(Xo+X++X2+--+X
n -1) / n・・・・・・・・・・・・(b) In addition, the above formula for calculating the exponential smoothed average value Xe is as follows: It is given by the following formula, where the moving average value is Xm.

Xe=[:(R−1)Xe’+Xm)/R・・・・・l
ハ)以下、本発明を図面に示す実施例に基づき詳細に説
明する。第2図は本発明方法の各過程を示すフローチャ
ートであって、同図中ステップ3からステップ5までが
移動平均値を算出する段階を、ステップ6からステップ
9までが指数平滑平均値=3− を算出する段階をそれぞれ示す。しかしてステップ1に
おいて変数CをOとおく。この変数Cはデータ入力のカ
ウント数に対応するもので、後のステップ8においては
指数平滑平均値算出の比例定数になる。次のステップ2
でデータ入力値りを読み込む。DOループであるステッ
プ3において、移動平均すべ外11個のデータ入力値り
についてこれを一つずつずらす。即ち、計算式(ロ)に
おけるXoを×1に、×1をX2tこ、X2をX3に、
・= −X n−2をXn−、lこ、というように順次
入れ換えるのである。そしてステップ4で計算式(ロ)
におけるXoに、既にステップ2において読み取ったデ
ータ入力値りを入れる。これによって、移動平均すべき
ものとして、最新のデータ入力値りを含んだn個のデー
タ入力値が揃う。これらn個のデータ入力値について、
ステップ5において計算式(ロ)に基づいて移動平均値
Xmを算出する。
Xe=[:(R-1)Xe'+Xm)/R...l
c) Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings. FIG. 2 is a flowchart showing each process of the method of the present invention, in which steps 3 to 5 are the steps for calculating the moving average value, and steps 6 to 9 are the steps for calculating the exponential smoothed average value = 3 - The steps to calculate are shown below. Therefore, in step 1, the variable C is set to O. This variable C corresponds to the count number of data input, and becomes a proportionality constant for calculating the exponential smoothing average value in the subsequent step 8. Next step 2
Read the data input value with . In step 3, which is a DO loop, the 11 data input values outside the moving average are shifted one by one. That is, in formula (b), Xo becomes x1, x1 becomes X2t, X2 becomes X3,
・= -X n-2 is replaced by Xn-, l, and so on. And in step 4, the calculation formula (b)
Input the data input value already read in step 2 into Xo. As a result, n data input values, including the latest data input value, are available to be subjected to the moving average. For these n data input values,
In step 5, a moving average value Xm is calculated based on formula (b).

以下はこの移動平均値Xmに基づいて指数平滑平均値×
eをめる段階で、ステップ6で変数Cに1を加える。ス
テップ7では、この変数Cと予4− め設定しである比例定数Rとを比較し、変数Cが比例定
数Rより小であれば、ステップ8に移り、同ステップ8
において変数Cを比例定数として最新の移動平均値Xm
と前回の指数平滑平均値Xe’との罰で指数平滑平均値
Xeを算出する。その計算式は前記計算式(ハ)のRに
Dを代入した式となる。即ち、 Xe=((D−1)Xe’+X+n)/D ・−・i二
)ステップ7に戻り、変数Cが比例定数Rと等しいか、
もしくは比例定数Rより大となると、ステラ7′9に移
り、計算式(ハ)に基づいて比例定数をRとして指数平
滑平均値Xeを算出する。ステップ10は、ステップ8
もしくはステップ9でめられた指数平滑平均値Xeを表
示器に表示する。
The following is an exponential smoothing average value × based on this moving average value
When calculating e, 1 is added to variable C in step 6. In step 7, this variable C is compared with a proportionality constant R that is set in advance, and if the variable C is smaller than the proportionality constant R, the process moves to step 8.
The latest moving average value Xm with variable C as a proportionality constant
An exponentially smoothed average value Xe is calculated using the previous exponentially smoothed average value Xe'. The calculation formula is obtained by substituting D for R in the calculation formula (c). That is, Xe = ((D-1)Xe' +
Alternatively, if it becomes larger than the proportionality constant R, the process moves to Stellar 7'9, and the exponential smoothed average value Xe is calculated based on the calculation formula (c) with R as the proportionality constant. Step 10 is Step 8
Alternatively, the exponential smoothed average value Xe determined in step 9 is displayed on the display.

表示が済むと、ステップ2に回帰し、次のデータ入力値
りを読み取り、前記したステップ3以下の動作を繰り返
す。その度毎に、移動平均されるデータ入力値りに最新
のものが加わり、最も古いものが排出される。また変数
Cが一つずつ増加する。
When the display is completed, the process returns to step 2, reads the next data input value, and repeats the operations from step 3 described above. Each time, the latest data input value is added to the moving averaged data input value, and the oldest value is removed. Also, the variable C increases one by one.

第1図には本発明方法により補正した場合の出力値、即
ち指数平滑平均値Xeの波形を示す。ここで移動平均し
たデータ入力値りの個数nは7で、指数平滑の比例定数
Rは4である。この波形からも分かるように、最初のう
ち出力値Xeは従来の移動平均の出力値Xmと同しよう
に応答が遅いが、次第に応答が加速し、従来の指数平滑
の出力値Xeoとほとんど変わらない時点でデータ入力
値のレベルに達し安定する。
FIG. 1 shows the waveform of the output value, ie, the exponentially smoothed average value Xe, when corrected by the method of the present invention. Here, the number n of data input values subjected to the moving average is 7, and the proportionality constant R of exponential smoothing is 4. As can be seen from this waveform, the response of the output value Xe is slow at first, just like the output value Xm of the conventional moving average, but the response gradually accelerates and is almost the same as the output value Xeo of the conventional exponential smoothing. At this point, the level of the data input value is reached and stabilized.

−上述の通1)、本発明の方法は要するに、従来の移動
平均法と指数平滑法のそれぞれの利点が生かされるよう
、両方法を組み合わせたもので、データ入力の変動に対
し安定性に優れ、しかも応答が速い。
- As mentioned above, the method of the present invention is a combination of the conventional moving average method and exponential smoothing method so as to take advantage of their respective advantages, and is highly stable against fluctuations in data input. , and the response is fast.

また本発明方法は、データ補正をいわば二重に行なうか
ら、移動平均値を算出する段階では、従来の移動平均法
よりもはるかに少ない個数のデータ入力値について移動
平均を行なえばよく、従って移動平均のためのデータ入
力値を記憶するシフトレジスタは数多く必要とせず、デ
ータ処理の仕7一 方が比較的簡単なことと相まって、容易かつ安価に実施
しうる利点を有する。
In addition, since the method of the present invention performs data correction twice, at the stage of calculating the moving average value, it is only necessary to perform the moving average on a much smaller number of data input values than in the conventional moving average method. It does not require a large number of shift registers to store data input values for averaging, and combined with the fact that the data processing procedure is relatively simple, it has the advantage of being easy and inexpensive to implement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の補正方法による出力と本発明方法による
出力とを比較して示す波形図、第2図は本発明方法の7
0−チャートである。 Xm・・・従来の移動平均による補正出力値(移動平均
値)、Xeo・・・従来の指数平滑による補正出力値(
指数平滑平均値)、Xe・・・本発明方法の補正出力値
。 出願人 古野電気株式会社 代理人 弁理士 岡1)和秀 8−
FIG. 1 is a waveform diagram showing a comparison between the output of the conventional correction method and the output of the method of the present invention, and FIG. 2 is a waveform diagram showing the output of the method of the present invention.
0-Chart. Xm...Corrected output value (moving average value) by conventional moving average, Xeo...Corrected output value by conventional exponential smoothing (
(exponential smoothed average value), Xe...Corrected output value of the method of the present invention. Applicant Furuno Electric Co., Ltd. Agent Patent Attorney Oka 1) Kazuhide 8-

Claims (1)

【特許請求の範囲】[Claims] (1)時系列であるデータ入力を常時一定数ずつ移動平
均演算を行なった後、その最新の移動平均値と前回の指
数平滑平均値との間で指数平滑法により指数平滑平均値
を算出してこれをデータ補正出力とすることを特徴とす
る時系列データ補正方法。
(1) After always performing a moving average calculation on a fixed number of time-series data inputs, the exponential smoothing average value is calculated using the exponential smoothing method between the latest moving average value and the previous exponential smoothing average value. A time-series data correction method characterized in that the data is used as a data correction output.
JP9536084A 1984-05-11 1984-05-11 Correcting method of time-series data Granted JPS60238975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9536084A JPS60238975A (en) 1984-05-11 1984-05-11 Correcting method of time-series data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9536084A JPS60238975A (en) 1984-05-11 1984-05-11 Correcting method of time-series data

Publications (2)

Publication Number Publication Date
JPS60238975A true JPS60238975A (en) 1985-11-27
JPH0323947B2 JPH0323947B2 (en) 1991-04-02

Family

ID=14135469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9536084A Granted JPS60238975A (en) 1984-05-11 1984-05-11 Correcting method of time-series data

Country Status (1)

Country Link
JP (1) JPS60238975A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123277A (en) * 1984-07-11 1986-01-31 Yanmar Diesel Engine Co Ltd Data smoothing circuit
JPH01107164A (en) * 1987-10-19 1989-04-25 Nec Corp Envelope-waveform generating method
JP2008176744A (en) * 2007-01-22 2008-07-31 Sony Corp Mean value calculation system, mean value calculation method, and program
JP2010003324A (en) * 2009-10-07 2010-01-07 Osaka Prefecture Univ Data prediction device, and data prediction program
JP2010078555A (en) * 2008-09-29 2010-04-08 Yazaki Corp Apparatus and system for measuring loadage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123277A (en) * 1984-07-11 1986-01-31 Yanmar Diesel Engine Co Ltd Data smoothing circuit
JPH01107164A (en) * 1987-10-19 1989-04-25 Nec Corp Envelope-waveform generating method
JP2008176744A (en) * 2007-01-22 2008-07-31 Sony Corp Mean value calculation system, mean value calculation method, and program
JP2010078555A (en) * 2008-09-29 2010-04-08 Yazaki Corp Apparatus and system for measuring loadage
JP2010003324A (en) * 2009-10-07 2010-01-07 Osaka Prefecture Univ Data prediction device, and data prediction program

Also Published As

Publication number Publication date
JPH0323947B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JPS60238975A (en) Correcting method of time-series data
EP0530936A1 (en) Method and apparatus for performing prescaled division
US4924420A (en) Tacho signal processing
JP3429212B2 (en) Transmission power control device
JPH06244740A (en) Error correcting circuit
JPH06237289A (en) Method for sensing fine frequency deviation
JPH0563169B2 (en)
JPS6156651B2 (en)
SU811270A1 (en) Device for determining absolute stability regions
JP2555512B2 (en) Electronic counter scaling method
JPH05172869A (en) Spectrum analyzer
JP3612759B2 (en) Amplitude detector
JP3205046B2 (en) Receiver for electronic meter
JPH0219748Y2 (en)
JPS6120821A (en) Ultrasonic flowmeter
JPH06147951A (en) Flow rate correction device
JP2000121399A (en) Flowmeter
JP3077374B2 (en) Data display device
JPH0340847B2 (en)
JPH0467156B2 (en)
SU1120252A1 (en) Digital analyzer of frequency characteristics
SU633015A1 (en) Exponential function computing arrangement
SU1018219A1 (en) Pulse repetition frequency multiplier
JPH0758904B2 (en) Pulse counter
JPS58170223A (en) Pulse count system