[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60218873A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60218873A
JPS60218873A JP7416084A JP7416084A JPS60218873A JP S60218873 A JPS60218873 A JP S60218873A JP 7416084 A JP7416084 A JP 7416084A JP 7416084 A JP7416084 A JP 7416084A JP S60218873 A JPS60218873 A JP S60218873A
Authority
JP
Japan
Prior art keywords
film
forming
conductive region
silicon
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7416084A
Other languages
Japanese (ja)
Inventor
Kazufumi Mitsumoto
三本 和文
Takayuki Kito
孝之 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP7416084A priority Critical patent/JPS60218873A/en
Publication of JPS60218873A publication Critical patent/JPS60218873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve accuracy in fine machining, to improve a yield rate and to enhance reliability of a semiconductor device, by enhancing self-aligning property. CONSTITUTION:A base region 4 and a silicon oxide film 6 are formed in a silicon substrate 2. A silicon nitride film 10 having opening parts 12A and 12B is formed. By using a resist mask 14, etching is performed with the silicon nitride film 10 as a mask. Then the base region 4 is exposed in the opening part 12A. A polycrystal silicon layer 16 is selectively formed. A silicon oxide film 18 is formed, and an emitter region 20 is formed by baking. A resist mask 22 is formed. The film 18 is removed from opening parts 14A and 14B. With the film 10 as a mask, the film 6 is removed. The base region 4 is exposed in the opening part 12B. An emitter electrode 24 and a base electrode 26 are formed, and a high frequency transmitter is obtained. Since the silicon nitride film 10 is utilized as a mask, high self-aligning property is obtained.

Description

【発明の詳細な説明】 この発明は半導体装置の製造方法に係り、たとえば、高
周波領域で使用するトランジスタに好適な自己整合技術
を利用した製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and for example, to a method of manufacturing a semiconductor device using self-alignment technology suitable for transistors used in a high frequency region.

特に、高周波領域で使用するトランジスタにおいて、そ
の使用周波数をより高くし、その周波数特性を改善する
には、高度な微細加工が必要であり、その加工精度を高
めるために、従来から自己整合技術が利用されている。
In particular, for transistors used in the high frequency range, advanced microfabrication is required to increase the operating frequency and improve the frequency characteristics, and self-alignment technology has traditionally been used to improve the machining accuracy. It's being used.

周知のように、自己整合技術は、半導体装置の製造工程
上、複数のマスク間の整合精度は無視できるものであり
、マスク合わせで避けることができない誤差を考慮する
必要がないなどの点を特徴としている。
As is well known, self-alignment technology is characterized by the fact that the alignment accuracy between multiple masks can be ignored in the semiconductor device manufacturing process, and there is no need to consider errors that cannot be avoided in mask alignment. It is said that

しかしながら、近時、高周波領域で使用される半導体装
置のディメンションの縮小化が高まり、パターンの微細
化によって従来の自己整合技術では、マスクずれによる
歩留りの低下が生じている。
However, in recent years, the dimensions of semiconductor devices used in high-frequency regions have been increasingly reduced, and as patterns have become finer, conventional self-alignment techniques have suffered from a decrease in yield due to mask misalignment.

この発明は、その自己整合性をより高め、微細加工の精
度を向上させるとともに、歩留りの改善および半導体装
置の信頼性を高めることを目的とする。
The object of the present invention is to further enhance the self-alignment, improve the precision of microfabrication, and improve the yield and reliability of the semiconductor device.

すなわち、この発明は、−導電形の半導体基板上に、そ
の表面層に形成した反対導電形の第1の導電領域を覆う
ように絶縁膜を形成する工程と、この絶縁膜上に窒化膜
を形成する工程と、この窒化膜に前記第1の導電領域上
の前記絶縁膜を露出させる2以上の開口部を形成する工
程と、これらの開口部の内の1または2以上のものから
前記絶縁膜を除き前記第1の導電領域を露出させる工程
と、この露出した第1の導電領域に反対導電形の第2の
導電領域を形成する工程と、この第2の導電領域を形成
した部分以外の開口部を介して前記絶縁膜を除き第1の
導電領域を露出させる電極形成用開口を形成する工程と
からなり、自己整合性を高め、微細加工の精度を改善し
たものである。
That is, the present invention includes the steps of forming an insulating film on a semiconductor substrate of -conductivity type so as to cover a first conductive region of the opposite conductivity type formed on the surface layer thereof, and forming a nitride film on this insulating film. forming two or more openings in the nitride film to expose the insulating film on the first conductive region; and removing the insulating film from one or more of these openings. a step of exposing the first conductive region by removing the film; a step of forming a second conductive region of an opposite conductivity type on the exposed first conductive region; and a step other than the portion where the second conductive region is formed. forming an electrode forming opening that exposes the first conductive region by removing the insulating film through the opening, thereby increasing self-alignment and improving precision of microfabrication.

以下、この発明を図面に示した実施例を参照して詳細に
説明する。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.

第1図はこの発明の半導体装置の製造方法の実施例を示
し、(A)ないしくG)はそれを製造工程順に示したも
のである。
FIG. 1 shows an embodiment of the method for manufacturing a semiconductor device according to the present invention, and (A) to G) show the method in the order of manufacturing steps.

第1図において、(A)は、−導電形の半導体基板とし
てのシリコン基板2に、反対導電形の第1の導電領域で
あるベース領域4を形成し、その表面に絶縁膜である酸
化シリコン(Sing)膜6を形成したものである。
In FIG. 1, (A) shows that a base region 4, which is a first conductive region of an opposite conductivity type, is formed on a silicon substrate 2, which is a semiconductor substrate of a − conductivity type, and a silicon oxide film, which is an insulating film, is formed on the surface of the base region 4, which is a first conductive region of an opposite conductivity type. (Sing) film 6 is formed.

すなわち、ベース領域4は、酸化シリコン膜6に開口部
8を形成し、シリコン基板2を露出させて気相成長法に
より形成し、あるいは、開口部8に500〜800人の
酸化シリコン膜6を形成した後、イオン注入により形成
する。前者の方法でベース領域4が形成される場合には
、その表面を覆うように、500〜800人の酸化シリ
コン膜6を形成する。
That is, the base region 4 is formed by forming an opening 8 in the silicon oxide film 6 and exposing the silicon substrate 2 by vapor phase growth, or by depositing 500 to 800 silicon oxide films 6 in the opening 8. After forming, it is formed by ion implantation. When the base region 4 is formed by the former method, a silicon oxide film 6 of 500 to 800 layers is formed to cover the surface thereof.

次に、(B)に示すように、酸化シリコン膜6の表面に
、それを覆う窒化膜として窒化シリコン(Si3N4)
膜10を気相成長法(CV D)によって形成する。
Next, as shown in (B), silicon nitride (Si3N4) is deposited on the surface of the silicon oxide film 6 as a nitride film covering it.
Film 10 is formed by vapor phase epitaxy (CVD).

次に、(C)に示すように、この窒化シリコン膜10に
は、2以上の開口部、この実施例では第1の開口部12
Aと、2つの第2の開口部12Bを選択的に形成した後
、第1の開口部12Aを選択的に露出させ、その他の部
分を覆うレジストマスク14を形成する。
Next, as shown in (C), this silicon nitride film 10 has two or more openings, in this embodiment, a first opening 12.
After selectively forming the first opening 12A and the two second openings 12B, a resist mask 14 is formed to selectively expose the first opening 12A and cover the other portions.

第1の開口部12Aは、第2の導電領域であるエミッタ
およびその電極形成用開口、第2の開口部12Bは、ベ
ース電極形成用開口にそれぞれ対応し、これらは、たと
えばレジストマスク14を形成した後、酸化シリコン膜
6が損なわれないようなエツチング処理で形成するもの
とする。
The first opening 12A corresponds to an opening for forming an emitter as a second conductive region and its electrode, and the second opening 12B corresponds to an opening for forming a base electrode, and these are used to form, for example, the resist mask 14. After that, the silicon oxide film 6 is formed by an etching process that does not damage it.

次に、(D)に示すように、窒化シリコン膜10の開口
部12Aから露出している酸化シリコン膜6を、窒化シ
リコン膜10をマスクとしたエツチング処理により除い
て、開口部12Aにベース領域4を露出させた後、全表
面を覆うように多結晶層として多結晶シリコン層16を
形成する。この多結晶シリコン層16には、ベース領域
4とは反対導電形の第2の導電領域を形成するための不
純物をドープし、またはイオン注入などによりベース領
域4とは反対導電形の第2の導電領域を形成するための
、たとえば、N形の不純物を注入してもよい。
Next, as shown in (D), the silicon oxide film 6 exposed from the opening 12A of the silicon nitride film 10 is removed by an etching process using the silicon nitride film 10 as a mask, and a base region is formed in the opening 12A. After exposing 4, a polycrystalline silicon layer 16 is formed as a polycrystalline layer so as to cover the entire surface. This polycrystalline silicon layer 16 is doped with an impurity to form a second conductive region having a conductivity type opposite to that of the base region 4, or is doped with an impurity to form a second conductive region having a conductivity type opposite to that of the base region 4 by ion implantation. For example, N-type impurities may be implanted to form a conductive region.

次に、(E)に示すように、第1の開口部12Aを覆う
部分の多結晶シリコンJii16をエツチングによって
選択的に残すとともに、その全面を覆うように2,00
0〜3.000人の酸化シリコン膜18を気相成長法に
より形成し、これをベーキングにより熱拡散させて第1
の導電領域の内部に第2の導電領域としてのエミッタ領
域20を形成する。
Next, as shown in (E), the portion of the polycrystalline silicon Jii 16 that covers the first opening 12A is left selectively by etching, and a 2,000 ml film is etched to cover the entire surface.
A silicon oxide film 18 of 0 to 3,000 layers is formed by vapor phase epitaxy, and then thermally diffused by baking to form the first silicon oxide film 18.
An emitter region 20 as a second conductive region is formed inside the conductive region.

次に、(F)に示すように、酸化シリコンl*18の上
にレジストマスク22を形成した後、このレジストマス
ク22には、窒化シリコン膜10の第1および第2の開
口部12A、12Bに対応する位置にそれより大きい開
口部14A、14Bを形成し、その開口部14A、14
Bから酸化シリコン膜18を除いて多結晶シリコン層1
6を露出させ、これをエミッタ電極形成用開口とすると
ともに、窒化シリコン11!10をマスクにして酸化シ
リコン膜6を除いて第2の開口部12Bからベース領域
4を露出させ、これをベース電極形成用開口とする。
Next, as shown in (F), after forming a resist mask 22 on the silicon oxide l*18, this resist mask 22 includes the first and second openings 12A and 12B of the silicon nitride film 10. Larger openings 14A, 14B are formed at positions corresponding to the openings 14A, 14B.
Polycrystalline silicon layer 1 excluding silicon oxide film 18 from B
6 is exposed and used as an opening for forming an emitter electrode, and the base region 4 is exposed from the second opening 12B by removing the silicon oxide film 6 using silicon nitride 11!10 as a mask and used as a base electrode. Use as a forming opening.

次に、(G)に示すように、レジストマスク22を除い
た後、第1の開口部12Aを覆う多結晶シリコン層16
には、エミッタ電極24、第2の開口部12Bには、ベ
ース電極26を形成して高周波用トランジスタが得られ
る。なお、Eはそのエミフタ、Bはそのベースを示す。
Next, as shown in (G), after removing the resist mask 22, a polycrystalline silicon layer 16 covering the first opening 12A is formed.
A high frequency transistor is obtained by forming an emitter electrode 24 and a base electrode 26 in the second opening 12B. Note that E indicates its emifter and B indicates its base.

この場合、多結晶シリコン層16は、エミッタ電極24
の一部を成している。
In this case, the polycrystalline silicon layer 16 is connected to the emitter electrode 24.
It forms part of the

したがって、このような製造方法によれば、シリコン基
板2の表面に形成した酸化シリコン膜6・を覆う窒化シ
リコン膜10に、選択的に開口部12A12Bを形成し
、かつ、その窒化シリコン1IilOをマスクとして利
用しているため、高い自己整合性が得られ、高度な微細
加工を容易に行うことができる。
Therefore, according to such a manufacturing method, openings 12A12B are selectively formed in the silicon nitride film 10 covering the silicon oxide film 6 formed on the surface of the silicon substrate 2, and the silicon nitride 1IilO is masked. Since it is used as a material, high self-alignment can be obtained and advanced microfabrication can be easily performed.

特に、第2図に示すように、レジストマスク22の開口
部14A、14Bが、窒化シリコン膜10に形成した開
口部12A、12Bからずれる場合でも、酸化シリコン
膜6のエンチングされる部分はdlsdZの部分だけと
なり、自己整合性が損なわれることはない。
In particular, as shown in FIG. 2, even if the openings 14A and 14B of the resist mask 22 are shifted from the openings 12A and 12B formed in the silicon nitride film 10, the etched portion of the silicon oxide film 6 is It becomes only a part, and self-consistency is not compromised.

また、窒化シリコン膜10は極めて薄く形成できるので
、電極24.260段切れを防止できるとともに、第1
図(F)に示すように、開口部12A、12Bよりレジ
ストマスク22に開口部14A114Bを大きく形成す
ることによって、酸化シリコン膜18がオーバーハング
構造になることも防止できる。仮に、酸化シリコン膜6
.18のサイドエツチングによって窒化シリコン膜10
のみが残留してオーバーハング構造が生じても、酸化シ
リコンl!ii+6′は極めて薄いため、それによる電
極24.26の段切れの問題は生じない。
In addition, since the silicon nitride film 10 can be formed extremely thin, it is possible to prevent the electrode 24.260 from breaking, and the first
As shown in Figure (F), by forming the openings 14A and 114B in the resist mask 22 larger than the openings 12A and 12B, it is also possible to prevent the silicon oxide film 18 from forming an overhanging structure. If the silicon oxide film 6
.. By side etching 18, the silicon nitride film 10 is
Even if only silicon oxide remains and an overhang structure occurs, silicon oxide l! Since ii+6' is extremely thin, the problem of the electrodes 24, 26 being broken due to this does not occur.

なお、実施例では、エミッタ領域20は、所定の不純物
をドープした多結晶シリコン層16で開口部12Aを覆
い、熱拡散によって形成したが、開口部12Aに露出さ
せたベース領域4に、たとえばN形の不純物を直接熱拡
散法により、形成することもできる。
In the embodiment, the emitter region 20 was formed by covering the opening 12A with the polycrystalline silicon layer 16 doped with a predetermined impurity and by thermal diffusion. A shaped impurity can also be formed by direct thermal diffusion.

以上説明したように、この発明によれば、高度な自己整
合性が実現できるので、微細パターンのどの微細加工を
要するものを効率的に製造することができ、その歩留り
を改善できるとともに、窒化膜のパンシベーション効果
によって信頼性の高い半導体装置を製造できる。
As explained above, according to the present invention, it is possible to realize a high degree of self-alignment, so that it is possible to efficiently manufacture any micropattern that requires microfabrication, improve the yield, and improve the nitride film. Highly reliable semiconductor devices can be manufactured due to the pansivation effect.

施例を示す説明図、第2図はその自己整合性を示す説明
図である。
An explanatory diagram showing an example, and FIG. 2 is an explanatory diagram showing its self-consistency.

、2・・・半導体基板、4・・・第1の導電領域として
のベース領域、6・・・絶縁膜としての酸化シリコン膜
、10・・・窒化膜としての窒化シリコン膜、12A、
12B、14A、14B・・ ((・開口部、20・・
・第2の導電領域としてのエミッタ領域。
, 2... Semiconductor substrate, 4... Base region as first conductive region, 6... Silicon oxide film as insulating film, 10... Silicon nitride film as nitride film, 12A,
12B, 14A, 14B... ((・Opening, 20...
- Emitter region as second conductive region.

第1図 第1図 第1図 第21!1Figure 1 Figure 1 Figure 1 21st!1

Claims (1)

【特許請求の範囲】 ti> −導電形の半導体基板上に、その表面層に形成
した反対導電形の第1の導電領域を覆うように絶縁膜を
形成する工程と、この絶縁膜上に窒化膜を形成する工程
と、この窒化膜に前記第1の導電領域上の前記絶縁膜を
露出させる2以上の開口部を形成する工程と、これらの
開口部の内の1または2以上のものから前記絶縁膜を除
き前記第1の導電領域を露出させる工程と、この露出し
た第1の導電領域に反対導電形の第2の導電領域を形成
する工程と、この第2の導電領域を形成した部分以外の
開口部を介して前記絶縁膜を除き第1の導電領域を露出
させる電極形成用開口を形成する工程とからなることを
特徴とする半導体装置の製造方法。 (2) 前、記半導体基板はシリコンで形成し、前記絶
縁膜は酸化シリコンで形成し、前記窒化膜は窒化シリコ
ンで形成し、前記多結晶層はポリシリコンで形成したこ
とを特徴とする特許請求の範囲第1項に記載の半導体装
置の製造方法。
[Claims] A step of forming an insulating film on a semiconductor substrate of ti>-conductivity type so as to cover a first conductive region of the opposite conductivity type formed on the surface layer thereof, and nitriding the insulating film on the insulating film. forming a film, forming two or more openings in the nitride film to expose the insulating film on the first conductive region, and forming one or more of these openings. a step of exposing the first conductive region by removing the insulating film, a step of forming a second conductive region of an opposite conductivity type in the exposed first conductive region, and a step of forming the second conductive region. 1. A method for manufacturing a semiconductor device, comprising the step of forming an electrode forming opening that exposes the first conductive region by removing the insulating film through the opening other than the portion of the insulating film. (2) The patent characterized in that the semiconductor substrate is made of silicon, the insulating film is made of silicon oxide, the nitride film is made of silicon nitride, and the polycrystalline layer is made of polysilicon. A method for manufacturing a semiconductor device according to claim 1.
JP7416084A 1984-04-13 1984-04-13 Manufacture of semiconductor device Pending JPS60218873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7416084A JPS60218873A (en) 1984-04-13 1984-04-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7416084A JPS60218873A (en) 1984-04-13 1984-04-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60218873A true JPS60218873A (en) 1985-11-01

Family

ID=13539122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7416084A Pending JPS60218873A (en) 1984-04-13 1984-04-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60218873A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056179A (en) * 1973-09-13 1975-05-16
JPS51127681A (en) * 1975-04-30 1976-11-06 Fujitsu Ltd Manufacturing process of semiconductor device
JPS5488085A (en) * 1977-12-26 1979-07-12 Toshiba Corp Nanufacture for semiconductor device
JPS5642367A (en) * 1979-09-14 1981-04-20 Toshiba Corp Manufacture of bipolar integrated circuit
JPS5680162A (en) * 1979-12-03 1981-07-01 Ibm Method of manufacturing pnp transistor
JPS57159055A (en) * 1981-03-25 1982-10-01 Toshiba Corp Manufacture of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056179A (en) * 1973-09-13 1975-05-16
JPS51127681A (en) * 1975-04-30 1976-11-06 Fujitsu Ltd Manufacturing process of semiconductor device
JPS5488085A (en) * 1977-12-26 1979-07-12 Toshiba Corp Nanufacture for semiconductor device
JPS5642367A (en) * 1979-09-14 1981-04-20 Toshiba Corp Manufacture of bipolar integrated circuit
JPS5680162A (en) * 1979-12-03 1981-07-01 Ibm Method of manufacturing pnp transistor
JPS57159055A (en) * 1981-03-25 1982-10-01 Toshiba Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
US4188707A (en) Semiconductor devices and method of manufacturing the same
JPS615580A (en) Manufacture of semiconductor device
US4792534A (en) Method of manufacturing a semiconductor device involving sidewall spacer formation
JPH06252359A (en) Manufacture of semiconductor device
JP3252578B2 (en) Manufacturing method of planar insulated gate field effect transistor
JP2553699B2 (en) Method for manufacturing semiconductor device
US4722912A (en) Method of forming a semiconductor structure
JPS5918874B2 (en) hand tai souchi no seizou houhou
JPS60218873A (en) Manufacture of semiconductor device
JPH0581051B2 (en)
US4378260A (en) Process for producing a semiconductor device
JPH079912B2 (en) Method for manufacturing junction field effect transistor
JPS5935479A (en) Manufacture of semiconductor device
JPH02109340A (en) High speed bipolar transistor and its manufacture
JPH0369168A (en) Thin film field effect transistor
JP3063122B2 (en) Semiconductor device and manufacturing method thereof
JP2744797B2 (en) Thin film transistor
JP3052347B2 (en) Semiconductor device and manufacturing method thereof
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPH07245339A (en) Semiconductor device and its manufacture
JPS5844748A (en) Manufacture of semiconductor device
JPS61168257A (en) Semiconductor device
JPS6144472A (en) Semiconductor device and manufacture thereof
JPH03235334A (en) Bipolar transistor and manufacture thereof