[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6020555A - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS6020555A
JPS6020555A JP58127677A JP12767783A JPS6020555A JP S6020555 A JPS6020555 A JP S6020555A JP 58127677 A JP58127677 A JP 58127677A JP 12767783 A JP12767783 A JP 12767783A JP S6020555 A JPS6020555 A JP S6020555A
Authority
JP
Japan
Prior art keywords
region
layer
type
substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58127677A
Other languages
Japanese (ja)
Other versions
JPH0433140B2 (en
Inventor
Takeaki Okabe
岡部 健明
Hideshi Ito
伊藤 秀史
Masatoshi Kimura
正利 木村
Mitsuzo Sakamoto
光造 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58127677A priority Critical patent/JPS6020555A/en
Publication of JPS6020555A publication Critical patent/JPS6020555A/en
Publication of JPH0433140B2 publication Critical patent/JPH0433140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/65Lateral DMOS [LDMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/114PN junction isolations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は絶縁ゲート電界効果トランジスタおよび、これ
を含む集積回路構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to insulated gate field effect transistors and integrated circuit structures containing the same.

〔発明の背景〕[Background of the invention]

2重拡散形絶縁ゲート電界効果トランジスタ(以下MO
8FET と略記する)は、第1図に示すようにXp形
基板1上に形成された低不純物濃度のn影領域2中に、
2重拡散によりp影領域3、n影領域4を形成している
が、領域3はドレイ・ン領域2會取り囲み、しかも基板
1に到達する深さ以上に形成されている。MOSFET
の高性能化は一般に短チヤネル化が知られているが、本
構造で短チヤネル化を実現すると、領域3の深さが浅く
なり、従ってn影領域2の厚さも薄くしなければならな
い。すなわち導電通路が狭くなることを意味し、直列抵
抗の増大を招く。またこのMOSFETを集積回路素子
として使用する場合、薄い領域2は集積回路プロセスに
適合しない。
Double diffused insulated gate field effect transistor (MO
8FET), as shown in FIG.
A p shadow region 3 and an n shadow region 4 are formed by double diffusion, and region 3 surrounds drain region 2 and is formed to a depth greater than that reaching substrate 1. MOSFET
It is generally known that the improvement in performance is achieved by shortening the channel. However, when shortening the channel with this structure, the depth of the region 3 becomes shallower, and therefore the thickness of the n-shaded region 2 must also be made thinner. This means that the conductive path becomes narrower, leading to an increase in series resistance. Also, when this MOSFET is used as an integrated circuit element, the thin region 2 is not compatible with the integrated circuit process.

〔発明の目的〕[Purpose of the invention]

本発明は前述の欠点を改善するためになされたもので、
直列抵抗の低減と、集積回路との整合性の改善を目的と
している。
The present invention has been made to improve the above-mentioned drawbacks.
The purpose is to reduce series resistance and improve compatibility with integrated circuits.

〔発明の概要〕[Summary of the invention]

本発明では上記目的を達成するために低不純物濃度領域
を厚くして、しかもドレイン領域を分離するための領域
を設けた構造を提供する。
In order to achieve the above object, the present invention provides a structure in which the low impurity concentration region is thickened and a region for separating the drain region is provided.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の実施例の断面構造を示すもので、nチ
ャネルの2重拡散形MO8FETである。
FIG. 2 shows a cross-sectional structure of an embodiment of the present invention, which is an n-channel double diffusion type MO8FET.

本装置の製造法を以下簡単に説明する。抵抗率20Ω・
釧のp形基板1上の一部分にボロンを5X1015ケ/
crn2の割合でイオン注入した後、抵抗率15Ω・α
の0層9を通常のエピタキシャル層によシ9μmの厚さ
に形成する。引き続き通常の半導体プロセス技術により
、n形層11を4μmの深さに、またn形層12,13
を2μmの深さに拡散形成する。n形層11の形成は比
較的高温度の熱拡散なので、p形層の形成と0層9のエ
ピタキシャル成長の両者の熱処理中にイオン注入された
ボロンが拡散されて、p影領域10を形成する。すなわ
ちエピタキシャル層9はp影領域10および11により
分離される。以下通常のMO8FET製造プロセス4用
いて、120 nmのゲート酸化膜101の形成、At
によるソース、ゲート、ドレイン電極の形成などを行う
。第2図において14,15.16は各々ゲート、ソー
ス、ドレイン電極、100は酸化膜等の絶縁膜である。
The manufacturing method of this device will be briefly explained below. Resistivity 20Ω・
Place 5 x 1015 pieces of boron on a part of the p-type substrate 1 of the chime.
After ion implantation at the rate of crn2, the resistivity is 15Ω・α
The 0 layer 9 is formed by a normal epitaxial layer to a thickness of 9 μm. Subsequently, using normal semiconductor process technology, the n-type layer 11 is formed to a depth of 4 μm, and the n-type layers 12 and 13 are formed.
is diffused to a depth of 2 μm. Since the n-type layer 11 is formed by thermal diffusion at a relatively high temperature, the boron ions implanted during the heat treatment for both the p-type layer formation and the epitaxial growth of the 0 layer 9 are diffused to form the p shadow region 10. . That is, epitaxial layer 9 is separated by p shadow regions 10 and 11. Below, using normal MO8FET manufacturing process 4, a 120 nm gate oxide film 101 is formed, At
Formation of source, gate, and drain electrodes, etc. In FIG. 2, 14, 15, and 16 are gate, source, and drain electrodes, respectively, and 100 is an insulating film such as an oxide film.

′本発明によればドレイン領域の分離を、基板中に埋込
まれた領域により行われている厚さ分だけ、低不純物濃
度層9を厚く出来、従って直列抵抗の改善を図ることが
できる。本発明の実施例では、同一寸法デバイスに対し
n層の直列抵抗は約1/2となった。上記実施例ではド
レイン領域の分離は埋込み層により実現されたが、半導
体表面から他の拡散層により行うことも可能である。第
3図は本発明の他の実施例の断面構造を示したものであ
る。p形層1上にn形エピタキシャル層13(1m9μ
m形成する工程は第1の実施例と同一であるが、本実施
例ではエピタキシャル層形成後、高不純物濃度のp形打
抜き拡散層17を形成する点が異っている。以下箱1の
実施例と同様のプロセスに従って、第3図に示した構造
のデバイスが実現された。直列抵抗の低減効果は第1の
実施例と同様である。第4図は本発明の他の実施例の断
面構造を示しだものである。本実施例の特徴は前記実施
例ではnチャネル素子の場合、高抵抗率のp形基板を用
いてMOSFET を構成していた。従ってドレインと
基板間の容量成分は小さくなるが、直列抵抗成分は犬き
くなシ、高周波動作におけるドレイン損失の原因となる
。本実施例ではこのドレイン損失の低減を図るため、低
抵抗率のp形基板18上に高抵抗率のn形層19をエピ
タキシャル成長したウェーハを用いている。n形層19
の形成後は前記実施例と同一の工程で実施した。
'According to the present invention, the low impurity concentration layer 9 can be made thicker by the thickness of the region buried in the substrate for separating the drain region, and therefore the series resistance can be improved. In the embodiment of the present invention, the series resistance of the n-layer was reduced to about 1/2 for a device of the same size. In the above embodiments, isolation of the drain region was achieved by a buried layer, but it can also be achieved by another diffusion layer from the semiconductor surface. FIG. 3 shows a cross-sectional structure of another embodiment of the present invention. N-type epitaxial layer 13 (1m9μ) on p-type layer 1
The step of forming m is the same as in the first embodiment, except that in this embodiment, after the epitaxial layer is formed, a p-type punched diffusion layer 17 with a high impurity concentration is formed. A device having the structure shown in FIG. 3 was realized following the same process as in the example in Box 1 below. The effect of reducing series resistance is the same as in the first embodiment. FIG. 4 shows a cross-sectional structure of another embodiment of the present invention. The feature of this embodiment is that in the previous embodiment, in the case of an n-channel device, a high resistivity p-type substrate was used to construct the MOSFET. Therefore, the capacitance component between the drain and the substrate becomes small, but the series resistance component remains and becomes a cause of drain loss in high frequency operation. In this embodiment, in order to reduce this drain loss, a wafer is used in which an n-type layer 19 of high resistivity is epitaxially grown on a p-type substrate 18 of low resistivity. n-type layer 19
After formation, the same steps as in the previous example were carried out.

第5図は本発明の他の実施例の断面構造を示したもので
MOSFETは、バイポーラトランジスタと集積化され
ている。すなわち高抵抗率p形基板20上に形成された
n形層21の厚さは、本発明によれば4μm〜30μm
程度まで厚く形成できるので、従って通常のバイポーラ
トランジスタが容易に集積可能となる。以下第5図′の
実施例全簡単に説明する。高抵抗率p形層20の一部分
にアンチモン’に1200Uで約12時間拡散して埋込
み層24を形成する。引き続きボロンを5×15ケ/c
rn2イオン注入した後n層21を9μmの厚さにエピ
タキシャル成長する。以下アイソレーションめための9
層23、コレクタ電極引出しのためのnJ’1ii30
、ベースおよびチャネルを形成するための9層25およ
び26を4μmの深さに拡散形成し、引き続きエミッタ
、ソースおよびドレインとなるn層27.28および2
9を2μmの深さに拡散形成する。ゲート酸化膜および
電極の形成は第1の実施例と同一のプロセスに従って実
施した。以上述べたように、本実施例によれば、第1の
実施例で述べた直列抵抗を改善したMOSFETを、従
来のバイポーラトランジスタと容易に集積化できること
が明らかである。
FIG. 5 shows a cross-sectional structure of another embodiment of the present invention, in which the MOSFET is integrated with a bipolar transistor. That is, according to the present invention, the thickness of the n-type layer 21 formed on the high resistivity p-type substrate 20 is 4 μm to 30 μm.
Therefore, ordinary bipolar transistors can be easily integrated. The embodiment of FIG. 5' will be briefly described below. A buried layer 24 is formed in a portion of the high resistivity p-type layer 20 by diffusing antimony at 1200 U for about 12 hours. Continue to add 5 x 15 pieces of boron/c
After rn2 ion implantation, an n layer 21 is epitaxially grown to a thickness of 9 μm. Below is isolation meme 9
Layer 23, nJ'1ii30 for collector electrode extraction
, nine layers 25 and 26 to form the base and channel are diffused to a depth of 4 μm, followed by n-layers 27, 28 and 2 to form the emitter, source and drain.
9 is diffused and formed to a depth of 2 μm. The gate oxide film and electrodes were formed according to the same process as in the first example. As described above, according to this embodiment, it is clear that the MOSFET with improved series resistance described in the first embodiment can be easily integrated with a conventional bipolar transistor.

第6図は更に他の実施例を示したもので、本実施例では
、第5図に示したp形埋込み層22を用いずに、高不純
物濃度のi曽32をドレイン分離に用いている。この場
合ドレイン損失が増加しない様にチャネルを形成するた
めの1層33と分離層32とは隣接して形成されている
。またMOSFET のソースSはバイポーラトランジ
スタのコレクタCと接続されており、従って第7図に示
すような、カスコード回路を構成している。本構造にお
いても、バイポーラトランジスタとの集積化は容易であ
る。
FIG. 6 shows still another embodiment. In this embodiment, the p-type buried layer 22 shown in FIG. 5 is not used, but an i-so layer 32 with a high impurity concentration is used for drain isolation. . In this case, the first layer 33 for forming a channel and the separation layer 32 are formed adjacent to each other so that drain loss does not increase. The source S of the MOSFET is connected to the collector C of the bipolar transistor, thus forming a cascode circuit as shown in FIG. Even in this structure, integration with bipolar transistors is easy.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、MOSFETの直
列抵抗を低減でき、かつバイポーラトランジスタとの集
積化も容易である。
As described above, according to the present invention, the series resistance of a MOSFET can be reduced, and integration with a bipolar transistor is also easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2重拡散形MO8FETの断面構造を示す図、
第2図、第3図、第4図、第5図および第6図は各々本
発明の実施例の断面構造を示す図、第7図は本発明の実
施例の等価回路の一例を示す図である。 1・・・p形基板、2・・・n形層、3・・・p形層、
4・・・n形層、9・・・n形層、10・・・p形層、
17・・・p形層、18・・・高濃度p形層、へ19・
・・p形層、23・・・p形層 1 図 第2図 01 ■7図 0
Figure 1 is a diagram showing the cross-sectional structure of a double diffusion type MO8FET,
2, 3, 4, 5, and 6 are diagrams each showing a cross-sectional structure of an embodiment of the present invention, and FIG. 7 is a diagram illustrating an example of an equivalent circuit of an embodiment of the present invention. It is. DESCRIPTION OF SYMBOLS 1...p-type substrate, 2...n-type layer, 3...p-type layer,
4...n-type layer, 9...n-type layer, 10...p-type layer,
17...p-type layer, 18...high concentration p-type layer, to 19.
...p-type layer, 23...p-type layer 1 Figure 2 Figure 01 ■7 Figure 0

Claims (1)

【特許請求の範囲】[Claims] 1、導電型の半導体基体に形成された基体と反対の導電
型を有する第1の領域と、第1の領域に形成された基体
と同−導電型金布する第2の領域の表面の一部に導電チ
ャネルを形成する絶縁ゲート形電界効果トランジスタに
おいて、第2の領域の厚さが、第1の領域の厚さよシも
小さく、かつ該絶縁ゲート電界効果トランジスタのドレ
イン領域が、第2領域と同一導電型を有する第3の領域
により他の領域よシ分離されていることを特徴とする半
導体装置。
1. A first region formed on a semiconductor substrate of conductivity type and having a conductivity type opposite to that of the substrate, and a surface of a second region having the same conductivity type as the substrate formed in the first region. In an insulated gate field effect transistor in which a conductive channel is formed in the second region, the thickness of the second region is smaller than the thickness of the first region, and the drain region of the insulated gate field effect transistor is smaller than the thickness of the first region. A semiconductor device characterized in that the semiconductor device is separated from other regions by a third region having the same conductivity type as the semiconductor device.
JP58127677A 1983-07-15 1983-07-15 semiconductor equipment Granted JPS6020555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127677A JPS6020555A (en) 1983-07-15 1983-07-15 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127677A JPS6020555A (en) 1983-07-15 1983-07-15 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS6020555A true JPS6020555A (en) 1985-02-01
JPH0433140B2 JPH0433140B2 (en) 1992-06-02

Family

ID=14965978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127677A Granted JPS6020555A (en) 1983-07-15 1983-07-15 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS6020555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758228A (en) * 1993-07-22 1995-03-03 Philips Electron Nv Integrated device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758228A (en) * 1993-07-22 1995-03-03 Philips Electron Nv Integrated device

Also Published As

Publication number Publication date
JPH0433140B2 (en) 1992-06-02

Similar Documents

Publication Publication Date Title
JPH0521726A (en) BiCMOS device and manufacturing method thereof
JPH01264253A (en) Manufacture of semiconductor device
JPS60210861A (en) Semiconductor device
JPH04363046A (en) Manufacturing method of semiconductor device
JPS58218168A (en) Bidirectional transistor
JPS6020555A (en) semiconductor equipment
US5506156A (en) Method of fabricating bipolar transistor having high speed and MOS transistor having small size
JPH06302826A (en) Insulated gate field effect transistor and manufacturing method thereof
JP3326990B2 (en) Bipolar transistor and method of manufacturing the same
JPS6153762A (en) Semiconductor integrated circuit device
JP3116609B2 (en) Method for manufacturing semiconductor device
JPH0387059A (en) Semiconductor integrated circuit
JP3120441B2 (en) Semiconductor device and manufacturing method thereof
JPH06244365A (en) Semiconductor device, and manufacture thereof
JPS59214263A (en) Double diffused insulated gate field effect transistor
JPH03203333A (en) Semiconductor device and manufacture thereof
JPH02265247A (en) Semiconductor device
JPS58212171A (en) Semiconductor device
JPH09293798A (en) Semiconductor integrated circuit device
JPS60211978A (en) Semiconductor device
JPH0321055A (en) Semiconductor integrated circuit device and manufacture of the same
JPH08107114A (en) Semiconductor device and manufacturing method thereof
JPS5916369A (en) Manufacturing method for semiconductor integrated circuit devices
JPS6174366A (en) Manufacturing method of semiconductor device
JPS63181458A (en) Manufacturing method of semiconductor integrated circuit