[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60160404A - Automatic tracking system of inertial fluctuation in servo system - Google Patents

Automatic tracking system of inertial fluctuation in servo system

Info

Publication number
JPS60160404A
JPS60160404A JP1685484A JP1685484A JPS60160404A JP S60160404 A JPS60160404 A JP S60160404A JP 1685484 A JP1685484 A JP 1685484A JP 1685484 A JP1685484 A JP 1685484A JP S60160404 A JPS60160404 A JP S60160404A
Authority
JP
Japan
Prior art keywords
control system
gain
model
plant
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1685484A
Other languages
Japanese (ja)
Inventor
Yasuyuki Inoue
康之 井上
Takanobu Iwagane
岩金 孝信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP1685484A priority Critical patent/JPS60160404A/en
Publication of JPS60160404A publication Critical patent/JPS60160404A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1638Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To attain initial setting of a gain in a short time by adding an adaptive loop comprising a model and an adaptive device to a control system so as to adjust the gain. CONSTITUTION:The 2nd order IP control system as a feedback speed control system is used, and a model 1 representing a desired response, a feedback control system 2 of a control variable and the adaptive device 3 are provided. The speed command omega* is inputted to both said model and a plant 2, and after a difference omega of both outputs is processed by a positive real compensating element, the result is multiplied with a second order differentiating signal of the plant 2. The result is given to an integration element of a memory and a proportional element K2, and the value added with the initial value K(0) of K is fed back to the plant 2 as the gain value of the K so as to form the adaptive loop. Thus, the desired speed response insensible to the inertia change and external disturbance of load is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、並列式モデル規範適用システム(以下rMR
ASJ =Model Reference Adap
tiveSVS temという。)を適用した電動機の
速度制御系におけるイナーシャ変動の自動追従方式に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a parallel model reference application system (rMR
ASJ=Model Reference Adap
It is called tiveSVS tem. ) is related to an automatic tracking system for inertia fluctuations in a motor speed control system.

【従来技術とその問題点〕[Prior art and its problems]

現在、フィードバック速度制御方式として、指令値と出
力の差に比例積分などの操作を加え、目標値に対する偏
差を減少させる方式が良く知られている。それらの制御
方式中、PI制御は最も一般的であり、第1図のブロッ
クダイアダラムで近位され、その入出力関係を伝達関数
で表現すると次の2次形になる。
Currently, as a feedback speed control method, a method is well known in which an operation such as proportional integration is applied to the difference between a command value and an output to reduce the deviation from a target value. Among these control methods, PI control is the most common, and is approximated by the block diaphragm of FIG. 1, and its input-output relationship, expressed by a transfer function, has the following quadratic form.

なお、第1図における符号は次の通りである。Note that the symbols in FIG. 1 are as follows.

CKN:PI制御ゲイン、TN:積分時定数に■:電流
指令変換定数、KT : )ルク定数、J:イナーシャ
、1(71速度フィードバックゲイン、ω車:速度指令
、I*:電流指令、I:電機子電流、τe :発生トル
ク、τL =トルク外乱、ω:速度〕 従ってこの系は、PI制御部のゲインKN及びイナーシ
ャJを可変とし、その他を定数とした場合、それらの2
つの値によっては応答が遅くなったり、反対に振動的に
なる場合がある。
CKN: PI control gain, TN: integral time constant ■: current command conversion constant, KT: ) torque constant, J: inertia, 1 (71 speed feedback gain, ω car: speed command, I*: current command, I: armature current, τe: generated torque, τL = torque disturbance, ω: speed] Therefore, in this system, when the gain KN and inertia J of the PI control section are variable and the others are constants, these two
Depending on these values, the response may become slow or oscillatory.

普通、これを防止するために、あらかじめイナーシャJ
の値がわかっているときには、出力が振動的にならない
に、の値をあらかじめ設定しておく方法が用いられてい
る。しかし、例えばロボットの腕の制御など、イナーシ
ャが大きな範囲で変動するものを負荷とし、PI制御部
のゲインを固定とした場合、ゲインを小さく設定してお
くとイナーシャの減少とともに指令速度に達するまで長
い時間を必要とし、反対に振動の限界近くに設定してお
くとイナーシャの増大とともにオーバーシュートをもっ
た好ましくない応答を示すようになる。このため、位置
決めにおいて行き過ぎを生じたり、精度が落ちるという
不都合が生じることになる。
Normally, to prevent this, the inertia J is
When the value of is known, a method is used in which the value of is set in advance so that the output does not become oscillatory. However, if the load is a load whose inertia fluctuates over a large range, such as control of a robot's arm, and the gain of the PI control section is fixed, then if the gain is set small, the inertia will decrease until the command speed is reached. It requires a long time, and if it is set close to the vibration limit, on the other hand, the inertia increases and an unfavorable response with overshoot is exhibited. This causes problems such as excessive positioning and decreased accuracy.

また、工作機において物体を切削する場合などは、切削
前と切削中でのイナーシャが異なる上、さらに切削中に
おける負荷外乱により、速度系の安定が乱されるという
欠点があった。
Further, when cutting an object with a machine tool, there is a drawback that the inertia before and during cutting is different, and furthermore, the stability of the speed system is disturbed due to load disturbance during cutting.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来の問題点を解消し、回転機の
フィードバック速度制御系において、モデルとして出力
にオーバーシュートがなく、また短い時間で応答するシ
ステムを選び、イナーシャ変動や負荷外乱が発生した場
合でも、モデルの出力と同等の速度出力が制御対象から
得られように、制御対象の速度ループ中のゲインを調整
することを目的とするものである。
The present invention solves these conventional problems and selects a system that does not have overshoot in the output as a model and responds in a short time in the feedback speed control system of a rotating machine, and eliminates the occurrence of inertia fluctuations and load disturbances. The purpose of this is to adjust the gain in the velocity loop of the controlled object so that the controlled object can obtain a velocity output equivalent to the output of the model even when

〔発明の構成〕[Structure of the invention]

本発明は、並列式のモデル規範適応システムを用いた適
応ループを付加した回転電機の速度制御系において、負
荷に関する変動量に応じて前記速度制御系内のゲインを
調節するようにしたことを特徴とするものである。
The present invention is characterized in that, in a speed control system for a rotating electric machine to which an adaptive loop is added using a parallel type model reference adaptive system, a gain in the speed control system is adjusted according to the amount of variation related to the load. That is.

〔発明の詳細な説明〕[Detailed description of the invention]

速度制御系としては、第1図に示したPI制御系が良(
使われるが、以下では伝達関数形がより単純なIP制御
系において、イナーシャ変動に対するゲイン追従適応制
御系の構成例を説明する。
As a speed control system, the PI control system shown in Fig. 1 is suitable (
However, an example of the configuration of a gain tracking adaptive control system for inertia fluctuation will be described below in an IP control system with a simpler transfer function form.

IP制御系をブロック図で表現すると、一般に第2図で
示され、この系の速度指令と速度出力間の伝達関数は次
の2次形で表すことができる。
When an IP control system is expressed in a block diagram, it is generally shown in FIG. 2, and the transfer function between the speed command and speed output of this system can be expressed in the following quadratic form.

なお、Kは比例ゲイン、)(’rct はフィードバン
クゲイン1、KTG2はフィードバンクゲイン2である
Note that K is a proportional gain, )('rct is a feed bank gain of 1, and KTG2 is a feed bank gain of 2.

(2)式において、可変要素としてイナーシャJとゲイ
ンにのみを考慮し、他を定数としたとき、変動要素とし
てS2を除いた各項にに/Jの係数がかかっているので
、これを32の係数のみの変動としてとらえるため、(
2)式の分子、分母をに/Jで割ると、(2)式は次の
形に置き換えることができる。
In equation (2), when only inertia J and gain are considered as variable elements, and the others are constants, each term except S2 is multiplied by the coefficient of /J, so this can be reduced to 32 Since it is treated as a variation only in the coefficient of (
By dividing the numerator and denominator of equation (2) by /J, equation (2) can be replaced with the following form.

c G” =a s 2+ b s + c ’−−−−−
−−−−’−(”’式従ってイナーシャが変動した場合
、(3)式において変動する係数はaのみである。ここ
で(3)式を並列式MRASにおけるモデルの伝達関数
とし、制御対象(以下プラントと称す)の伝達関数を次
式G p (sl = K c /’ (fa s 2
+ b s + c ) −−−−−−−−141式た
だし K、b、cは(3)式と同じ。
c G"=a s 2+ b s + c'------
-----'-("'Equation Therefore, when the inertia changes, the only coefficient that changes in Equation (3) is a. Here, Equation (3) is the transfer function of the model in parallel MRAS, and the controlled object (hereinafter referred to as the plant) is expressed by the following formula G p (sl = K c /' (fa s 2
+ b s + c ) ----------141 formula However, K, b, and c are the same as formula (3).

制御の目的はプラントの出力がモデルの出力と等しくな
ることにあるので、最終的に5がaに一致すること、即
ちイナーシャJの変動に応じてKを同じ割合で増加又は
減少させることである。
Since the purpose of control is to make the output of the plant equal to the output of the model, the final goal is for 5 to match a, that is, to increase or decrease K at the same rate as the inertia J changes. .

以下に適応ループの構成例でしばしば用いられるボポフ
の超安定論によるものを示す。
Below is an example of the configuration of an adaptive loop based on Bopov's hyperstability theory, which is often used.

まず、モデルの出力をωH1プラントの出力をapとお
き、それぞれの出力の差 ωH−ωpをeとおくと、(
2)式、(3)式より次の微分方程式を得る。
First, let the output of the model be ωH1, the output of the plant be ap, and the difference between the respective outputs ωH−ωp be e, then (
The following differential equation is obtained from equations (2) and (3).

afi+be+ce+ (a−a)ap =0−(51
式5を比例要素及びメモリの働きをする積分要素の和と
して選定し、次の形におく。
afi+be+ce+ (a-a)ap =0-(51
Equation 5 is selected as the sum of a proportional element and an integral element that acts as a memory, and is set in the following form.

・−・・−・−−−−−−−−−−−−一−−−・−−
−−−−−〜−−(61式ただしψ!(シ、t、τ)、
ψ2(v、t)はある関数、50TO)は5の初期値、
τばt以前の時刻、■は正実補償器Cの出力であり、■
は下式で表わせる。
・−・・−・−−−−−−−−−−−−1−−−・−−
−−−−−〜−−(Formula 61, however, ψ! (shi, t, τ),
ψ2(v, t) is a certain function, 50TO) is the initial value of 5,
At the time before τbat, ■ is the output of the true and real compensator C, and ■
can be expressed by the following formula.

v = C(31・e −−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−(71式(5)式に
より 線形要素aM+be+ce=−all補償要素 
v = Cis)・e 非線形要素 ωs = (a−5)ゐpを含む第3図の
等価フィードバック系を考えることができ(同図中(1
1)は線形要素、(12)は補償要素、(13)は非線
形要素)、そのループに対してポボフの超安定条件を満
たすψ!、ψ2の関数形を決定する。
v = C (31・e −−−−−−−−−−−−−
−−−−−−−−−−−−−−−(71 formula (5)) Linear element aM+be+ce=−all compensation element
v = Cis)・e We can consider the equivalent feedback system shown in Figure 3, which includes the nonlinear element ωs = (a-5)ip ((1
(1) is a linear element, (12) is a compensation element, and (13) is a nonlinear element), ψ that satisfies Povov's superstability condition for the loop! , ψ2 is determined.

ボボフの安定条件より、 7”v (a−5) 6)p dt ψ2 (v、t) + Ao (ol) ] 乙p d
t≧−γo2・−−−−−・−−−−−・・−・・・・
−一−−−・−・−一−−−−−・−m−−−・(7)
式ただし γ0は訳の定数 (7)式を満足するためには、次の′2条件を満たせば
×υpdt≧−T12・−・−−一−−−−−−−−・
−・−−−−−−(81式!vψ2(v、t) &p 
dt ≧−γ2” −−−−−−−−−−−−(91式
ただし γ1.T2は正の定数 (8)式、(9)式を満足するψ1.ψ2として次の関
数を選ぶ。
From Bobov's stability condition, 7”v (a-5) 6) p dt ψ2 (v, t) + Ao (ol) ] O p d
t≧−γo2・−−−−・−−−−−・・−・・・・
−1−−−・−・−1−−−−−・−m−−−・(7)
where γ0 is a translation constant In order to satisfy formula (7), the following '2 condition must be satisfied:
−・−−−−−(Formula 81! vψ2(v, t) &p
dt ≧-γ2” −−−−−−−−−−− (Equation 91 where γ1.T2 is a positive constant Equation (8) and the following function is selected as ψ1.ψ2 that satisfies Equation (9).

ψ1 (V+ L+τ)=klvωp −・−一−−−
−・−−−一−−−αψ式ψ2 (v、t ) = k
2 v &p −−−−−−−−−、−(11)式ただ
し kl <Q、 k2 (Qの定数である。
ψ1 (V+L+τ)=klvωp −・−1−−
−・−−−1−−−αψFormula ψ2 (v, t) = k
2 v &p -------------, - (11) where kl <Q, k2 (constant of Q.

ここでボボフの安定条件によれば前向き線形要素は補償
器も含めて正賓の条件を満たしていなければならないの
で、補償器の伝達関数をC(31= C1s + 02 と仮定して正実条件を満足するようにc、、c2を決定
する。
Here, according to Bobov's stability condition, the forward linear element, including the compensator, must satisfy the guest condition, so assuming the transfer function of the compensator to be C (31 = C1s + 02), the true real condition is Determine c, , c2 so as to be satisfied.

なお、負荷外乱の補償については、トルク指令と負荷外
乱の和を、イナーシャと変通にとらえることができるの
で、以上の設計をそのまま利用することができる。
Regarding compensation for load disturbance, the sum of the torque command and load disturbance can be treated as inertia and transformation, so the above design can be used as is.

以下に図面を用いて制御系全体の動作の説明を行なう。The operation of the entire control system will be explained below using the drawings.

第4図はフィードバック速度制御系として2次のIP制
御系を用いた一実施例であり、(11は望ましい応答を
示すモデル、(2)の点線で囲まれた部分は制御対象の
フィードバンク制御系、(3)の一点鎖線で囲まれた部
分は適応機構を示す。ill及び(3)はマイクロプロ
セッサ等を用いて実現することができる。0本は速度指
令でモデルとプラントの両システムに入力され、それぞ
れの出力の差εを正実補償要素で処理した後、プラント
の2同機分信号との積をとる。その結果を比例要素に2
とメモリの働きをする積分要素に通し、Kの初期値R(
01とともに加え合わせた値をKのゲイン値としてプラ
ントへフィードバックすることで適応ループが完成され
る。
Fig. 4 shows an example in which a second-order IP control system is used as a feedback speed control system. The part surrounded by a dashed line in system (3) shows the adaptation mechanism. ill and (3) can be realized using a microprocessor, etc. 0 line is a speed command that is applied to both the model and plant systems. After inputting and processing the difference ε between the respective outputs using the true-real compensation element, the product is multiplied by the signals for the two similar machines in the plant.The result is converted into the proportional element 2.
and the initial value R(
The adaptive loop is completed by feeding back the value added together with 01 to the plant as the gain value of K.

第6図、第7図は従来の固定ゲインによる方式と本方式
の出力及びゲインを比較したものであり、第6図の(a
l、 (bl、第7図のlad、 (blはそれぞれ第
5図(alのイナーシャステップ変化、(blのイナー
シャランプ変化に対応するものである。指令は3段のス
テップ信号とランプ信号を与えており、実線はモデルの
出力、破線はプラント出力、二点鎖線はゲインの変化を
表している。
Figures 6 and 7 compare the output and gain of the conventional fixed gain system and this system.
l, (bl, lad in Fig. 7, (bl correspond to the inertia step change in Fig. 5 (al) and the inertia ramp change in (bl), respectively. The command gives a three-stage step signal and a ramp signal. The solid line represents the model output, the dashed line represents the plant output, and the two-dot chain line represents the change in gain.

以上はtp制御系における適応制御系の構成例であるが
、pr制御系に対する適応系も同様の手順で導くことが
でき、その構造は第5図に示した適応系のものと同一で
ある。
The above is an example of the configuration of the adaptive control system in the tp control system, but the adaptive system for the pr control system can also be derived using the same procedure, and its structure is the same as that of the adaptive system shown in FIG.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、従来から用いられてい
る制御系にモデル及び適応機構により構成される適応ル
ープを追加することによりイナーシャの変化及び負荷外
乱に対して不感な、望ましい速度応答が得られる制御を
行なうことができ、またゲインの初期設定を短時間に行
なうこともできるという効果を奏するものである。
As described above, according to the present invention, a desired speed response that is insensitive to changes in inertia and load disturbances can be achieved by adding an adaptive loop composed of a model and an adaptive mechanism to a conventionally used control system. This has the advantage that it is possible to perform the control that is obtained, and that the initial setting of the gain can be performed in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はPI制御系の速度制御ブロック図、第2図はI
P制御系の速度制御ブロック図、第3図は線形要素、補
償要素及び非線形要素を含む等価フィードバック系を説
明するブロック図、第4図は本発明の実施例を示すブロ
ック図、第5図はイナーシャの変化を示すタイムチャー
ト、第6図は3段の速度指令を与えたときの補償要素が
ない場合の応答を示すタイムチャート、第7図は同じく
3段の速度指令を与えたときの補償要素を加えた場合の
応答を示すタイムチャートである。 (1):速度制御系モデル (2):速度制御プラント (3):適応ループ 特許出願人 株式会社 安川電機製作所代理人 手掘 
益(ばか1名) 第1図 第3図 5 第4図 菰
Figure 1 is a speed control block diagram of the PI control system, Figure 2 is the I
A speed control block diagram of the P control system, FIG. 3 is a block diagram explaining an equivalent feedback system including linear elements, compensation elements, and nonlinear elements, FIG. 4 is a block diagram showing an embodiment of the present invention, and FIG. A time chart showing changes in inertia. Figure 6 is a time chart showing the response when there is no compensation element when a 3-stage speed command is given. Figure 7 is a time chart showing the response when a 3-stage speed command is given. It is a time chart showing a response when an element is added. (1): Speed control system model (2): Speed control plant (3): Adaptive loop patent applicant Yaskawa Electric Co., Ltd. Agent Tebori
Masu (1 idiot) Figure 1 Figure 3 Figure 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、 並列式のモデル規範適応システムを用いた適応ル
ープを付加した回転電機の速度制御系において、負荷に
関する変動量に応じて前記速度制御系内のゲインを調節
するようにしたことを特徴とするサーボ系におけるイナ
ーシャ変動の自動追従方式。
1. A speed control system for a rotating electric machine to which an adaptive loop using a parallel model standard adaptation system is added, characterized in that the gain in the speed control system is adjusted according to the amount of variation related to the load. Automatic tracking method for inertia fluctuations in servo systems.
JP1685484A 1984-01-31 1984-01-31 Automatic tracking system of inertial fluctuation in servo system Pending JPS60160404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1685484A JPS60160404A (en) 1984-01-31 1984-01-31 Automatic tracking system of inertial fluctuation in servo system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1685484A JPS60160404A (en) 1984-01-31 1984-01-31 Automatic tracking system of inertial fluctuation in servo system

Publications (1)

Publication Number Publication Date
JPS60160404A true JPS60160404A (en) 1985-08-22

Family

ID=11927799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1685484A Pending JPS60160404A (en) 1984-01-31 1984-01-31 Automatic tracking system of inertial fluctuation in servo system

Country Status (1)

Country Link
JP (1) JPS60160404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306922A2 (en) * 1987-09-08 1989-03-15 Kabushiki Kaisha Meidensha Control system for controlling revolution speed of electric motor
WO1990008987A1 (en) * 1989-01-30 1990-08-09 Fanuc Ltd Servo control method by the disturbance estimation observer
CN109465827A (en) * 2018-11-22 2019-03-15 广东工业大学 Single feedback drives Coupled Rigid-flexible platform courses method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306922A2 (en) * 1987-09-08 1989-03-15 Kabushiki Kaisha Meidensha Control system for controlling revolution speed of electric motor
EP0306922B1 (en) * 1987-09-08 1995-01-25 Kabushiki Kaisha Meidensha Control system for controlling revolution speed of electric motor
WO1990008987A1 (en) * 1989-01-30 1990-08-09 Fanuc Ltd Servo control method by the disturbance estimation observer
CN109465827A (en) * 2018-11-22 2019-03-15 广东工业大学 Single feedback drives Coupled Rigid-flexible platform courses method
CN109465827B (en) * 2018-11-22 2021-12-10 广东工业大学 Single-feedback single-drive rigid-flexible coupling platform control method

Similar Documents

Publication Publication Date Title
US5371451A (en) Predictive repetition control method for a servo motor and an apparatus therefor
US4663703A (en) Predictive model reference adaptive controller
US4338659A (en) Position control system for a closed loop type numerical-controlled machine tool
US5691615A (en) Adaptive PI control method
DE102009058443B4 (en) Inertia estimation controller and control system
US5654619A (en) Method of feedforward control for servomotor
JPS62212801A (en) Complete follow-up servo system
US5637969A (en) Vibration control method
EP0407590A1 (en) Servo control apparatus
JPH06119001A (en) Controller
US5191272A (en) Method of adjusting gain for motor control
EP0329796A1 (en) Servo motor controller
JPS60160404A (en) Automatic tracking system of inertial fluctuation in servo system
US5331265A (en) Method of executing sliding-mode control including twist feedback
US6920362B2 (en) Control apparatus
JPH086603A (en) Adjusting method for servo system and its servo controller
EP0471077A1 (en) Sliding mode control system including feedback of amount of twist
JP2559107B2 (en) Position control method
JPS60160403A (en) Adaptive loop gain automatic compensation system in servo system
JP2899459B2 (en) Looper multivariable controller
JPH06289903A (en) Feed forward controller
JPS631604B2 (en)
JPS60176104A (en) Process controller
JPH0393486A (en) Motor controller
JPH04362702A (en) Velocity control system in repetitive control