[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60150563A - Manufacture of polymer compound storage battery - Google Patents

Manufacture of polymer compound storage battery

Info

Publication number
JPS60150563A
JPS60150563A JP59005313A JP531384A JPS60150563A JP S60150563 A JPS60150563 A JP S60150563A JP 59005313 A JP59005313 A JP 59005313A JP 531384 A JP531384 A JP 531384A JP S60150563 A JPS60150563 A JP S60150563A
Authority
JP
Japan
Prior art keywords
storage battery
polymerization
electrolyte solution
positive
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59005313A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kitahara
北原 康広
Fumio Goto
文夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP59005313A priority Critical patent/JPS60150563A/en
Publication of JPS60150563A publication Critical patent/JPS60150563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To economically manufacture a storage battery with a simplified process by directly utilizing the battery case and positive, negative electrodes used for combining a polymer film at the surface of positive electrode as the lead storage battery case and positive, negative electrodes. CONSTITUTION:A monomer and polymer support electrolyte are dissolved into polarity organic solvent within a battery case 4 in order to form non aqueous electrolyte solution for polymerization. A positive electrode 1 consisting of a substance having resistivity to oxidation such as platinum and carbon etc. and a negative electrode 3 consisting of metallic or carbonic material such as iron or copper, etc. are at least partly immersed into non aqueous electrolyte solution for polymerization in such a manner that they are separated each other and a polymer film of monomer is precipitated on the surface of positive electrode 1 through electrolytic polymerization by supply an electrolytic current through application of a DC voltage across the positive and negative electrodes 1 and 3. The non-aqueous electrolyte solution for polymerization is taken out from the battery case 4 and the non-aqueous electrolyte solution obtained by dissolving supply electrolyte for battery into the polarity organic solvent is supplied to the battery case 4.

Description

【発明の詳細な説明】 本発明は、導電性高分子化合物を使用した正極体を有し
、充放電のクーロン効率が高く、シかも長4の蓄電池を
簡単な工程で製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a storage battery with a positive electrode body using a conductive polymer compound, a high Coulombic efficiency in charging and discharging, and a length of 4 cm in a simple process. be.

蓄電池としては、アルカリ蓄電油または鉛蓄電池が一般
的なものであるが、最近、導電性高分子化合物を膜状体
として電(メ体とする高分子化合物蓄電池が提案されて
いる。これはポリアセチレン。
As storage batteries, alkaline storage oil or lead storage batteries are common, but recently a polymer compound storage battery that uses a conductive polymer compound as a film-like material has been proposed. .

ポリビロー/I/等の共役π(パイ)結合を有する導電
性高分子化合物の膜を電極体として、該電極体を電解質
溶液中に浸贋することによって、S電池を形成しようと
するものである。
This method attempts to form an S battery by using a membrane of a conductive polymer compound having a conjugated π (pi) bond such as polyvirau/I/ as an electrode body and immersing the electrode body in an electrolyte solution. .

例えば、ポリアセチレン膜をそれぞれ正極体。For example, use a polyacetylene film as the positive electrode.

負極体として用いる蓄電池においては、過塩素酸リチウ
ムからなる電解質溶液中にこれらの電極体を浸漬するこ
とにより、下記の化学反応式〔A〕。
In a storage battery used as a negative electrode body, the following chemical reaction formula [A] is achieved by immersing these electrode bodies in an electrolyte solution consisting of lithium perchlorate.

CB)に示す反応が生じ、過塩素酸イオンのアニオンま
たはリチウムイオンのカチオンが電気化学的な酸化・還
元に伴なって、上記ポリアセチレン膜にドープ/アンド
ープされると考えられる。
It is thought that the reaction shown in CB) occurs, and the anions of perchlorate ions or cations of lithium ions are doped/undoped into the polyacetylene film as a result of electrochemical oxidation/reduction.

(CH) n + Cdo4−r±(OH) n” ’
 ClO4−十e CA)(CH)n+L+ + e 
(CH)n−・Li+CB’)、−1−−−2− (但し、上式[こおいて、(CH)nはポリアセチレン
、 Ce0a−は過塩素酸イオン、Li+はリチウムイ
オン、e−は電子を表わす。) 上記式(A)、CB)とも可逆的に起こり9式ヒ、〕の
反応を正極反応9式CB)の反応を負極反応とする蓄電
池が形成され1両式とも反応が右に移動することにより
充電、左に移動する二2により放電を行うことができる
(CH) n + Cdo4-r±(OH) n"'
ClO4-10e CA) (CH)n+L+ + e
(CH)n-・Li+CB'), -1---2- (However, in the above formula, (CH)n is polyacetylene, Ce0a- is a perchlorate ion, Li+ is a lithium ion, and e- is (Represents an electron.) Both formulas (A) and CB) above occur reversibly, and a storage battery is formed in which the reaction of formulas (A) and CB) is the positive electrode reaction, and the reaction of formula 9CB) is the negative electrode reaction. Charging can be performed by moving to the left, and discharging can be performed by moving to the left.

このような高分子化合物蓄電池は、比重が小さく、膜状
に形成されるという高分子化合物自体の利点を生かして
、電極重量が低減され、電池のエネルギー密度やパワー
密度を大きくすることができると考えられる。
This type of polymer compound storage battery takes advantage of the polymer compound itself, which has a low specific gravity and is formed into a membrane shape, and can reduce the weight of the electrodes and increase the energy density and power density of the battery. Conceivable.

ところで、従来の高分子化合物膜を電極体上した蓄電池
を作製する方法として、高分子化合物膜を、電槽外でチ
ーグツ・ナツタ型触媒等によって合成し、1!極体に適
する形状に成型した後、電池の電極として組み立てるこ
とが提案されている。
By the way, as a conventional method for producing a storage battery having a polymer compound film on an electrode body, the polymer compound film is synthesized outside the battery case using a Tiegts-Natsuta type catalyst, etc., and 1! It has been proposed that the material be molded into a shape suitable for a pole body and then assembled as a battery electrode.

しかし、この方法では9合成した重合体膜を取り出して
、電極体として組み立てる複雑な工程が必要であり、か
つこの電極体として組み立てる際に。
However, this method requires a complicated process of taking out the synthesized polymer film and assembling it into an electrode body, and when assembling this electrode body.

重合体膜が外部からの影響を受けやすく、酸化分解等を
起こしてしまう問題点がある。例えば、上記従来方法で
合成されたポリアセチレン膜は、その中に残留触媒等の
不純物が含まれており、空気中では非常に不安定であり
、酸化分解反応を受けやすく、そのため膜の合成から蓄
電池の組み立てまでのすべての工程が不活性ガス雰囲完
下で行なわなければならない。
There is a problem in that the polymer film is susceptible to external influences and may undergo oxidative decomposition. For example, the polyacetylene membrane synthesized by the conventional method described above contains impurities such as residual catalyst, and is extremely unstable in the air and susceptible to oxidative decomposition reactions. All steps up to assembly must be performed under an inert gas atmosphere.

以上のように、従来の高分子化合物蓄電池の製造方法で
は1重合体に影響を与えない厳密な条件下で行う必要が
あり、工程数が多いものとなり。
As mentioned above, the conventional manufacturing method for polymer compound storage batteries requires a large number of steps because it must be carried out under strict conditions that do not affect the monopolymer.

コストが非常に高くついてしまう。The cost will be very high.

本発明は、上記従来方法の欠点を克服し、蓄電池用正極
体として利用できる高分子化合物膜な合成し、該膜を外
部からの影響を受けずに蓄電池に使用して、製造工程が
少なく、かつ安価に蓄電池を製造することができる方法
を提供することを目的とするものである。
The present invention overcomes the drawbacks of the above-mentioned conventional methods, synthesizes a polymer compound film that can be used as a positive electrode body for a storage battery, uses the film in a storage battery without being affected by external influences, and requires fewer manufacturing steps. It is an object of the present invention to provide a method of manufacturing a storage battery at low cost.

すなわち1本発明の高分子化合物蓄電池の製造方法は、
電槽容器内において単量体と重合用支持電解質とを極性
有機溶媒に溶解して重合用非水電解質溶液を形成し、該
重合用非水電解質溶液中に白金、カーボン等の耐酸化性
を有する物質からなる正電極と、鉄、銅等の金属あるい
はカーボン系材料からなる負電極とを互いに接触しない
ように少なくともその一部分を浸漬し、該正及び負の電
極間に直流電圧を印加して、電解電流を通電することに
より、正電極の表面に上記単量体の重合体膜を電解重合
反応をこより析出せしめる第一工程と。
That is, 1. The method for manufacturing a polymer compound storage battery of the present invention is as follows:
A monomer and a supporting electrolyte for polymerization are dissolved in a polar organic solvent in a container to form a non-aqueous electrolyte solution for polymerization, and oxidation-resistant materials such as platinum and carbon are added to the non-aqueous electrolyte solution for polymerization. A positive electrode made of a substance such as iron, a negative electrode made of a metal such as iron or copper, or a carbon-based material are immersed at least partially so that they do not come into contact with each other, and a DC voltage is applied between the positive and negative electrodes. a first step of depositing a polymer film of the monomer on the surface of the positive electrode through an electrolytic polymerization reaction by applying an electrolytic current;

上記電槽容器から重合用非水電解質溶液を取り出し、電
池用支持電解質を極性有機溶媒に溶解した電池用非水電
解質溶液を該電槽容器に注入する第二工程とからなるこ
とを特徴とするものである。
A second step of taking out the polymerization non-aqueous electrolyte solution from the battery container and injecting a battery non-aqueous electrolyte solution in which a battery supporting electrolyte is dissolved in a polar organic solvent into the battery container. It is something.

本発明方法によれば1重合体膜の合成時tこ用いた電槽
容器及び正・負1!柩を蓄電池用容器及び正・負極体と
してそのまま利用して、非水電解質溶液を入れ替えるの
みで蓄電池を形成しているため。
According to the method of the present invention, when synthesizing a single polymer film, the battery container and the positive and negative 1! This is because the coffin is used as it is as a storage battery container and positive and negative electrode bodies, and a storage battery is formed by simply replacing the non-aqueous electrolyte solution.

簡単な工程で、しかも安価に蓄電池を側進することがで
きる。更に電槽容器は密封しているため。
A storage battery can be moved sideways through a simple process and at low cost. Furthermore, the battery container is sealed.

従来のごとき不活性ガス雰囲気下で行なう必要はない。It is not necessary to carry out the process under an inert gas atmosphere as in the conventional case.

また、この方法においては、電解重合反応によって重合
体膜を形成しているので、従来のチーグツ・ナツタ型触
媒を用いて合成したものに比して。
In addition, in this method, the polymer film is formed by electrolytic polymerization reaction, so compared to that synthesized using a conventional Ziegts-Natsuta type catalyst.

残留触媒による汚染がなく、該重合体膜は電気的特性に
優れており、該重合体膜を用いた蓄電池の正極体は非常
に電気的特性が安定したものにすることができる。
There is no contamination due to residual catalyst, and the polymer film has excellent electrical properties, and the positive electrode body of a storage battery using the polymer film can have extremely stable electrical properties.

このように1本発明方法では、非水下解質溶液を入れ替
えるのみで、!解重合用の電槽をそのまま蓄電池に応用
することができ1合−成した重合体膜を直接ハンドリン
グする必要がないため、該重合体験を損傷させることな
く蓄電池の正弾体に利用することができる。また、電f
IIに非水電解質溶液の入れ替え口を設けるのみで、!
槽がどのような形状をしていても、 frII単な方法
で蓄電池を形成することができる。
In this way, in the method of the present invention, all you have to do is replace the non-aqueous solute solution! The container for depolymerization can be directly applied to a storage battery.1 Since there is no need to directly handle the synthesized polymer membrane, it can be used as the main body of a storage battery without damaging the polymerization process. can. Also, electric f
Just by providing a replacement port for the non-aqueous electrolyte solution in the II, you can!
No matter what shape the tank has, it is possible to form an accumulator in a simple way.

以下1本発明をより詳細に説明する。The present invention will be explained in more detail below.

本発明方法で製造する高分子化合物蓄電油は。The polymer compound storage oil produced by the method of the present invention is:

原理的tこ支持電解質を含む極性有機溶媒からなる非水
電解質溶液と、その溶液を備蓄する電槽容器と該溶液に
浸漬した正及び負極体とからなるものであり、核正極体
に高分子化合物の重合体膜を使用したものである。該重
合体膜は、共役π(パイ)結合等により、導電性を有す
る高分子化合物の膜であり、蓄電池の正極体に使用した
場合、酸化・還元反応を行ない、充放電の役割を果すも
のである。すなわち、非水電解質溶液中の支持電解質の
アニオンが正極体の重合体膜と、カチオンが負極体とそ
れぞれ下記の化学反応式〔C)、CD)に示すように酸
化/還元反応でドープ/アンドープして、充放電を行う
ものである。
In principle, it consists of a non-aqueous electrolyte solution made of a polar organic solvent containing a supporting electrolyte, a battery container in which the solution is stored, and positive and negative electrode bodies immersed in the solution. It uses a polymer membrane of a compound. The polymer film is a film of a polymer compound that has conductivity due to conjugated π (pi) bonds, etc., and when used in the positive electrode of a storage battery, performs oxidation and reduction reactions and plays a role in charging and discharging. It is. That is, the anions of the supporting electrolyte in the non-aqueous electrolyte solution are doped/undoped with the polymer membrane of the positive electrode body, and the cations are doped/undoped with the negative electrode body through oxidation/reduction reactions as shown in the following chemical reaction formulas [C) and CD), respectively. The battery is then charged and discharged.

P + h−;==士p+ −A + e−LC)+ 13 + e ” (p) (ただし、上式において、Pは重合体膜、A−1B+は
それぞれ支持電解質のアニオン、カチオン。
P + h-;== p+ -A + e-LC)+ 13 + e'' (p) (However, in the above formula, P is a polymer membrane, and A-1B+ is an anion and a cation of the supporting electrolyte, respectively.

e−は電子を表わす。) 上記式(C)、CD)とも可逆的に起こり0式(C)の
反応は正極体で1式(D)の反応は負極体で生じ、充電
することりこより反応が右に移動し。
e- represents an electron. ) Both the above formulas (C) and CD) occur reversibly, the reaction of formula 0 (C) occurs on the positive electrode body, and the reaction of formula 1 (D) occurs on the negative electrode body, and the reaction moves to the right from the charging riko.

正極体ではアニオンA−が重合体膜へドーピングする。In the positive electrode body, the anion A- is doped into the polymer film.

一方、放電することにより反応が左に移動し、正極体で
は重合体膜中のアニオンA−が再び溶液中に溶解して、
充放電を行なうことができる。
On the other hand, by discharging, the reaction moves to the left, and in the positive electrode body, the anion A- in the polymer film is dissolved in the solution again.
Can be charged and discharged.

本発明においては、上記高分子化合物として、ポリピロ
ーθ系化合物、ポリチオフェン系化合物を使用するのが
望ましく、それらのうちの一方でも良く、双方を使用し
ても良い。
In the present invention, it is desirable to use a polypillow θ-based compound or a polythiophene-based compound as the polymer compound, and either one or both of them may be used.

本発明の第一工程においては、電解重合反応により上記
重合体膜を形成する。まず、ポリエチレン、ポリプロピ
レン等の材質からな・る電槽容器中において、電解重合
反応により重合体膜を形成する単量体と重合用支持覗解
質とを極性有機溶媒に溶解して重合用非水電解質溶液を
形成する。
In the first step of the present invention, the above polymer film is formed by electrolytic polymerization reaction. First, in a container made of a material such as polyethylene or polypropylene, a monomer that forms a polymer film by an electrolytic polymerization reaction and a support polymer for polymerization are dissolved in a polar organic solvent. Form a water electrolyte solution.

該単量体としては、ビロール系化合物、チオフェン系化
合物が望ましく、それらのうちの一方でも良く、双方を
使用しても良い。該ビロール系化合物としては、ビロー
ル、N−アルキルビロール。
The monomer is preferably a virol compound or a thiophene compound, and either one or both of them may be used. Examples of the virol compound include virol and N-alkylvirol.

N−アリールビロールであり1本発明においては。In the present invention, it is N-arylvirol.

これらのうちの1種または2m以上を用いる。まり、チ
オフェン系化合物としては、チオフーンあるいは8−ア
ルキルチオフェンであり、これらの一方または双方を使
用する。その配合量は1例えハヒロール系化合物のみあ
るいはチオフェン系化合物のみを使用する場合には、極
性有機溶K1gに。ビロール・系化合物の垣量体または
、千オフーン系化合物の単量体をそれぞれ0.01−1
0モルの範囲内で配合するのが望ましい。また、ビロー
ル系化合物とチオフェン系化合物の双方を使用する場合
には、極性有機溶媒llに。ピロール系化合物を0.0
5〜lO−!:Jv、チオフーン系化合物を0.01〜
6モルの範囲内で配合するのか望ましい。
One of these or 2 m or more is used. In other words, the thiophene compound is thiophene or 8-alkylthiophene, and one or both of these are used. For example, if only a hahilol compound or a thiophene compound is used, the amount to be mixed is 1 g of polar organic solution K. 0.01-1% of a monomer of a virol-based compound or a monomer of a 1,000-ohne-based compound, respectively.
It is desirable to blend within the range of 0 mol. In addition, when using both a virol compound and a thiophene compound, use a polar organic solvent. 0.0 pyrrole compounds
5~lO-! : Jv, thiophone compound from 0.01
It is preferable to mix within a range of 6 moles.

該配合量が、上記範囲より小さい場合には、蓄電池の正
極体に適した表面積の大きい重合体膜の形成が困難であ
り、上記範囲より大きい場合には。
If the amount is smaller than the above range, it is difficult to form a polymer film with a large surface area suitable for the positive electrode body of a storage battery, and if it is larger than the above range.

非水電解質溶液に共存する重合用支持電解質の溶解量が
減少する可能性がある。
There is a possibility that the dissolved amount of the supporting electrolyte for polymerization coexisting in the nonaqueous electrolyte solution decreases.

上記重合用支持電解質は、極性有機溶媒に溶解して、電
気伝導体となるものであり、金属の@塩素酸塩、フッ化
ホウ酸塩、フッ化リン酸塩、硫酸塩等がある。上記過塩
素酸塩としては1例えば過塩素酸リチウム、過塩素酸ナ
トリウム、過塩素酸カリウム、過堆素酸銀等が挙げられ
、フッ化ホウ酸塩としては、四フッ化ホウ酸リチウム、
四フッ化ホウ酸ナトリウム、四プッ化ホウ酸カリウム等
が、プッ化リン酸塩としては、六フッ化リン酸リチウム
、六フッ化リン酸ナトリウム、六フッ化リン酸カリウム
等が挙げられる。本発明においては。
The supporting electrolyte for polymerization becomes an electrical conductor when dissolved in a polar organic solvent, and includes metal chlorates, fluoroborates, fluorophosphates, sulfates, and the like. Examples of the above-mentioned perchlorates include lithium perchlorate, sodium perchlorate, potassium perchlorate, silver perchlorate, etc., and examples of the fluoroborates include lithium tetrafluoroborate,
Examples of the fluorophosphate include sodium tetrafluoroborate, potassium tetrafluoroborate, etc., and examples of the fluorophosphate include lithium hexafluorophosphate, sodium hexafluorophosphate, potassium hexafluorophosphate, and the like. In the present invention.

これら支持電解質のうちの1種もしくは2種以上を用い
る。なお、好ましくは、電気的特性が安定している過塩
素酸リチウムを使用するQがよい。
One or more types of these supporting electrolytes are used. Preferably, Q uses lithium perchlorate, which has stable electrical characteristics.

また、その配合量は、極性有機溶媒11)こ0.01〜
2モル含まれていることが望ましい。該配合量が0.0
1モル未満の場合には、溶液の抵抗が大ぎく、電流を定
常的に流しにくくなり、一方、2モルを越える場合には
、溶液中で上記支持電解質を完全に溶解させることが困
難となる。
In addition, the amount of the polar organic solvent 11) is 0.01~
It is desirable that the amount is 2 moles. The blending amount is 0.0
If the amount is less than 1 mol, the resistance of the solution will be so large that it will be difficult to pass current steadily, while if it exceeds 2 mol, it will be difficult to completely dissolve the supporting electrolyte in the solution. .

前記極性有機溶媒は、上記単量体及び支持電解質を溶解
し、正負極体を浸漬することにより、電流を通電させる
ものであり2本発明においては。
In the present invention, the polar organic solvent dissolves the monomer and the supporting electrolyte, and immerses the positive and negative electrode bodies in the polar organic solvent to allow current to flow therethrough.

正・負極体の酸化を起こしに<<1分解電圧の高い非水
溶媒を使用する。これは9例えば、水溶液を使用した場
合9通電することにより水溶液中で水の電気分解が起こ
り、酸素が発生し、正・負電極を酸化させてしまうとと
もにこの水の分解電圧に制限されて高電圧の電池が製造
されない可能性があるためである。
A nonaqueous solvent with a high decomposition voltage of <<1 is used to cause oxidation of the positive and negative electrode bodies. For example, when an aqueous solution is used, electrolysis of water occurs in the aqueous solution when electricity is applied, oxygen is generated, oxidizes the positive and negative electrodes, and the decomposition voltage of this water limits the voltage. This is because batteries of this voltage may not be manufactured.

該極性有機溶媒としては、プロピレンカーボネート、ス
ルホワン。アセトニトリル、ベンゾニトリル、ニトロベ
ンゼン、ニトロメタン、ジメトキシエタン、硫酸ジメチ
ル等が挙げられ、これらのうちの1種もしくは2種以上
を用いる。なお、上記極性有機溶媒のうち9通電時の発
熱に対して。
Examples of the polar organic solvent include propylene carbonate and sulfone. Examples include acetonitrile, benzonitrile, nitrobenzene, nitromethane, dimethoxyethane, dimethyl sulfate, etc., and one or more of these may be used. Note that 9 of the polar organic solvents above generate heat when energized.

非常に安定しているプロピレンカーボネート、スルホフ
ンが望ましい。
Preferred is propylene carbonate, sulfophane, which is very stable.

また1電檀容器は、前記非水電解質溶液におかされず、
かつ電気絶縁性を有する材質からなるものであり、ポリ
エチレン、ポリプロピレン、ガラス等が望ましい。
Further, 1 Dendan container is not affected by the non-aqueous electrolyte solution,
It is made of a material having electrical insulation properties, and polyethylene, polypropylene, glass, etc. are preferable.

その後、上記単量体と支持電解質を含む重合用非水電解
質溶液に正電極と負電極とを接触しないように少なくと
もその一部分を浸漬し、該正・負[極間に直流電圧を印
加して、該単量体を電解重合反応させて上記単量体の重
合体膜を正!極表面に形成する工程を行う。この場合、
一度の電解重合操作で多重の重合体膜を形成するため、
複数個の正・負電極を交互に配列して、上記電解質溶液
に浸漬しても良く、更に前記電槽容器をい(つかのセル
に分けて、各セ/L/に電解質溶液と、正・負電極を入
れて、セIしを接続してもよい。
Thereafter, at least a portion of the positive electrode and the negative electrode is immersed in a non-aqueous electrolyte solution for polymerization containing the monomer and supporting electrolyte so that they do not come into contact with each other, and a DC voltage is applied between the positive and negative electrodes. , the monomer is subjected to an electrolytic polymerization reaction to form a polymer film of the monomer! Perform the process of forming on the extreme surface. in this case,
In order to form multiple polymer films in a single electrolytic polymerization operation,
A plurality of positive and negative electrodes may be arranged alternately and immersed in the electrolyte solution. Furthermore, the battery container may be divided into several cells, and the electrolyte solution and the positive electrode may be arranged in each cell/L/. - You may insert a negative electrode and connect the terminal.

上記正[極としては、非水電解質溶液中で酸化溶解ある
いは不働態化を起こさない導電体であり。
The positive electrode is a conductor that does not undergo oxidative dissolution or passivation in a non-aqueous electrolyte solution.

例えば、白金、金、ニッケル、ステンレススチール、黒
鉛、カーボン、カーボン複合材等を用いる。
For example, platinum, gold, nickel, stainless steel, graphite, carbon, carbon composite material, etc. are used.

この正w、極の表面上に上記単量体の重合体膜が析出す
るため、該正[極の形状としては、板状、網状、メッキ
模状、蒸着嘆状のものを用いるのが望ましい。また、負
電極も、上記と同様に非水電解質溶液中で酸化溶解、不
@態化を起こさない導電体であり、白金、アルミニウム
、マグネシウム。
Since a polymer film of the above monomer is precipitated on the surface of this positive electrode, it is desirable to use a plate-like, net-like, plating-like, or vapor-deposited shape as the shape of the positive electrode. . Further, the negative electrode is also a conductor that does not undergo oxidative dissolution or passivation in a non-aqueous electrolyte solution, such as platinum, aluminum, or magnesium.

鉄、銅、ニッケル、カーボン複合材等が埜げられる。上
記正及び負電極の厚みは、高分子化合物蓄電池を形成し
た際にその軽量化の利点を生かすため、それぞれ0,1
〜100011mの範囲内が望ましい。
Iron, copper, nickel, carbon composite materials, etc. are banned. The thicknesses of the positive and negative electrodes are set to 0 and 1, respectively, in order to take advantage of the weight reduction when forming a polymer compound storage battery.
It is desirable that the distance be within the range of ~100011 m.

なお、非水電解質溶液中で、正・負電極が直接。Note that the positive and negative electrodes are directly connected in a non-aqueous electrolyte solution.

接触するのを防ぐため、正・負電極間にセパレーター、
!解液保持材、スペーサー等の絶縁体を配置してもよい
。上記絶縁体の中で、セパレーターを用いる場合には、
ポリプロピレン不織布等の電解質溶液の透過を妨げない
ものを使用するのが望ましい。
To prevent contact, place a separator between the positive and negative electrodes.
! An insulator such as a solution holding material and a spacer may be arranged. When using a separator among the above insulators,
It is desirable to use a material that does not impede permeation of the electrolyte solution, such as polypropylene nonwoven fabric.

上記正電極と負電極を直流電源に接続して直流電圧の印
加を行うことにより、溶液中の単量体が電解重合反応を
起こす。この重合反応により正電極表面に上記単量体の
重合体膜が析出される。これは、前記単量体の酸化、す
なわち、電子が奪われることによって重合が開始するた
め、正!極表面上で重合反応が進行することによると考
えられる。
By connecting the positive electrode and the negative electrode to a DC power source and applying a DC voltage, the monomers in the solution cause an electrolytic polymerization reaction. Through this polymerization reaction, a polymer film of the above monomer is deposited on the surface of the positive electrode. This is positive because polymerization begins by oxidation of the monomer, that is, the loss of electrons! This is thought to be due to the polymerization reaction proceeding on the extreme surface.

例えば、単量体として、ピロール系化合物及びチオフー
ン系化合物を使用した場合には、この重合反応により正
WL極表面にポリピロール系化合物及びポリチオフェン
系化合物からなる混合重合体または共重合体の一方また
は双方からなる重合体膜が析出されると考えられる。
For example, when a pyrrole compound and a thiophene compound are used as monomers, one or both of the mixed polymer or copolymer consisting of the polypyrrole compound and the polythiophene compound is formed on the positive WL electrode surface by this polymerization reaction. It is thought that a polymer film consisting of

この電解重合の条件としては、正tf@単位面積当り0
.1〜l OmA/ dの電流密度の電流を通電するの
が望ましい。該電流密度が01mA/d未満の場合、@
成された重合体の電気的特性や寿命性能が低くなり、一
方、tomA/1fflを舘える場合には、該重合体膜
が形成されないおそれがある。
The conditions for this electrolytic polymerization are positive tf@0 per unit area.
.. It is desirable to apply a current with a current density of 1 to 1 OmA/d. If the current density is less than 01 mA/d, @
The electrical properties and life performance of the formed polymer will be lowered, and on the other hand, if tomA/1ffl is exceeded, there is a possibility that the polymer film will not be formed.

なお、[流密度が10mA/cd以rであっても!正電
極の電位が重合体形成に影響を与える場合があり、その
ため、参照電極として銀電極(Aflo、 o l M
Alcloa ) を用いた際の正電極の電位が2、5
 V以丁にするのが望ましい。該電位が25Vを越える
場合には、良好な重合体膜が形成されない場合がある。
Note that even if the flow density is 10 mA/cd or more! The potential of the positive electrode may affect polymer formation, so a silver electrode (Aflo, o l M
The potential of the positive electrode when using Alcloa) is 2,5
It is desirable to make it V or more. If the potential exceeds 25V, a good polymer film may not be formed.

また0通電時間としては、電流密度によって異なるが、
一般に同じ電流密度の場合1通電時間が形成される重合
体膜がポリピロール系化合物またはポリチオフェン系化
合物からなるものの場合。
In addition, the zero current conduction time varies depending on the current density, but
In general, when the polymer film formed for one current application time at the same current density is made of a polypyrrole-based compound or a polythiophene-based compound.

該重合体膜の膜厚が1〜110007z、ぞの膜のかさ
密度が0.4〜1.8Q/Cdとなるように通電条件を
とるのが望ましい。このような条件で形成された重合体
膜は蓄電池の正極体に適用した場合。
It is desirable to set current conditions so that the polymer film has a thickness of 1 to 110007z and a bulk density of each film of 0.4 to 1.8Q/Cd. When the polymer film formed under these conditions is applied to the positive electrode body of a storage battery.

充放電のクーロン効率がほとんど100%と高く。The coulombic efficiency of charging and discharging is high, almost 100%.

かつ、繰り返し充放電を行なっても、過電圧が小さく、
安定である。
Moreover, the overvoltage is small even after repeated charging and discharging.
It is stable.

本発明の第二工程においては、上記第一工程で得られた
9重合体膜を合成した電槽容器中から重合用非水電解質
溶液を取り出し、該電槽容器に。
In the second step of the present invention, the non-aqueous electrolyte solution for polymerization is taken out from the container container in which the 9-polymer membrane obtained in the first step is synthesized, and placed in the container container.

電池用支持電解質を極性有機溶媒に溶解した電池用非水
電解質溶液を注入するのみで、それ以外の電槽容器及び
正・負WLfMはそのまま蓄電池用容器及び正・負極体
に使用して、蓄電池を形成するものである。
Simply inject a non-aqueous battery electrolyte solution in which a supporting electrolyte for batteries is dissolved in a polar organic solvent, and use the other battery containers and positive and negative WLfM as they are for storage battery containers and positive and negative electrode bodies. It forms the

上記電池用支持電解質としては、前記敏一工程で用いた
重合用支持電解質と一様に、金属の過塩素酸塩、フッ化
ホウ酸塩、フッ化すンr!p塩、硫酸塩等を用いる。し
かして、′I!池用支持電解質は第一工程で用いた重合
用支持電解質と同一の化合物であっても、異なる化合物
であっても良い。また。
As the supporting electrolyte for the battery, metal perchlorate, fluoroborate, fluoride! p salt, sulfate, etc. are used. However, 'I! The supporting electrolyte for the pond may be the same compound as the supporting electrolyte for polymerization used in the first step, or may be a different compound. Also.

その配合量は前V鳩−工秤時と同様であるのが望ましい
It is desirable that the blending amount is the same as in the previous V pigeon weighing.

また、上記極性有機溶媒としても、lli前記第一工程
で用いたr@性有#!溶媒と同様に、プロピレンカーボ
ネート、スルホヲン、アセトニトリル、ベンゾニトリル
、ニトロペ、ンビン、ジメトキシエタン。
Also, as the polar organic solvent, the r@sexual #! used in the first step may also be used. As well as solvents, propylene carbonate, sulfone, acetonitrile, benzonitrile, nitrope, nitrogen, dimethoxyethane.

硫酸ジメチル等を用い1本発明においては、これらのう
ちの1種または2wi以上を用いる。
In the present invention, one or more of these are used.

この第二工程において、!槽容器中の非水電解質溶液を
入れ替えるのは、前記重合体膜の合成時に上記単量体が
非水電解質溶液中に残留する可能性があり、この残留単
量体が蓄電池の充放電時に影響を与え1w電気的特性低
rさせるおそれがあると考えられるためである。
In this second step,! The reason for replacing the non-aqueous electrolyte solution in the tank container is that the above monomer may remain in the non-aqueous electrolyte solution during the synthesis of the polymer membrane, and this residual monomer may affect the charging and discharging of the storage battery. This is because it is thought that there is a risk that the electrical characteristics of 1W may be lowered.

上舵非水寛解質溶液を入れ替える方法としては。As a way to replace the upper rudder non-aqueous laxative solution.

電槽容器に溶液の排出口と注入口の2個の出入口を設け
ておいて、自然に溶液を排串・注入してもヨく、更に入
れ替λる速度を大きくするためバキュームあるいは加圧
により強制的に排出・注入してもよい。
By providing two entrances and exits in the container, one for the solution and one for the solution, you can drain and pour the solution naturally, or use vacuum or pressure to increase the rate of exchange. It may be forcibly discharged or injected.

上記の様にして、正・負極体間を接続することによって
、高分子化合物蓄電池を得る。なお+ i+1記重合体
膜の合成時に一度の電解重合操作で多量の重合体膜を形
成するため複数個の正・負電極を交互に配列した場合に
は、高容量の単セル電池。
By connecting the positive and negative electrode bodies in the manner described above, a polymer compound storage battery is obtained. In addition, when a plurality of positive and negative electrodes are arranged alternately in order to form a large amount of polymer film in a single electrolytic polymerization operation during the synthesis of the polymer film described in +i+1, a high-capacity single cell battery can be obtained.

さらtこは高容量・高電圧の複数セ/I/電池を簡単に
作製することができる。
In addition, high capacity, high voltage multiple cell/I/cell batteries can be easily produced.

本発明方法により製造された蓄電池は、充電時には、正
極体の重合体膜が電気化学的に酸化されて、電解質溶液
中のアニオンの該重合体膜へのドーピング反応が起こる
。一方、放電時には、該重合体膜が還元されて、該重合
体膜にドーピングしていたアニオンは再び溶液中へ溶は
出し、この機構により、充放電が行なわれる。
In the storage battery manufactured by the method of the present invention, during charging, the polymer membrane of the positive electrode body is electrochemically oxidized, and a doping reaction of anions in the electrolyte solution to the polymer membrane occurs. On the other hand, during discharge, the polymer film is reduced and the anions doped in the polymer film are dissolved into the solution again, and charging and discharging are performed by this mechanism.

以丁1本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail.

実施例1゜ 本実施例において製造する蓄電池の概略図を第1図に示
す。
Example 1 A schematic diagram of a storage battery manufactured in this example is shown in FIG.

正!!極としての厚み11007zのカーボン布lを5
0枚。セパレーター及び電解液保持材の役割を兼ねるポ
リプロピレン製不織布2を99枚、負電極トシての厚み
100μmのアルミニウム板8を50枚順次重ね、これ
らを、排液口41を備えたポリエチレン製の電槽容器4
に組み入れ、カーポア布fJ上端部11とアルミニウム
板の上端部81とをステンレス製のストラップ5ではさ
み取り付けた。次に注入口61の付いたポリエチレン製
のふた6をストラップの上端部のみを出して取りつけ、
電槽容器とふたの間を密封した。
Correct! ! 5 pieces of carbon cloth l with a thickness of 11007z as poles
0 pieces. 99 sheets of polypropylene nonwoven fabric 2, which also serves as a separator and an electrolyte holding material, and 50 sheets of aluminum plate 8 with a thickness of 100 μm for the negative electrode are stacked one after another, and these are placed in a polyethylene battery case equipped with a drain port 41. container 4
The upper end 11 of the Carpore cloth fJ and the upper end 81 of the aluminum plate were sandwiched and attached with a stainless steel strap 5. Next, attach the polyethylene lid 6 with the injection port 61 with only the upper end of the strap exposed.
The space between the battery container and the lid was sealed.

この電槽中に極性有機溶媒としてのプロピレンカーボネ
ート1eに重合体膜を形成する単量体とだ重合用非水電
解質溶液を注入口61からストラップ5が該非水電解質
溶液に浸漬する前まで注入した。
A nonaqueous electrolyte solution for polymerizing propylene carbonate 1e as a polar organic solvent with a monomer to form a polymer film was injected into this container from the injection port 61 until the strap 5 was immersed in the nonaqueous electrolyte solution. .

次に、カーボン布が正に、アルミニウム板が負に分極す
るように上記電解槽を直流電源に接続し。
Next, the electrolytic cell was connected to a DC power source so that the carbon cloth was polarized positively and the aluminum plate was polarized negatively.

正電極単位面積当り7 mA/cdの定電流を60分間
流し、正!極表面にポリピロールの重合体膜を。
A constant current of 7 mA/cd per unit area of the positive electrode was applied for 60 minutes, and positive! Polypyrrole polymer film on the extreme surface.

負電極表面にリチウムをそれぞれ析出させた。該重合体
膜は、かさ密度L26f/d、厚み約70Jimであっ
た。
Lithium was deposited on the surface of each negative electrode. The polymer film had a bulk density L of 26 f/d and a thickness of about 70 Jim.

この重合体膜を析出させたカーボン布、リチウムを析出
させたアルミニウム板をそれぞれ蓄電池用の正極体、負
極体として、[槽の排液口41から重合用非水電解質溶
液を取り出し、その後、極性有機溶媒としてのプロピレ
ンカーボネート11に電池用支持電解質としての過塩素
酸リチウムを240モル溶解した電池用非水電解質溶液
を注入口61から注入して1本発明にかかる蓄電池を製
造した。この′:#電池の正・負極間には、約8■の電
位差が生じていた。
The carbon cloth on which this polymer film was deposited and the aluminum plate on which lithium was deposited were used as positive and negative electrode bodies for storage batteries, respectively. A non-aqueous battery electrolyte solution in which 240 moles of lithium perchlorate as a battery supporting electrolyte was dissolved in propylene carbonate 11 as an organic solvent was injected from the injection port 61 to produce a storage battery according to the present invention. A potential difference of about 8 μm was generated between the positive and negative electrodes of this ':# battery.

該蓄電池を正電極単位面積当りtmA/dの定電流で放
1’il(正・負極間電位差がIVとなるまで放電する
)シ、続いて1mA/dの定電流で一定電気!(過塩素
酸イオンのドーピング量が重合体を構成する単量体分子
数に対する割合で20%となる景)充電する充放電サイ
クルを繰り返し、その寿命性能を調べた。その結果を第
2図の曲線Aに示す。第2図より本発明にかかる蓄電池
は、クーロン効率が高く、約800回の充放電を繰り返
すことができることがわかる。
The storage battery is discharged with a constant current of tmA/d per unit area of the positive electrode (discharged until the potential difference between the positive and negative electrodes becomes IV), and then with a constant current of 1mA/d. (The doping amount of perchlorate ions is 20% of the number of monomer molecules constituting the polymer.) Charge/discharge cycles were repeated to examine the life performance. The results are shown in curve A in FIG. From FIG. 2, it can be seen that the storage battery according to the present invention has a high coulombic efficiency and can be repeatedly charged and discharged about 800 times.

実施例2 重合体膜を形成する単量体としてNJチルピロール単量
体を用いた以外は、実施例1と同様な極性有機溶媒1重
合用支持S!解質、配合量で重合用非水電解質溶液を調
製し、!解重合時の通電時チルビロールの重合体膜を、
負電極表面にリチウムを析出させた。該重合体膜は、か
さ密度127y7cm、厚み約807zmであった。
Example 2 The same polar organic solvent 1 polymerization support S! as in Example 1 except that NJ tilpyrrole monomer was used as the monomer for forming the polymer film. Solyte, prepare a non-aqueous electrolyte solution for polymerization with the blended amount, and! When electricity is applied during depolymerization, the polymer film of tilvirol is
Lithium was deposited on the surface of the negative electrode. The polymer film had a bulk density of 127y7cm and a thickness of about 807zm.

次に、実施例1と同様にして、電槽中の非水電解質溶液
を入れ替えて1本発明にかかる蓄電池を製造した。この
蓄電池を用いて、実施例1と同様にして、充放電試験を
行ない、その寿命性能を詞べた。その結果を第2図の曲
線Bに示す。第2図より1本発明にかかる蓄電池は、ク
ーロン効率が高く、シかも繰り返し充放電を行なうこと
ができ。
Next, in the same manner as in Example 1, the non-aqueous electrolyte solution in the battery container was replaced to produce a storage battery according to the present invention. Using this storage battery, a charge/discharge test was conducted in the same manner as in Example 1, and its life performance was evaluated. The results are shown in curve B in FIG. From FIG. 2, the storage battery according to the present invention has a high coulombic efficiency and can be repeatedly charged and discharged.

長寿命であることがわかる。It can be seen that it has a long life.

実施例8 極性有機溶媒としてのプロピレンカーボネート16にビ
ロール単量体及びチオフェン単量体をそれぞれ0.1モ
ルと9重合用支持電解質としての過塩素酸リチウムを0
,2モル溶解して重合用非水電解質溶液を調製し、実施
例1と同様な電槽に注入して1通1電流密度を正電極単
位面積当り8mA/dで80分間通電して電解重合を行
ない、非水電解質溶液を入れ替えて1本発明にかかる蓄
電池を製造した。該蓄電池の正極体には9重合用正電極
表面にかさ密度L 10 f /cd、膜厚約80μm
のポリビロー〜及びポリチオフェンからなる重合体膜が
析出していた。
Example 8 Propylene carbonate 16 as a polar organic solvent, 0.1 mol each of virol monomer and thiophene monomer, and 0 lithium perchlorate as supporting electrolyte for polymerization.
A non-aqueous electrolyte solution for polymerization was prepared by dissolving 2 moles of the solution, and the solution was poured into the same container as in Example 1, and a current density of 8 mA/d per unit area of the positive electrode was applied for 80 minutes to conduct electrolytic polymerization. A storage battery according to the present invention was manufactured by replacing the non-aqueous electrolyte solution. The positive electrode body of the storage battery has a bulk density L 10 f /cd and a film thickness of about 80 μm on the surface of the positive electrode for 9 polymerization.
A polymer film consisting of polybillow and polythiophene was deposited.

該蓄電池を用いて、実施例1と同様にして、充放電試験
を行ない、その寿命性能を測定した。その結果を第2図
の曲線Cに示す。
Using the storage battery, a charge/discharge test was conducted in the same manner as in Example 1, and its life performance was measured. The results are shown in curve C in FIG.

@2図より1本発明)こかかる蓄電池は、クーロン効率
が高く、繰り返し充放電を行なうことができることがわ
かる。
From Figure 2, it can be seen that the storage battery of this invention has a high coulombic efficiency and can be repeatedly charged and discharged.

実施例4゜ 本実施例において製造する蓄電池の概略図を第8図1こ
示す。セパレーター及び電解液保持材の役割を兼ねる大
きさIomxlmのポリプロピレン製不織布!1!0を
1枚、正電極としての厚み10011m、大きさ121
:’lllX1mのカーボン布10を1枚、上記と同様
のポリプロピレン製不織布20を1枚、負電極としての
厚み1o07ztn、大きさ12(7)X1mのアルミ
ニウム板80を1順次次重ねてまき上げた。これを排液
ロア1を備えたポリエチレン環の筒7に入れ、注入口8
1を備えたステンvxtBco上蓋8を負電極のアルミ
ニウム板に接スるように取付け、同様にステンレス製の
底蓋82を正電極のカーボン布に接するように取付け、
該上蓋と底蓋とをそれぞね端子として、密封して。
Example 4 A schematic diagram of a storage battery manufactured in this example is shown in FIG. A polypropylene nonwoven fabric with a size of Iomxlm that doubles as a separator and electrolyte holding material! One sheet of 1!0, thickness 10011 m, size 121 as a positive electrode
: One sheet of carbon cloth 10 of x1m, one sheet of polypropylene non-woven fabric 20 similar to the above, and one aluminum plate 80 of thickness 1007ztn and size 12(7) x1m as a negative electrode were stacked one after the other and rolled up. . Put this into a polyethylene ring tube 7 equipped with a drain lower 1, and fill it with an inlet 8.
Attach the stainless steel vxtBco top lid 8 equipped with 1 so as to be in contact with the aluminum plate of the negative electrode, and similarly attach the stainless steel bottom lid 82 so as to be in contact with the carbon cloth of the positive electrode.
The top cover and bottom cover are each used as a terminal and sealed.

WL槽を形成した。A WL tank was formed.

次に、極性有機溶媒としてのプロビレンカーボネー)1
1にビロール単量体及び重合用支持電解質としての過塩
素酸リチウムをそれぞれ0.2モル溶解した重合用非水
電解質溶液を上記注入口81より電槽に、上蓋が該溶液
に接する前まで注入した。電槽の上蓋、底蓋をそれぞれ
直流電源のブヲス端子、マイナス端子に接続し、正を極
単位面積当りqmh/cAの定電流を80分間流し、カ
ーボン布表面にポリピロールの重合体膜を、アルミニウ
ム板表面にリチウムを析出させた。該重合体膜は、かさ
密度1.26y7cm、膜厚約9071mのものであっ
た。
Next, propylene carbonate as a polar organic solvent) 1
A non-aqueous electrolyte solution for polymerization in which 0.2 moles each of virol monomer and lithium perchlorate as a supporting electrolyte for polymerization are dissolved in 1 is injected into the container through the injection port 81 until the top lid comes into contact with the solution. did. Connect the top and bottom lids of the battery to the bus terminal and negative terminal of a DC power source, respectively, and apply a constant current of qmh/cA per unit area to the positive terminal for 80 minutes. Lithium was deposited on the plate surface. The polymer film had a bulk density of 1.26y7 cm and a film thickness of about 9071 m.

この電槽の排液ロア1より重合用非水電解質溶液をパキ
ーームによって取り出し、更に注入口81より実施例1
と同様な電池用非水電解′Ift溶液を加圧注入して、
非水電解質溶液を入れ替え、上記重合体1模を析出させ
たカーボン布、リチウムを析出させたアルミニウム板を
それぞれ蓄電池用の正極体、負極体として1本発明にか
かる蓄電池を製造した。
The non-aqueous electrolyte solution for polymerization was taken out from the drain lower 1 of this container using a pachyme, and then from the injection port 81 in Example 1.
Inject a non-aqueous battery electrolyte 'Ift solution under pressure,
A storage battery according to the present invention was manufactured by replacing the nonaqueous electrolyte solution and using a carbon cloth on which the above polymer 1 pattern was deposited and an aluminum plate on which lithium was deposited as a positive electrode body and a negative electrode body, respectively.

該蓄′F!!池を用いて、実施例1と同様ンこして、充
放電試験を行ない、その寿命性能を測定した。その結果
を第2図の曲線p)こ示す。
The accumulation'F! ! A charging and discharging test was conducted using a pond as in Example 1, and its life performance was measured. The result is shown by curve p) in FIG.

第2図より1本発明にかかるKW池は、クーロン効率が
高く、繰り返し充放電を行なうことかできることがわか
る。
From FIG. 2, it can be seen that the KW cell according to the present invention has a high coulombic efficiency and can be repeatedly charged and discharged.

実施例5゜ 重合体膜を形成する単量体としてN−4千ルビロ一ル単
量体を用いた以外は、実施例4と同礒良極性有機溶媒1
重合用支持電解質、配合量で重合用非水電解質溶液を詐
製し1通す電済密度を正電簡墨位面稍当り6mA/dで
通電して実施例4と同様にして、電解重合を行ない、非
水電解質溶液を入れ替え1本発明にかかる蓄電池を製造
した。
Example 5 The same polar organic solvent 1 as in Example 4 except that N-4,000 rubyroyl monomer was used as the monomer for forming the polymer film.
A non-aqueous electrolyte solution for polymerization was fabricated using the supporting electrolyte for polymerization and the blended amount. A storage battery according to the present invention was manufactured by replacing the non-aqueous electrolyte solution.

該蓄電池の正極体には9重合用正電極表面にかさ密度1
2sf/d、膜厚約7011mのポリーN−ンチルピロ
ールの重合体膜が析出していた。
The positive electrode body of the storage battery has a bulk density of 1 on the surface of the positive electrode for polymerization.
A polymer film of polyN-methylpyrrole with a film thickness of about 7011 m and a film thickness of 2 sf/d was deposited.

該蓄電池を用いて、実施例1と同様にして、充放電試験
を行ない、その寿命性能を測定した。その結果を第2図
の曲線Eに示す。
Using the storage battery, a charge/discharge test was conducted in the same manner as in Example 1, and its life performance was measured. The results are shown in curve E in FIG.

第2図より0本発明にかかる蓄電池は、クーロン効率が
高く、繰り返し充放電を行なうことができることがわか
る。
It can be seen from FIG. 2 that the storage battery according to the present invention has a high coulombic efficiency and can be repeatedly charged and discharged.

実施例6 極性有機溶媒としてのプロピレンカーボネート11にビ
ロール単量体及びチオフェン単量体をそれぞれ01モル
と9重合用支持電解質としての過塩素酸リチウムを0.
2モル溶解して重合用非水電解質溶液を調製した以外は
、実施例4と同様にして、1!解重合を行ない、非水電
解質溶液を入れ替えて1本発明にかかる蓄電池を製造し
た。
Example 6 In propylene carbonate 11 as a polar organic solvent, 0.1 mole each of virol monomer and thiophene monomer were added, and 0.01 mole of lithium perchlorate was added as a supporting electrolyte for polymerization.
1! in the same manner as in Example 4, except that a non-aqueous electrolyte solution for polymerization was prepared by dissolving 2 moles! A storage battery according to the present invention was manufactured by depolymerizing and replacing the nonaqueous electrolyte solution.

該蓄電池の正極体には1重合用正電極表面にかさ楡度1
.121/CtA 、膜厚的7Q7zmのポリピロール
及びポリチオフェンからなる重合体膜が析出していた。
The positive electrode body of the storage battery has an overlapping degree of 1 on the surface of the positive electrode for polymerization.
.. A polymer film consisting of polypyrrole and polythiophene with a film thickness of 121/CtA and 7Q7zm was precipitated.

該蓄電池を用いて、実施例1と同様にして、充放電試験
を行ない、その寿命性能を測定した。その結果を第2図
の曲線Fに示す。
Using the storage battery, a charge/discharge test was conducted in the same manner as in Example 1, and its life performance was measured. The results are shown in curve F in FIG.

第2図より0本発明にかかる蓄電池は、クーロン効率が
高く、繰り返し充放電を行なうことができることがわか
る。
It can be seen from FIG. 2 that the storage battery according to the present invention has a high coulombic efficiency and can be repeatedly charged and discharged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第8図はそれぞれ実施例1.実施例4の本発明
にかかる蓄電池の概略図、第2図は実施例1〜6tこお
ける蓄vL池の充放電寿命性能曲線を示す。 1、10・・・正電極、l 20・・・ セパレーター
兼電解液保持材、3,130・・・負wL極4.7・・
・ 電槽容器、41.71・・・排液口81.81・・
・注入口 第3図 第2図 サイクル暑く を回ノ
FIG. 1 and FIG. 8 show Example 1, respectively. FIG. 2 is a schematic diagram of the storage battery according to the present invention in Example 4, and shows the charging/discharging life performance curve of the storage VL battery in Examples 1 to 6t. 1, 10... Positive electrode, l 20... Separator and electrolyte holding material, 3,130... Negative wL electrode 4.7...
・ Battery container, 41.71... Drain port 81.81...
・Inlet Figure 3 Figure 2 Cycle hot times

Claims (1)

【特許請求の範囲】 (11[槽容器内において、単量体と重合用支持電解質
とを極性有機溶媒に溶解して重合用非水電解質溶液を形
成し、該重合用非水電解質溶液中に白金、カーボン等の
耐酸化性を有する物質からなる正電極と、鉄、銅等の金
属あるいはカーボン系材料からなる負[極とを互いに接
触しないように少なくともその一部分を浸漬し、該正及
び負の電極間tこ直流電圧を印加して、電解電流を通電
することにより、正W!、極の表面に上記単量体の重合
体膜を電解重合反応により析出せしめる第一工程と。 上記電槽容器から重合用非水電解質溶液を取り損し、電
池用支持電解質を極性有機溶媒に溶解した電池用非水電
解質溶液を該電槽容器に注入する第二工程とからなるこ
とを特徴とする高分子化合物蓄電池の製造方法。 (2)単量体は、ピロール系化合物またはチオフェン系
化合物の一方または双方である特許請求の範囲第fi+
項記載の高分子化合物蓄電池の製造方法。 (8)重合用支持電解質は、金属の過塩素酸塩。 フッ化ホウ酸塩、フッ化リン酸塩、硫酸塩のうちの1f
fiまたは2種以上である特許請求の範囲第(1)項記
載の高分子化合物蓄電池の製造方法。 (4)電池用支持電解質は、金属の過塩素酸塩。 フッ化ホウ酸塩、フッ化リン酸塩、硫酸塩のうちの1種
または2種以上である特許請求の範囲第fi1項記載の
高分子化合物蓄電池の!Il造方法。 (5)極性有機溶媒は、プロピレンカーボネート。 スル示ヲン、アセトニトリIv、ベンゾニトリル。 ニトロベンゼン、ニトロメタン、ジメトキシエタン、F
i&酸ジメチルのうちの1種または2種以上である特許
請求の範囲第(1)項記載の高分子化合物蓄電池の製造
方法。 (6)電解電流は。正Wl極単位面積当り0.1ないし
l OmA/dである特許請求の範囲第(11項記載の
高分子化合物蓄電池の製造方法。
[Claims] (11 [In a tank container, a monomer and a supporting electrolyte for polymerization are dissolved in a polar organic solvent to form a non-aqueous electrolyte solution for polymerization, and in the non-aqueous electrolyte solution for polymerization, A positive electrode made of an oxidation-resistant substance such as platinum or carbon, and a negative electrode made of a metal such as iron or copper or a carbon-based material are immersed at least partially so that they do not come into contact with each other. A first step of depositing a polymer film of the monomer on the surface of the electrode by electrolytic polymerization reaction by applying a DC voltage between the electrodes and passing an electrolytic current. A second step of removing the non-aqueous electrolyte solution for polymerization from the tank container and injecting a non-aqueous battery electrolyte solution in which a supporting electrolyte for batteries is dissolved in a polar organic solvent into the battery container. A method for manufacturing a molecular compound storage battery. (2) The monomer is one or both of a pyrrole compound and a thiophene compound.
A method for manufacturing a polymer compound storage battery as described in . (8) The supporting electrolyte for polymerization is a metal perchlorate. 1f of fluoroborates, fluorophosphates, and sulfates
The method for manufacturing a polymer compound storage battery according to claim (1), wherein fi or two or more types. (4) The supporting electrolyte for batteries is a metal perchlorate. The polymer compound storage battery according to claim 1, which is one or more of fluoroborates, fluorophosphates, and sulfates! Il construction method. (5) The polar organic solvent is propylene carbonate. Sulfide, acetonitrile IV, benzonitrile. Nitrobenzene, nitromethane, dimethoxyethane, F
The method for producing a polymer compound storage battery according to claim (1), wherein one or more of dimethyl i and dimethyl chloride is used. (6) What is the electrolytic current? The method for producing a polymer compound storage battery according to claim 11, wherein the positive Wl electrode has a positive Wl electrode of 0.1 to 1 OmA/d per unit area.
JP59005313A 1984-01-13 1984-01-13 Manufacture of polymer compound storage battery Pending JPS60150563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005313A JPS60150563A (en) 1984-01-13 1984-01-13 Manufacture of polymer compound storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005313A JPS60150563A (en) 1984-01-13 1984-01-13 Manufacture of polymer compound storage battery

Publications (1)

Publication Number Publication Date
JPS60150563A true JPS60150563A (en) 1985-08-08

Family

ID=11607773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005313A Pending JPS60150563A (en) 1984-01-13 1984-01-13 Manufacture of polymer compound storage battery

Country Status (1)

Country Link
JP (1) JPS60150563A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193379A (en) * 1985-02-20 1986-08-27 Hoxan Corp Secondary cell employing electrolytically polymerized polymer
JPS6414871A (en) * 1987-07-08 1989-01-19 Sumitomo Electric Industries Secondary battery
JPH01105477A (en) * 1987-10-19 1989-04-21 Sumitomo Electric Ind Ltd Laminated lithium secondary cell
US5654112A (en) * 1994-05-30 1997-08-05 Sanyo Electric Co., Ltd. Solid polyelectrolyte battery and its method of manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193379A (en) * 1985-02-20 1986-08-27 Hoxan Corp Secondary cell employing electrolytically polymerized polymer
JPS6414871A (en) * 1987-07-08 1989-01-19 Sumitomo Electric Industries Secondary battery
JPH01105477A (en) * 1987-10-19 1989-04-21 Sumitomo Electric Ind Ltd Laminated lithium secondary cell
US5654112A (en) * 1994-05-30 1997-08-05 Sanyo Electric Co., Ltd. Solid polyelectrolyte battery and its method of manufacture

Similar Documents

Publication Publication Date Title
Sun et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries
WO1988008210A1 (en) Sheet-like electrode, method of producing the same, and secondary cell
US20110274988A1 (en) Batteries, fuel cells, and other electrochemical devices
JPH0315175A (en) Secondary battery furnishing polymer electrodes
JPS6289749A (en) Electrode material
JPS60150563A (en) Manufacture of polymer compound storage battery
Boinowitz et al. A metal-free polypyrrole/graphite secondary battery with an anion shuttle mechanism
JPS61245468A (en) Nonaqueous electrolyte storage battery
JPS60127663A (en) Storage battery and manufacturing of its positive electrode polymer
JPS61203565A (en) Secondary battery and its electrode
EP0239976A2 (en) Molten salt secondary battery
JP4156481B2 (en) Gel electrolyte, its production method and its use
JPH0676821A (en) Lead-acid battery
JP4156495B2 (en) Gel electrolyte, its production method and its use
JPS6168870A (en) Secondary battery
JPH043066B2 (en)
JPH0821430B2 (en) Secondary battery
JPH05314964A (en) Lithium secondary battery
JP2644765B2 (en) Positive electrode for storage battery
JPS60107273A (en) Production process for storage battery and its positive electrode body film
JPS60136181A (en) Manufacture of storage battery and its positive electrode film
JPH0349151A (en) Secondary battery
JP2528798B2 (en) Laminate containing furan-based polymer complex film and its manufacturing method
JPS62100941A (en) Secondary cell
JPS6293863A (en) Nonaqueous system secondary battery