[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4156481B2 - Gel electrolyte, its production method and its use - Google Patents

Gel electrolyte, its production method and its use Download PDF

Info

Publication number
JP4156481B2
JP4156481B2 JP2003328712A JP2003328712A JP4156481B2 JP 4156481 B2 JP4156481 B2 JP 4156481B2 JP 2003328712 A JP2003328712 A JP 2003328712A JP 2003328712 A JP2003328712 A JP 2003328712A JP 4156481 B2 JP4156481 B2 JP 4156481B2
Authority
JP
Japan
Prior art keywords
electrolyte
gel electrolyte
gel
general formula
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003328712A
Other languages
Japanese (ja)
Other versions
JP2005093377A (en
Inventor
修平 村田
敬介 喜井
慶裕 植谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003328712A priority Critical patent/JP4156481B2/en
Publication of JP2005093377A publication Critical patent/JP2005093377A/en
Application granted granted Critical
Publication of JP4156481B2 publication Critical patent/JP4156481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ゲル電解質に関し、詳しくは、例えば、電池やコンデンサにおいて好適に用いることができるゲル電解質に関する。   The present invention relates to a gel electrolyte, and more particularly to a gel electrolyte that can be suitably used in, for example, a battery or a capacitor.

固体電解質とは、固体状態でイオン伝導性の高い物質をいい、なかでも、高分子物質を固体として用いる高分子固体電解質は、近年、次世代リチウム二次電池用電解質として、特に注目されており、世界的に研究が推進されている。   A solid electrolyte is a substance having a high ion conductivity in a solid state, and in particular, a polymer solid electrolyte using a polymer substance as a solid has recently attracted particular attention as an electrolyte for a next-generation lithium secondary battery. Research is being promoted worldwide.

このような高分子固体電解質は、従来の電解質溶液に比べて、液漏れのおそれがなく、また、薄膜にすることができる等、その形状も、自由度が大きい。しかしながら、従来、知られている高分子固体電解質は、液状電解質、即ち、電解液に比べて、電導度が著しく低いという問題点がある。例えば、従来、ポリエチレングリコールやポリプロピレングリコール等の鎖状ポリマーやポリフォスファゼン等の櫛型ポリマー等のポリマー材料を電解質塩と複合化してなる非水系高分子固体電解質が知られているが、従来、電導度が室温で10-3S/cmを上回るものは見出されていない。 Such a polymer solid electrolyte has a high degree of freedom in its shape, such as no risk of liquid leakage and can be made into a thin film, as compared with a conventional electrolyte solution. However, heretofore known polymer solid electrolytes have a problem that their electrical conductivity is significantly lower than that of liquid electrolytes, that is, electrolytic solutions. For example, conventionally, non-aqueous polymer solid electrolytes are known in which a polymer material such as a chain polymer such as polyethylene glycol or polypropylene glycol or a comb polymer such as polyphosphazene is combined with an electrolyte salt. Nothing has been found with an electrical conductivity exceeding 10 −3 S / cm at room temperature.

そこで、近年、種々の非水系ゲル電解質の実用化が研究されており、これによれば、室温において、10-3S/cm以上の電導度を有し、電解液に近いものが提案されている。このようなゲル状電解質は、ポリマー材料と非水系有機溶媒とによって形成されるゲル中に電解質塩を溶解させたものであり、例えば、ポリマーマトリックス中に電解液を保持させることによって得ることができる。 Therefore, in recent years, the practical application of various non-aqueous gel electrolytes has been studied, and according to this, one having a conductivity of 10 −3 S / cm or more at room temperature and close to an electrolytic solution has been proposed. Yes. Such a gel electrolyte is obtained by dissolving an electrolyte salt in a gel formed of a polymer material and a non-aqueous organic solvent, and can be obtained, for example, by holding an electrolyte in a polymer matrix. .

このようなゲル電解質の一例として、例えば、ポリエチレンオキシドやそれに類するポリエーテルポリマーをポリマーマトリックスとするゲル電解質が提案されている(特許文献1参照)。ポリエチレンオキシドやポリプロピレンオキシドのようなポリエーテルポリマーをポリマーマトリックスとし、有機溶媒としてγ−ブチロラクトンを用いてなるゲル電解質も提案されている。また、四官能末端アクリロイル変性アルキレンオキシド重合体を用いたゲル電解質が提案されている(特許文献2参照)。   As an example of such a gel electrolyte, for example, a gel electrolyte using polyethylene oxide or a similar polyether polymer as a polymer matrix has been proposed (see Patent Document 1). A gel electrolyte using a polyether polymer such as polyethylene oxide or polypropylene oxide as a polymer matrix and γ-butyrolactone as an organic solvent has also been proposed. Further, a gel electrolyte using a tetrafunctional terminal acryloyl-modified alkylene oxide polymer has been proposed (see Patent Document 2).

これらのポリエーテル系ポリマーは、電解液との相溶性が高く、均一で電導度の高いゲル電解質を与えるが、しかし、リチウムイオン電池において一般に用いられているヘキサフルオロリン酸リチウムを電解質塩として用いた場合、上記ポリマーの分解が起こるので、耐久性に問題がある。
特開平8−298126号公報 特開平11−176452号公報
These polyether-based polymers are highly compatible with electrolytes and give uniform and highly conductive gel electrolytes. However, lithium hexafluorophosphate commonly used in lithium ion batteries is used as the electrolyte salt. In such a case, the polymer is decomposed, and there is a problem in durability.
JP-A-8-298126 JP-A-11-176252

本発明は、従来のゲル電解質における上述したような問題を解決するためになされたものであって、均一で耐久性の高いゲル電解質とその利用、特に、そのようなゲル電解質を用いてなる電池とコンデンサを提供することを目的とする。   The present invention has been made to solve the above-described problems in conventional gel electrolytes, and is a uniform and highly durable gel electrolyte and its use, in particular, a battery using such a gel electrolyte. And to provide a capacitor.

本発明によれば、電解質塩とこの電解質塩のための溶媒とポリマーマトリックスからなるゲル状組成物において、上記ポリマーマトリックスが一般式(I)   According to the present invention, in a gel composition comprising an electrolyte salt, a solvent for the electrolyte salt, and a polymer matrix, the polymer matrix has the general formula (I).

Figure 0004156481
Figure 0004156481

(式中、Rは2価の有機基を示し、R1 は(n+1)価の炭化水素基を示し、Xは一般式(II) Wherein R represents a divalent organic group, R 1 represents an (n + 1) valent hydrocarbon group, and X represents a general formula (II)

Figure 0004156481
Figure 0004156481

(式中、R2 は水素原子又はメチル基を示す。)
で表される1価基を示し、nは1、2又は3を示し、nが1であるとき、x及びyは共に1であり、nが2であるとき、x及びyはそれぞれ独立に0、1又は2であり、且つ、x+y≧2であり、nが3であるとき、x及びyはそれぞれ独立に0、1、2又は3であり、且つ、x+y≧2である。)
で表される多官能性(メタ)アクリレートを重合させてなる架橋ポリマーからなることを特徴とするゲル電解質が提供される。
(In the formula, R 2 represents a hydrogen atom or a methyl group.)
N represents 1, 2 or 3; when n is 1, x and y are both 1; when n is 2, x and y are each independently When 0, 1 or 2, and x + y ≧ 2, and n is 3, x and y are each independently 0, 1, 2, or 3 and x + y ≧ 2. )
A gel electrolyte characterized by comprising a crosslinked polymer obtained by polymerizing a polyfunctional (meth) acrylate represented by

更に、本発明によれば、電解質塩とこの電解質塩のための溶媒と一般式(I)   Furthermore, according to the present invention, an electrolyte salt, a solvent for the electrolyte salt, and a general formula (I)

Figure 0004156481
Figure 0004156481

(式中、Rは2価の有機基を示し、R1 は(n+1)価の炭化水素基を示し、Xは一般式(II) Wherein R represents a divalent organic group, R 1 represents an (n + 1) valent hydrocarbon group, and X represents a general formula (II)

Figure 0004156481
Figure 0004156481

(式中、R2 は水素原子又はメチル基を示す。)
で表される1価基を示し、nは1、2又は3を示し、nが1であるとき、x及びyは共に1であり、nが2であるとき、x及びyはそれぞれ独立に0、1又は2であり、且つ、x+y≧2であり、nが3であるとき、x及びyはそれぞれ独立に0、1、2又は3であり、且つ、x+y≧2である。)
で表される多官能性(メタ)アクリレートを含む溶液に加熱又は活性放射線の照射を施し、上記二官能性(メタ)アクリレートを重合させて、架橋ポリマーを生成させ、この架橋ポリマーからなるマトリックス中に上記電解質塩と溶媒とを保持させたゲルを形成させることを特徴とするゲル電解質の製造方法が提供される。
(In the formula, R 2 represents a hydrogen atom or a methyl group.)
N represents 1, 2 or 3; when n is 1, x and y are both 1; when n is 2, x and y are each independently When 0, 1 or 2, and x + y ≧ 2, and n is 3, x and y are each independently 0, 1, 2, or 3 and x + y ≧ 2. )
In a matrix composed of the crosslinked polymer, a solution containing a polyfunctional (meth) acrylate represented by the formula (1) is heated or irradiated with actinic radiation to polymerize the bifunctional (meth) acrylate to form a crosslinked polymer. A method for producing a gel electrolyte is provided, wherein a gel holding the electrolyte salt and the solvent is formed.

本発明によるゲル電解質は、上記一般式(I)で表される二官能性(メタ)アクリレートをゲル化剤として、これを重合させてなる架橋ポリマーをマトリックスとするものであって、すぐれた電解質特性を有する。しかも、本発明によれば、上記ゲル化剤の少量の使用によって、均一で耐久性にすぐれるゲル電解質を得ることができる。   The gel electrolyte according to the present invention uses a difunctional (meth) acrylate represented by the above general formula (I) as a gelling agent and a cross-linked polymer obtained by polymerizing it as a matrix. Has characteristics. Moreover, according to the present invention, a gel electrolyte having a uniform and excellent durability can be obtained by using a small amount of the gelling agent.

このようなゲル電解質を用いることによって、液漏れのおそれがなく、高い性能と耐久性を有する電池やコンデンサを得ることができる。   By using such a gel electrolyte, there is no risk of liquid leakage, and a battery or capacitor having high performance and durability can be obtained.

本発明によるゲル電解質は、ポリマーマトリックスが上記一般式(I)で表される多官能性(メタ)アクリレートを重合させてなる架橋ポリマーからなる。   The gel electrolyte according to the present invention comprises a crosslinked polymer obtained by polymerizing a polyfunctional (meth) acrylate having a polymer matrix represented by the above general formula (I).

本発明において、(メタ)アクリレートは、アクリレート又はメタクリレートを意味するものとし、また、(メタ)アクリロイルは、アクリロイル又はメタクリロイルを意味するものとする。   In the present invention, (meth) acrylate means acrylate or methacrylate, and (meth) acryloyl means acryloyl or methacryloyl.

このような多官能性(メタ)アクリレートは、一般式(III)   Such polyfunctional (meth) acrylates have the general formula (III)

Figure 0004156481
Figure 0004156481

(式中、R1 及びnは前記と同じである。)
で表されるオキシカルボン酸と一般式(IV)
(In the formula, R 1 and n are the same as described above.)
And the general formula (IV)

Figure 0004156481
Figure 0004156481

(式中、Rは前記と同じである。)
で表されるジアミンを反応させて、一般式(V)
(In the formula, R is as defined above.)
Is reacted with a diamine represented by the general formula (V)

Figure 0004156481
Figure 0004156481

(式中、R、R1 及びnは前記と同じである。)
で表される上記ジアミン(IV)のジアミドとし、これを反応溶剤(例えば、トルエン)中、適宜の触媒(例えば、ジ−n−ブチルスズジラウレート)の存在下に2−(メタ)アクリロイルオキシエチルイソシアネートと反応させることによって得ることができる。従って、本発明において、上記多官能性(メタ)アクリレートの有する2価の有機基Rは、その製造のための原料として用いた上記ジアミン(IV)の残基(即ち、ジアミンから2つのアミノ基を除いた基)である。
(In the formula, R, R 1 and n are the same as described above.)
2- (meth) acryloyloxyethyl isocyanate in the presence of an appropriate catalyst (for example, di-n-butyltin dilaurate) in a reaction solvent (for example, toluene). It can obtain by making it react. Accordingly, in the present invention, the divalent organic group R possessed by the polyfunctional (meth) acrylate is a residue of the diamine (IV) used as a raw material for the production thereof (that is, two amino groups from the diamine). Group).

従って、本発明によれば、上記2価の有機基又はジアミン残基Rは、特に限定されるものではないが、好ましい具体例として、例えば、アルキレン基を挙げることができる。   Therefore, according to the present invention, the divalent organic group or the diamine residue R is not particularly limited, but preferred specific examples include, for example, an alkylene group.

上記アルキレン基は、好ましくは、炭素原子数2〜40の直鎖状又は分岐鎖状のアルキレン基であり、例えば、エチレン基、プロピレン基、ヘキサメチレン基、オクタメチレン基、ドデカメチレン基等を挙げることができる。   The alkylene group is preferably a linear or branched alkylene group having 2 to 40 carbon atoms, and examples thereof include an ethylene group, a propylene group, a hexamethylene group, an octamethylene group, and a dodecamethylene group. be able to.

また、前記一般式(I)で表わされる多官能性(メタ)アクリレートにおいて、(n+1)価の炭化水素基は、その製造に用いた前記オキシカルボン酸(III) 中の(n+1)価の炭化水素基R1 に由来するものである。本発明によれば、上記炭化水素基R1 は炭素原子数5〜40の範囲にあるものが好ましく、特に、炭素原子数10〜30の範囲にあるものが好ましい。 In the polyfunctional (meth) acrylate represented by the general formula (I), the (n + 1) -valent hydrocarbon group is the (n + 1) -valent carbonization in the oxycarboxylic acid (III) used for the production thereof. It originates from the hydrogen group R 1 . According to the present invention, the hydrocarbon group R 1 is preferably in the range of 5 to 40 carbon atoms, particularly preferably in the range of 10 to 30 carbon atoms.

従って、本発明によれば、上記オキシカルボン酸(III) のうち、モノヒドロキシカルボン酸(n=1)の好ましい具体例として、例えば、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシエナント酸、ヒドロキシカプリル酸、ヒドロキシペラルゴン酸、ヒドロキシカプリン酸、ヒドロキシウンデカン酸、ヒドロキシパルミチン酸、ヒドロキシマルガリン酸、ヒドロキシステアリン酸、ヒドロキシノナデカン酸、ヒドロキシアラキン酸、ヒドロキシベヘン酸、ヒドロキシリグノセリン酸、ヒドロキシヘキサコサン酸、ヒドロキシトリアコンタン酸、ヒドロキシテトラトリアコンタン酸等を挙げることができる。   Therefore, according to the present invention, preferred specific examples of monohydroxycarboxylic acid (n = 1) among the oxycarboxylic acids (III) include, for example, hydroxyvaleric acid, hydroxycaproic acid, hydroxyenanthic acid, hydroxycaprylic acid. , Hydroxy pelargonic acid, hydroxy capric acid, hydroxy undecanoic acid, hydroxy palmitic acid, hydroxy margaric acid, hydroxy stearic acid, hydroxy nonadecanoic acid, hydroxy arachidic acid, hydroxy behenic acid, hydroxy lignoceric acid, hydroxy hexacosanoic acid, hydroxy Examples thereof include triacontanoic acid and hydroxytetratriacontanoic acid.

また、上記オキシカルボン酸(III) のうち、ジヒドロキシカルボン酸(n=2)の好ましい具体例として、例えば、9,10−ジヒドロキシステアリン酸、9,12−ジヒドロキシステアリン酸等を挙げることができ、上記オキシカルボン酸(III) のうち、トリヒドロキシカルボン酸(n=3)の好ましい具体例として、例えば、8,9,16−トリヒドロキシパルミチン酸、9,10,16−トリヒドロキシパルミチン酸、11,12,15−トリヒドロキシパルミチン酸等を挙げることができる。これらのモノ、ジ又はトリジヒドロキシカルボン酸はそれぞれ、2種以上の混合物を用いてもよい。   Among the oxycarboxylic acids (III), preferred specific examples of dihydroxycarboxylic acid (n = 2) include, for example, 9,10-dihydroxystearic acid, 9,12-dihydroxystearic acid, Among the above oxycarboxylic acids (III), preferred specific examples of trihydroxycarboxylic acid (n = 3) include, for example, 8,9,16-trihydroxypalmitic acid, 9,10,16-trihydroxypalmitic acid, 11 , 12,15-trihydroxypalmitic acid and the like. Each of these mono-, di-, or tri-dihydroxycarboxylic acids may be used as a mixture of two or more.

また、これらのなかでも、本発明においては、オキシカルボン酸(III) としては、nが1であるモノヒドロキシカルボン酸が好ましく、特に、12−ヒドロキシステアリン酸が入手も容易であるので、好ましく用いられる。   Among these, in the present invention, as the oxycarboxylic acid (III), a monohydroxycarboxylic acid having n of 1 is preferable, and 12-hydroxystearic acid is particularly easily used because it is easily available. It is done.

オキシカルボン酸(III) として、このようなモノヒドロキシカルボン酸を用いれば、一般式(VI)   When such a monohydroxycarboxylic acid is used as the oxycarboxylic acid (III), the general formula (VI)

Figure 0004156481
Figure 0004156481

(式中、(式中、R及びR2 は前記と同じであり、R1 は2価の炭化水素基を示し、好ましくは、アルキレン基である。)
で表される二官能性(メタ)アクリレートを得ることができる。
(In the formula, R and R 2 are the same as defined above, and R 1 represents a divalent hydrocarbon group, preferably an alkylene group.)
The bifunctional (meth) acrylate represented by these can be obtained.

本発明によるゲル電解質は、例えば、電解質塩とこの電解質塩のための溶媒からなる電解液に上記多官能性(メタ)アクリレートを、好ましくは、重合開始剤と共に溶解させ、この溶液を加熱して、上記多官能性(メタ)アクリレートを重合(熱重合)させて、架橋ポリマーをポリマーマトリックスとして生成させることによって得ることができる。即ち、本発明によれば、上記多官能性(メタ)アクリレートをゲル化剤として用いるのである。   The gel electrolyte according to the present invention is prepared by, for example, dissolving the polyfunctional (meth) acrylate in an electrolytic solution comprising an electrolyte salt and a solvent for the electrolyte salt, preferably together with a polymerization initiator, and heating the solution. The polyfunctional (meth) acrylate can be polymerized (thermally polymerized) to form a crosslinked polymer as a polymer matrix. That is, according to the present invention, the polyfunctional (meth) acrylate is used as a gelling agent.

このような多官能性(メタ)アクリレートを重合させるための上記重合開始剤としては、特に、限定されるものではないが、例えば、過酸化ベンゾイルや2,2’−アゾビスイソブチロニトリル等を挙げることができる。しかし、多官能性(メタ)アクリレートの重合方法は、上記熱重合に限られず、例えば、紫外線や電子線のような活性放射線を照射して、上記多官能性(メタ)アクリレートを光重合させてもよい。   The polymerization initiator for polymerizing such a polyfunctional (meth) acrylate is not particularly limited, and examples thereof include benzoyl peroxide and 2,2′-azobisisobutyronitrile. Can be mentioned. However, the polymerization method of the polyfunctional (meth) acrylate is not limited to the above thermal polymerization. For example, the polyfunctional (meth) acrylate is photopolymerized by irradiating active radiation such as ultraviolet rays or electron beams. Also good.

本発明によるゲル電解質において、上記多官能性(メタ)アクリレートを重合させてなる架橋ポリマーの割合は、用いる電解質塩や溶媒に応じて、これらがその架橋ポリマーをマトリックスとしてゲル電解質を形成するように、適宜に決定されるが、しかし、通常、ゲル電解質の0.1〜50重量%の範囲である。特に、本発明によるゲル電解質を電池やコンデンサにおけるゲル電解質として用いる場合には、ゲル電解質におけるポリマーマトリックスの割合が大きいときは、それらの電気特性が低下するので、通常、0.1〜25重量%の範囲が好ましく、更に、0.1〜10重量%の範囲が一層好ましい。   In the gel electrolyte according to the present invention, the proportion of the crosslinked polymer obtained by polymerizing the polyfunctional (meth) acrylate is such that these form a gel electrolyte using the crosslinked polymer as a matrix, depending on the electrolyte salt or solvent used. However, it is usually in the range of 0.1 to 50% by weight of the gel electrolyte. In particular, when the gel electrolyte according to the present invention is used as a gel electrolyte in a battery or a capacitor, when the ratio of the polymer matrix in the gel electrolyte is large, the electrical characteristics thereof are lowered, and therefore usually 0.1 to 25% by weight. The range of 0.1 to 10% by weight is more preferable.

また、本発明によるゲル電解質における電解質塩の割合も、それ自体のみならず、用いる溶媒に応じて、適宜に決定されるが、通常、得られるゲル電解質中、1〜50重量%の範囲である。   Further, the ratio of the electrolyte salt in the gel electrolyte according to the present invention is appropriately determined depending on not only the solvent itself but also the solvent to be used, and is usually in the range of 1 to 50% by weight in the gel electrolyte to be obtained. .

本発明において用いる電解質塩としては、水素、リチウム、ナトリウム、カリウム等のアルカリ金属、カルシウム、ストロンチウム等のアルカリ土類金属、第三級又は第四級アンモニウム塩等をカチオン成分とし、塩酸、硝酸、リン酸、硫酸、ホウフッ化水素酸、フッ化水素酸、六フッ化リン酸、過塩素酸等の無機酸や有機カルボン酸,有機スルホン酸、フッ素置換有機スルホン酸等の有機酸をアニオン成分とする塩を用いることができる。これらのなかでは、特に、アルカリ金属イオンをカチオン成分とする電解質塩が好ましく用いられる。   As an electrolyte salt used in the present invention, alkali metal such as hydrogen, lithium, sodium and potassium, alkaline earth metal such as calcium and strontium, tertiary or quaternary ammonium salt and the like as a cation component, hydrochloric acid, nitric acid, Inorganic components such as phosphoric acid, sulfuric acid, borohydrofluoric acid, hydrofluoric acid, hexafluorophosphoric acid, perchloric acid, and organic acids such as organic carboxylic acids, organic sulfonic acids, and fluorine-substituted organic sulfonic acids are used as anion components. Can be used. Among these, an electrolyte salt containing an alkali metal ion as a cation component is particularly preferably used.

このようなアルカリ金属イオンをカチオン成分とする電解質塩の具体例としては、例えば、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム等の過塩素酸アルカリ金属、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸カリウム等のテトラフルオロホウ酸アルカリ金属、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸カリウム等のヘキサフルオロリン酸アルカリ金属、トリフルオロ酢酸リチウム等のトリフルオロ酢酸アルカリ金属、トリフルオロメタンスルホン酸リチウム等のトリフルオロメタンスルホン酸アルカリ金属をあげることができる。   Specific examples of the electrolyte salt having such an alkali metal ion as a cation component include, for example, alkali perchlorate such as lithium perchlorate, sodium perchlorate, potassium perchlorate, lithium tetrafluoroborate, tetra Alkali metal tetrafluoroborate such as sodium fluoroborate and potassium tetrafluoroborate, alkali metal hexafluorophosphate such as lithium hexafluorophosphate and potassium hexafluorophosphate, alkali metal trifluoroacetate such as lithium trifluoroacetate And alkali metal trifluoromethanesulfonates such as lithium trifluoromethanesulfonate.

更に、本発明において用いる上記電解質塩のための溶媒としては、その電解質塩を溶解するものであれば、どのようなものでも用いることができるが、非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチルラクトン等の環状エステル類、テトラヒドロフラン、ジメトキシエタン等の環状又は鎖状エーテル類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状エステル類を挙げることができる。これらの溶媒は、単独で、又は2種以上の混合物として用いられる。 本発明によるゲル電解質は、これを電池やコンデンサに用いる場合に、電極間の短絡を防ぐために、適宜のシート状基材に担持させて、膜状ゲル電解質として用いることができる。このように、基材を用いるときは、電極間のイオンの移動を阻害しないように、上記シート状基材としては、多孔質フィルムを用いることが好ましい。   Furthermore, any solvent can be used as the solvent for the electrolyte salt used in the present invention as long as it dissolves the electrolyte salt. Examples of the non-aqueous solvent include ethylene carbonate and propylene. Examples thereof include cyclic esters such as carbonate, butylene carbonate, and γ-butyllactone, cyclic or chain ethers such as tetrahydrofuran and dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. These solvents are used alone or as a mixture of two or more. When the gel electrolyte according to the present invention is used for a battery or a capacitor, the gel electrolyte can be supported on an appropriate sheet-like base material and used as a film-like gel electrolyte in order to prevent a short circuit between the electrodes. Thus, when using a base material, it is preferable to use a porous film as said sheet-like base material so that the movement of the ion between electrodes may not be inhibited.

本発明において、基材多孔質フィルムは、例えば、電池の場合であれば、その製造後にセパレータとして機能するものであるので、膜厚3〜100μmの範囲のものがよい。膜厚が3μmよりも薄いときは、強度が不十分であって、電池におセパレータとして用いた場合に、内部短絡を起こすおそれがあり、他方、膜厚が100μmを越えるときは、電極間距離が大きすぎで、電池の内部抵抗が過大となる。また、基材多孔質フィルムは、平均孔径0.01〜5μmの細孔を有するものがよい。   In the present invention, for example, in the case of a battery, the substrate porous film functions as a separator after its manufacture, and therefore a substrate having a film thickness in the range of 3 to 100 μm is preferable. When the film thickness is less than 3 μm, the strength is insufficient, and there is a risk of causing an internal short circuit when used as a separator in a battery. On the other hand, when the film thickness exceeds 100 μm, the distance between the electrodes Is too large, and the internal resistance of the battery becomes excessive. The substrate porous film preferably has pores having an average pore diameter of 0.01 to 5 μm.

本発明において、用いることができる基材多孔質フィルムは、上述したような特性を有すれば、特に限定されるものではないが、耐溶剤性や耐酸化性を考慮すれば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂からなる多孔質フィルムが好適である。しかし、なかでも、加熱されたときに樹脂が溶融して、細孔が閉塞する性質を有し、従って、電池に所謂シャットダウン機能を有せしめることができるところから、基材多孔質フィルムとしては、ポリエチレンが特に好適である。ここに、ポリエチレンは、エチレンのホモポリマーのみならず、プロピレン、ブテン、ヘキセン等のα−オレフィンとエチレンとのコポリマーを含むものとする。しかし、本発明によれば、ポリテトラフルオロエチレンやポリイミド等の多孔質膜と上記ポリオレフィン樹脂多孔質フィルムとの積層フィルムも、耐熱性にすぐれるところから、基材多孔質フィルムとして好適に用いることができる。   In the present invention, the substrate porous film that can be used is not particularly limited as long as it has the above-described characteristics, but considering solvent resistance and oxidation resistance, polyethylene, polypropylene, etc. A porous film made of a polyolefin resin is suitable. However, among them, the resin melts when heated and has the property of closing the pores, and therefore the battery can have a so-called shutdown function. Polyethylene is particularly preferred. Here, polyethylene includes not only a homopolymer of ethylene but also a copolymer of ethylene with an α-olefin such as propylene, butene and hexene. However, according to the present invention, a laminated film of a porous film such as polytetrafluoroethylene or polyimide and the above-mentioned polyolefin resin porous film is also preferably used as a substrate porous film because of its excellent heat resistance. Can do.

本発明によれば、基材多孔質膜中において、電解質塩とこの電解質塩のための溶媒と前記一般式(I)で表される多官能性(メタ)アクリレートを含む溶液に加熱又は活性放射線の照射を施し、上記多官能性(メタ)アクリレートを重合させて、架橋ポリマーを生成させ、この架橋ポリマーからなるマトリックス中に上記電解質塩と溶媒とを保持したゲルを形成させることによって、膜状ゲル電解質を得ることができる。   According to the present invention, a solution containing an electrolyte salt, a solvent for the electrolyte salt, and a polyfunctional (meth) acrylate represented by the general formula (I) is heated or actinic radiation in the porous substrate membrane. To form a cross-linked polymer by polymerizing the polyfunctional (meth) acrylate, and forming a gel holding the electrolyte salt and the solvent in a matrix composed of the cross-linked polymer. A gel electrolyte can be obtained.

このような膜状ゲル電解質は、例えば、電池やコンデンサの製造に好適に用いることができる。例えば、第一の方法としては、電極と基材多孔質膜とを積層し、又は捲回して、電気化学素子とし、これを電池の電極板を兼ねる電池缶に装入する。次に、電解質塩とこの電解質塩のための溶媒と共に前記多官能性(メタ)アクリレートと、好ましくは、重合開始剤とを溶解させてなる溶液を上記電池缶中に注入し、上記基材多孔質膜に上記溶液を含浸させた後、加熱して、前記多官能性(メタ)アクリレートを重合させ、架橋ポリマーを生成させて、これをポリマーマトリックスとする均一なゲル電解質を形成させれば、膜状ゲル電解質を含む電池を得ることができる。   Such a membrane gel electrolyte can be suitably used, for example, for the production of batteries and capacitors. For example, as a first method, an electrode and a substrate porous membrane are laminated or wound to form an electrochemical element, which is inserted into a battery can that also serves as a battery electrode plate. Next, a solution obtained by dissolving the polyfunctional (meth) acrylate and preferably a polymerization initiator together with an electrolyte salt and a solvent for the electrolyte salt is injected into the battery can, and the substrate porous After impregnating the above-mentioned solution into a membrane, heating to polymerize the polyfunctional (meth) acrylate to produce a crosslinked polymer, and form a uniform gel electrolyte using this as a polymer matrix, A battery containing a membrane gel electrolyte can be obtained.

第二の方法としては、基材多孔質膜に予め前記多官能性(メタ)アクリレートを担持させ、これを電極と積層し、又は捲回して、電気化学素子とし、これを電池の電極板を兼ねる電池缶に装入する。次に、電解質塩とこの電解質塩のための溶媒と、好ましくは、重合開始剤とからなる電解液を上記電池缶中に注入し、この電解液を上記多孔質膜に含浸させて、基材多孔質膜に担持させた多官能性(メタ)アクリレートをこの電解液に溶解させた後、加熱して、上記多官能性(メタ)アクリレートを重合させ、架橋ポリマーを生成させて、これをポリマーマトリックスとする均一なゲル電解質を形成させれば、膜状ゲル電解質を含む電池を得ることができる。   As a second method, the polyfunctional (meth) acrylate is previously supported on a porous substrate membrane, and this is laminated with an electrode or wound to form an electrochemical element, which is used as a battery electrode plate. Insert the battery can. Next, an electrolyte solution composed of an electrolyte salt, a solvent for the electrolyte salt, and preferably a polymerization initiator is injected into the battery can, and the porous membrane is impregnated with the electrolyte. The polyfunctional (meth) acrylate supported on the porous membrane is dissolved in this electrolytic solution, and then heated to polymerize the polyfunctional (meth) acrylate to form a crosslinked polymer, which is then polymerized. If a uniform gel electrolyte as a matrix is formed, a battery containing a membrane gel electrolyte can be obtained.

第三の方法として、基材多孔質膜に予め前記多官能性(メタ)アクリレートと重合開始剤とを担持させ、これを電極と積層し、又は捲回して、電気化学素子とし、これを電池の電極板を兼ねる電池缶に装入する。次に、電解質塩とこの電解質塩のための溶媒とからなる電解液を上記電池缶中に注入し、この電解液を上記多孔質膜に含浸させて、基材多孔質膜に担持させた多官能性(メタ)アクリレートと重合開始剤をこの電解液に溶解させた後、加熱して、上記多官能性(メタ)アクリレートを重合させ、架橋ポリマーを生成させて、これをポリマーマトリックスとする均一なゲル電解質を形成させれば、膜状ゲル電解質を含む電池を得ることができる。   As a third method, the polyfunctional (meth) acrylate and the polymerization initiator are supported in advance on a porous substrate membrane, and this is laminated with an electrode or wound to form an electrochemical element, which is a battery. Into a battery can that also serves as the electrode plate. Next, an electrolytic solution composed of an electrolyte salt and a solvent for the electrolyte salt is injected into the battery can, and the porous membrane is impregnated with the electrolyte so as to be supported on the substrate porous membrane. A functional (meth) acrylate and a polymerization initiator are dissolved in the electrolytic solution, and then heated to polymerize the polyfunctional (meth) acrylate to form a crosslinked polymer, which is used as a polymer matrix. If a simple gel electrolyte is formed, a battery containing a membrane gel electrolyte can be obtained.

更に、別の方法として、予め、電解質塩とこの電解質塩のための溶媒とからなる電解液に前記多官能性(メタ)アクリレートと重合開始剤を溶解させて溶液を調製し、これを基材多孔質膜に含浸させると共に、上記電解液を電極(正極及び負極)に含浸させた後、これらを電池缶に装入して、電池缶内にて、例えば、負極/基材多孔質膜/正極からなる積層体を形成して、電池仕掛品を作製する。次に、これを加熱して、上記基材多孔質膜に含浸させた多官能性(メタ)アクリレートを重合させ、架橋ポリマーを生成させて、これをポリマーマトリックスとする均一なゲル電解質を形成させれば、膜状ゲル電解質を含む電池を得ることができる。   Furthermore, as another method, a solution is prepared in advance by dissolving the polyfunctional (meth) acrylate and the polymerization initiator in an electrolytic solution composed of an electrolyte salt and a solvent for the electrolyte salt, and this is used as a base material. After impregnating the porous membrane and impregnating the above electrolyte solution into the electrodes (positive electrode and negative electrode), these were inserted into the battery can, and in the battery can, for example, the negative electrode / substrate porous membrane / A laminate made of a positive electrode is formed to produce a battery work in progress. Next, this is heated to polymerize the polyfunctional (meth) acrylate impregnated into the porous substrate membrane to form a crosslinked polymer, thereby forming a uniform gel electrolyte using this as a polymer matrix. If so, a battery containing a membrane gel electrolyte can be obtained.

図1は、このような膜状ゲル電解質を用いるコイン型リチウム二次電池の縦断面図である。このリチウム二次電池においては、正極端子を兼ねる正極缶1は、例えば、ニッケルめっきを施したステンレス鋼板からなり、絶縁体2を介して、この正極缶と絶縁された負極端子を兼ねる負極缶3と組合わされて、電池缶(容器)を構成している。負極缶も、例えば、ニッケルめっきを施したステンレス鋼板からなる。   FIG. 1 is a longitudinal sectional view of a coin-type lithium secondary battery using such a membrane gel electrolyte. In this lithium secondary battery, a positive electrode can 1 also serving as a positive electrode terminal is made of, for example, a nickel-plated stainless steel plate, and a negative electrode can 3 also serving as a negative electrode terminal insulated from the positive electrode can via an insulator 2. In combination with a battery can (container). The negative electrode can is also made of, for example, a stainless steel plate plated with nickel.

このようにして形成される電池缶の内部には、正極4が正極集電体5を介して正極缶に接触して配設されている。正極4は、例えば、リチウムマンガン複合酸化物のような正極活物質と黒鉛のような導電性物質をポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンのような結着樹脂と混合し、これを加圧成形して得ることができる。同様に、負極6が負極集電体7を介して負極缶に接触して配設されている。負極は、例えば、リチウム板からなる。これら正極と負極との間に、本発明による膜状ゲル電解質8が配設されて、電池を構成している。かくして、このような電池によれば、その正極缶と負極缶を端子として電気エネルギーを取り出すことができる。   Inside the battery can thus formed, the positive electrode 4 is disposed in contact with the positive electrode can via the positive electrode current collector 5. For example, the positive electrode 4 is prepared by mixing a positive electrode active material such as lithium manganese composite oxide and a conductive material such as graphite with a binder resin such as polyethylene, polypropylene, and polytetrafluoroethylene, and then pressing the mixture. Can be obtained. Similarly, the negative electrode 6 is disposed in contact with the negative electrode can via the negative electrode current collector 7. The negative electrode is made of, for example, a lithium plate. A membrane gel electrolyte 8 according to the present invention is disposed between the positive electrode and the negative electrode to constitute a battery. Thus, according to such a battery, electric energy can be taken out using the positive electrode can and the negative electrode can as terminals.

コンデンサも、上述した方法によって、同様にして得ることができる。図2は、上述したような膜状ゲル電解質を用いる電気二重層コンデンサの縦断面図である。上述した電池におけると同様に、膜状ゲル電解質9を挟んで、それぞれ集電体10を有する一対の電極11が対向して配設され、かくして、形成された素子が絶縁性封止材12中に封入されており、それぞれの集電体から端子13が絶縁性封止材の外部に延びて設けられている。   The capacitor can be obtained in the same manner by the method described above. FIG. 2 is a longitudinal sectional view of an electric double layer capacitor using the film-like gel electrolyte as described above. As in the battery described above, a pair of electrodes 11 each having a current collector 10 are disposed opposite to each other with the membrane gel electrolyte 9 interposed therebetween, and thus the formed element is in the insulating sealing material 12. The terminals 13 are provided extending from the respective current collectors to the outside of the insulating sealing material.

以下に参考例と比較例と共に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

参考例1
(i)ジアミドの合成
エチレンジアミン42.3gと12−ヒドロキシステアリン酸430.1gを混合し、180℃で6時間、攪拌下、反応水を除去しながら、反応を行った。得られた反応生成物をトルエンとメタノールとの混合溶剤から晶析して、ジアミドを得た。
Reference example 1
(I) Synthesis of diamide 42.3 g of ethylenediamine and 430.1 g of 12-hydroxystearic acid were mixed, and the reaction was performed while removing the reaction water while stirring at 180 ° C. for 6 hours. The obtained reaction product was crystallized from a mixed solvent of toluene and methanol to obtain diamide.

(ii)二官能性メタクリレートの合成
上記ジアミド22.3gをトルエン1Lに加え、加熱、溶解させ、共沸させて、水分を除去した。70℃まで冷却した後、攪拌下、これに2−メタクリロイルオキシエチルイソシアネート14.2g、ジ−n−ブチルスズジラウレート55mg及びトルエン100mLの混合物を10分かけて滴下した後、80℃で14時間攪拌して、反応を行った。反応終了後、室温まで冷却し、析出した反応生成物を濾過し、トルエンとメタノールとの混合溶剤から晶析させて、次式(1)で表される二官能性メタクリレートを得た。
(Ii) Synthesis of difunctional methacrylate 22.3 g of the above diamide was added to 1 L of toluene, heated, dissolved and azeotroped to remove moisture. After cooling to 70 ° C., a mixture of 14.2 g of 2-methacryloyloxyethyl isocyanate, 55 mg of di-n-butyltin dilaurate and 100 mL of toluene was added dropwise over 10 minutes with stirring, followed by stirring at 80 ° C. for 14 hours. The reaction was performed. After completion of the reaction, the reaction product was cooled to room temperature, and the deposited reaction product was filtered and crystallized from a mixed solvent of toluene and methanol to obtain a bifunctional methacrylate represented by the following formula (1).

質量分析による分子量(ESI法):(M+H)+ =935
プロトンNMRスペクトル(400MHz、重DMSO溶媒、δ(ppm)):
Molecular weight by mass spectrometry (ESI method) :( M + H) + = 935
Proton NMR spectrum (400 MHz, heavy DMSO solvent, δ (ppm)):

Figure 0004156481
Figure 0004156481

Figure 0004156481
Figure 0004156481

13C−NMRスペクトル(100MHz、重DMSO溶媒、δ(ppm)): 13 C-NMR spectrum (100 MHz, deuterated DMSO solvent, δ (ppm)):

Figure 0004156481
Figure 0004156481

Figure 0004156481
Figure 0004156481

参考例2
(i)ジアミドの合成
オクタメチレンジアミン20.7gと12−ヒドロキシステアリン酸87.7gを混合し、180℃で6時間、攪拌下、反応水を除去しながら、反応を行った。得られた反応生成物をトルエンとメタノールとの混合溶剤から晶析して、ジアミドを得た。
Reference example 2
(I) Synthesis of Diamide 20.7 g of octamethylenediamine and 87.7 g of 12-hydroxystearic acid were mixed, and the reaction was carried out while removing the reaction water at 180 ° C. for 6 hours with stirring. The obtained reaction product was crystallized from a mixed solvent of toluene and methanol to obtain diamide.

(ii)二官能性メタクリレートの合成
上記ジアミド11.1gをトルエン1Lに加え、加熱、溶解させ、共沸させて、水分を除去した。70℃まで冷却した後、攪拌下、これに2−メタクリロイルオキシエチルイソシアネート6.3g、ジ−n−ブチルスズジラウレート17mg及びトルエン100mLの混合物を10分かけて滴下した後、80℃で10時間攪拌して、反応を行った。反応終了後、室温まで冷却し、析出した反応生成物を濾過し、トルエンとメタノールとの混合溶剤から晶析させて、次式(2)で表される二官能性メタクリレートを得た。
質量分析による分子量(ESI法):(M+H)+ =1020(13C同位体の効果によって1質量多く観察される。)
(Ii) Synthesis of difunctional methacrylate 11.1 g of the above diamide was added to 1 L of toluene, heated, dissolved, and azeotroped to remove moisture. After cooling to 70 ° C, a mixture of 6.3 g of 2-methacryloyloxyethyl isocyanate, 17 mg of di-n-butyltin dilaurate and 100 mL of toluene was added dropwise over 10 minutes, and the mixture was stirred at 80 ° C for 10 hours. The reaction was performed. After completion of the reaction, the reaction product was cooled to room temperature, and the deposited reaction product was filtered and crystallized from a mixed solvent of toluene and methanol to obtain a bifunctional methacrylate represented by the following formula (2).
Molecular weight by mass spectrometry (ESI method): (M + H) + = 1020 (1 mass is observed due to the effect of 13 C isotope)

プロトンNMRスペクトル(400MHz、重DMSO溶媒、δ(ppm)): Proton NMR spectrum (400 MHz, heavy DMSO solvent, δ (ppm)):

Figure 0004156481
Figure 0004156481

Figure 0004156481
Figure 0004156481

13C−NMRスペクトル(100MHz、重DMSO溶媒、δ(ppm)): 13 C-NMR spectrum (100 MHz, deuterated DMSO solvent, δ (ppm)):

Figure 0004156481
Figure 0004156481

Figure 0004156481
Figure 0004156481

実施例1
アルゴン置換したグローブボックス中、エチレンカーボネート/ジエチルカーボネート混合溶媒(容量比1/2)に1.4モル/L濃度となるように電解質塩ヘキサフルオロリン酸リチウム(LiPF6)を溶解させて、電解液を調製した。この電解液97.0gに参考例1で調製した二官能性メタクリレート3.0gを加え、室温で攪拌して溶解させ、この後、更に、過酸化ベンゾイル0.06gを加え、室温で攪拌、溶解させて、溶液Aを調製した。
Example 1
In an argon-substituted glove box, electrolyte salt lithium hexafluorophosphate (LiPF 6 ) was dissolved in an ethylene carbonate / diethyl carbonate mixed solvent (volume ratio 1/2) to a concentration of 1.4 mol / L, and electrolysis was performed. A liquid was prepared. 3.0 g of the bifunctional methacrylate prepared in Reference Example 1 was added to 97.0 g of this electrolytic solution and dissolved by stirring at room temperature. Thereafter, 0.06 g of benzoyl peroxide was further added and stirred and dissolved at room temperature. Solution A was prepared.

(ゲル化試験とゲルの耐熱性試験)
試験のために、この溶液Aをアルゴン置換したグローブボックス中、ガラス瓶中に入れ、密封した後、80℃の恒温器中に1時間投入して、上記二官能性メタクリレートを重合させ、架橋ポリマーを形成させて、自立性のゲル電解質を得た。このゲル電解質は、これを密封状態のまま、80℃の恒温器内に5日間放置したが、液状物の分離はみられず、ゲル状態を保っていた。
(Gelification test and heat resistance test of gel)
For the test, this solution A was put in a glass bottle in a glove box purged with argon, sealed, and then placed in an incubator at 80 ° C. for 1 hour to polymerize the above bifunctional methacrylate, A self-supporting gel electrolyte was obtained. This gel electrolyte was left in an incubator at 80 ° C. for 5 days in a sealed state, but the liquid substance was not separated and kept in a gel state.

(電池の作製と電解質の放電負荷特性)
ポリエチレン樹脂製多孔質膜(厚さ25μm、空孔率50%、平均孔径0.1μm)、コバルト酸リチウムを活物質とする正極及び天然黒鉛を活物質とする負極にそれぞれ上記溶液Aを含浸させた後、これら負極、ポリエチレン樹脂製多孔質膜及び正極をこの順序で正負電極板を兼ねる電池缶(2016サイズのコイン電池用電池缶)に仕込み、負極/ポリエチレン樹脂製多孔質膜/正極からなる積層体を缶内で形成して、コイン電池の仕掛品を作製した。次いで、この電池の仕掛品を80℃の恒温器中に1時間投入し、上記二官能性メタクリレートを重合させ、架橋ポリマーを形成させて、ゲル電解質を形成させ、コイン型リチウムイオン二次電池を作製した。
(Battery fabrication and electrolyte discharge load characteristics)
A polyethylene resin porous membrane (thickness 25 μm, porosity 50%, average pore diameter 0.1 μm), a positive electrode using lithium cobaltate as an active material, and a negative electrode using natural graphite as an active material are impregnated with the above solution A, respectively. After that, the negative electrode, the polyethylene resin porous membrane and the positive electrode are charged in this order into a battery can (2016-size coin battery can) that also serves as a positive and negative electrode plate, and consists of negative electrode / polyethylene resin porous membrane / positive electrode. A laminate was formed in the can to produce a work in progress for the coin battery. Next, the work in progress of this battery was put into an incubator at 80 ° C. for 1 hour to polymerize the bifunctional methacrylate, to form a crosslinked polymer, to form a gel electrolyte, and to produce a coin-type lithium ion secondary battery. Produced.

この電池について、0.2CmAのレートにて5回充放電を行った後に、0.2CmAのレートで充電し、更に、その後、2.0CmAのレートで放電を行って、2.0CmA/0.2CmA放電容量比で電解質の放電負荷特性を評価したところ、80%であった。   The battery was charged and discharged five times at a rate of 0.2 CmA, then charged at a rate of 0.2 CmA, and then discharged at a rate of 2.0 CmA, to give 2.0 CmA / 0.00. When the discharge load characteristic of the electrolyte was evaluated based on the 2 CmA discharge capacity ratio, it was 80%.

実施例2
実施例1の溶液Aの調製において、参考例1で調製した二官能性メタクリレートに代えて、参考例2で調製した二官能性メタクリレートを用いた以外は、溶液Aの調製と同様にして、溶液Bを調製した。
Example 2
In the preparation of the solution A of Example 1, the solution of the solution A was the same as that of the solution A except that the bifunctional methacrylate prepared in Reference Example 2 was used instead of the bifunctional methacrylate prepared in Reference Example 1. B was prepared.

(ゲル化試験とゲルの耐熱性試験)
この溶液Bを用いて、実施例1と同様にして、自立性のゲル電解質を得た。このゲル電解質は、実施例1と同じ耐熱性試験において液状物の分離はみられず、ゲル状態を保っていた。
(Gelification test and heat resistance test of gel)
Using this solution B, a self-supporting gel electrolyte was obtained in the same manner as in Example 1. This gel electrolyte was kept in the gel state without separation of the liquid material in the same heat resistance test as in Example 1.

(電池の作製と電解質の放電負荷特性)
上記溶液Bを用いて、実施例1と同様にして、コイン型電池を作製し、実施例1と同じ条件下で評価した電解質の放電負荷特性は87%であった。
(Battery fabrication and electrolyte discharge load characteristics)
Using the solution B, a coin-type battery was produced in the same manner as in Example 1, and the discharge load characteristic of the electrolyte evaluated under the same conditions as in Example 1 was 87%.

比較例1
アルゴン置換したグローブボックス中、エチレンカーボネート/ジエチルカーボネート混合溶媒(容量比1/2)に1.4モル/L濃度となるように電解質塩ヘキサフルオロリン酸リチウム(LiPF6)を溶解させて、電解液を調製した。この電解液97.0gにノナエチレングリコールジメタクリレート3.0gを加え、室温で攪拌、溶解させ、更に、2,2’−アゾビスイソブチロニトリル0.06gを加えて、溶液Pを調製した。
Comparative Example 1
In an argon-substituted glove box, electrolyte salt lithium hexafluorophosphate (LiPF 6 ) was dissolved in an ethylene carbonate / diethyl carbonate mixed solvent (volume ratio 1/2) to a concentration of 1.4 mol / L, and electrolysis was performed. A liquid was prepared. A solution P was prepared by adding 3.0 g of nonaethylene glycol dimethacrylate to 97.0 g of this electrolyte, stirring and dissolving at room temperature, and further adding 0.06 g of 2,2′-azobisisobutyronitrile. .

(ゲル化試験とゲルの耐熱性試験)
この溶液Pをアルゴン置換したグローブボックス中、ガラス瓶中に入れ、密封した後、80℃の恒温器中に1時間投入したが、溶液のままであった。
(Gelification test and heat resistance test of gel)
This solution P was put in a glass bottle in a glove box substituted with argon and sealed, and then put in an incubator at 80 ° C. for 1 hour, but the solution remained as it was.

比較例2
アルゴン置換したグローブボックス中、エチレンカーボネート/ジエチルカーボネート混合溶媒(容量比1/2)に1.4モル/L濃度となるように電解質塩ヘキサフルオロリン酸リチウム(LiPF6)を溶解させて、電解液を調製した。この電解液95.0gにノナエチレングリコールジメタクリレート5.0gを加え、室温で攪拌、溶解させ、更に、2,2’−アゾビスイソブチロニトリル0.1gを加えて、溶液Qを調製した。
Comparative Example 2
In an argon-substituted glove box, electrolyte salt lithium hexafluorophosphate (LiPF 6 ) was dissolved in an ethylene carbonate / diethyl carbonate mixed solvent (volume ratio 1/2) to a concentration of 1.4 mol / L, and electrolysis was performed. A liquid was prepared. 5.0 g of nonaethylene glycol dimethacrylate was added to 95.0 g of this electrolytic solution, stirred and dissolved at room temperature, and 0.1 g of 2,2′-azobisisobutyronitrile was further added to prepare Solution Q. .

(ゲル化試験とゲルの耐熱性試験)
この溶液Qをアルゴン置換したグローブボックス中、ガラス瓶中に入れ、密封した後、80℃の恒温器中に1時間投入して、自立性のゲル電解質を得た。このゲル電解質を密封状態のまま、80℃の恒温器に放置したところ、3日目にゲルが分解し始め、自立性を失った。
(Gelification test and heat resistance test of gel)
This solution Q was put in a glass bottle in a glove box substituted with argon, sealed, and then placed in an incubator at 80 ° C. for 1 hour to obtain a self-supporting gel electrolyte. When this gel electrolyte was left in an incubator at 80 ° C. in a sealed state, the gel began to decompose on the third day and lost its independence.

(電池の作製と電解質の放電負荷特性)
上記溶液Qを用いて、実施例1と同様にして、コイン型電池を作製し、実施例1と同じ条件下で評価した電解質の放電負荷特性は58%であった。
(Battery fabrication and electrolyte discharge load characteristics)
Using the solution Q, a coin-type battery was produced in the same manner as in Example 1, and the discharge load characteristic of the electrolyte evaluated under the same conditions as in Example 1 was 58%.

本発明によるゲル電解質を用いたコイン型二次電池を示す断面図である。It is sectional drawing which shows the coin-type secondary battery using the gel electrolyte by this invention. 本発明によるゲル電解質を用いる電気二重層コンデンサを示す縦断面図である。It is a longitudinal cross-sectional view which shows the electric double layer capacitor using the gel electrolyte by this invention.

符号の説明Explanation of symbols

1…正極端子を兼ねる正極缶
2…絶縁体
3…負極端子を兼ねる負極缶
4…正極
5…正極集電体
6…負極
7…負極集電体
8…膜状ゲル電解質
9…膜状ゲル電解質
10…集電体
11…電極
12…絶縁性封止材
13…端子

DESCRIPTION OF SYMBOLS 1 ... Positive electrode can also serving as a positive electrode terminal 2 ... Insulator 3 ... Negative electrode can also serving as a negative electrode terminal 4 ... Positive electrode 5 ... Positive electrode current collector 6 ... Negative electrode 7 ... Negative electrode current collector 8 ... Membrane gel electrolyte 9 ... Membrane gel electrolyte DESCRIPTION OF SYMBOLS 10 ... Current collector 11 ... Electrode 12 ... Insulating sealing material 13 ... Terminal

Claims (15)

電解質塩とこの電解質塩のための溶媒とポリマーマトリックスからなるゲル状組成物において、上記ポリマーマトリックスが一般式(I)
Figure 0004156481
(式中、Rはアルキレン基を示し、R1 は(n+1)価の炭化水素基を示し、Xは一般式(II)
Figure 0004156481
(式中、R2 は水素原子又はメチル基を示す。)
で表される1価基を示し、nは1、2又は3を示し、nが1であるとき、x及びyは共に1であり、nが2であるとき、x及びyはそれぞれ独立に0、1又は2であり、且つ、x+y≧2であり、nが3であるとき、x及びyはそれぞれ独立に0、1、2又は3であり、且つ、x+y≧2である。)
で表される多官能性(メタ)アクリレートを重合させてなる架橋ポリマーからなることを特徴とするゲル電解質。
In a gel composition comprising an electrolyte salt, a solvent for the electrolyte salt, and a polymer matrix, the polymer matrix has the general formula (I)
Figure 0004156481
Wherein R represents an alkylene group, R 1 represents an (n + 1) -valent hydrocarbon group, and X represents a general formula (II)
Figure 0004156481
(In the formula, R 2 represents a hydrogen atom or a methyl group.)
N represents 1, 2 or 3; when n is 1, x and y are both 1, and when n is 2, x and y are each independently When 0, 1 or 2, and x + y ≧ 2, and n is 3, x and y are each independently 0, 1, 2, or 3 and x + y ≧ 2. )
A gel electrolyte comprising a crosslinked polymer obtained by polymerizing a polyfunctional (meth) acrylate represented by the formula:
アルキレン基が炭素原子数2〜40の直鎖状又は分岐鎖状のアルキレン基である請求項1に記載のゲル電解質。The gel electrolyte according to claim 1, wherein the alkylene group is a linear or branched alkylene group having 2 to 40 carbon atoms. 一般式(I)において、nが1であり、R1 が2価の炭化水素基である請求項1に記載のゲル電解質。 The gel electrolyte according to claim 1, wherein in general formula (I), n is 1 and R 1 is a divalent hydrocarbon group. 炭化水素基が炭素原子数5〜40の範囲にあるものである請求項3に記載のゲル電解質。The gel electrolyte according to claim 3, wherein the hydrocarbon group is in the range of 5 to 40 carbon atoms. 基材多孔質膜に請求項1からのいずれかに記載のゲル電解質を担持させてなる膜状ゲル電解質。 A membranous gel electrolyte obtained by supporting the gel electrolyte according to any one of claims 1 to 4 on a porous substrate film. 請求項1からのいずれかに記載のゲル電解質を電解質として含む非水電解質電池。 The non-aqueous electrolyte battery comprising as an electrolyte gel electrolyte according to any one of claims 1 to 5. 請求項1からのいずれかに記載のゲル電解質を電解質として含む非水電解質コンデンサ。 A nonaqueous electrolyte capacitor comprising the gel electrolyte according to any one of claims 1 to 5 as an electrolyte. 電解質塩とこの電解質塩のための溶媒と一般式(I)
Figure 0004156481
(式中、Rはアルキレン基を示し、R1 は(n+1)価の炭化水素基を示し、Xは一般式(II)
Figure 0004156481
(式中、R2 は水素原子又はメチル基を示す。)
で表される1価基を示し、nは1、2又は3を示し、nが1であるとき、x及びyは共に1であり、nが2であるとき、x及びyはそれぞれ独立に0、1又は2であり、且つ、x+y≧2であり、nが3であるとき、x及びyはそれぞれ独立に0、1、2又は3であり、且つ、x+y≧2である。)
で表される多官能性(メタ)アクリレートを含む溶液に加熱又は活性放射線の照射を施し、上記多官能性(メタ)アクリレートを重合させて、架橋ポリマーを生成させ、この架橋ポリマーからなるマトリックス中に上記電解質塩と溶媒とを保持させたゲルを形成させることを特徴とするゲル電解質の製造方法。
Electrolyte salt, solvent for the electrolyte salt and general formula (I)
Figure 0004156481
Wherein R represents an alkylene group, R 1 represents an (n + 1) -valent hydrocarbon group, and X represents a general formula (II)
Figure 0004156481
(In the formula, R 2 represents a hydrogen atom or a methyl group.)
N represents 1, 2 or 3; when n is 1, x and y are both 1; when n is 2, x and y are each independently When 0, 1 or 2, and x + y ≧ 2, and n is 3, x and y are each independently 0, 1, 2, or 3 and x + y ≧ 2. )
In a matrix comprising the crosslinked polymer, a solution containing the polyfunctional (meth) acrylate represented by the formula (1) is heated or irradiated with actinic radiation to polymerize the polyfunctional (meth) acrylate to form a crosslinked polymer. Forming a gel in which the electrolyte salt and the solvent are held in a gel electrolyte.
アルキレン基が炭素原子数2〜40の直鎖状又は分岐鎖状のアルキレン基である請求項8に記載のゲル電解質の製造方法。The method for producing a gel electrolyte according to claim 8, wherein the alkylene group is a linear or branched alkylene group having 2 to 40 carbon atoms. 一般式(I)において、nが1であり、RIn general formula (I), n is 1 and R 1 1 が2価の炭化水素基である請求項8に記載のゲル電解質の製造方法。The method for producing a gel electrolyte according to claim 8, wherein is a divalent hydrocarbon group. 炭化水素基が炭素原子数5〜40の範囲にあるものである請求項10に記載のゲル電解質の製造方法。The method for producing a gel electrolyte according to claim 10, wherein the hydrocarbon group is in the range of 5 to 40 carbon atoms. 基材多孔質膜中において、電解質塩とこの電解質塩のための溶媒と一般式(I)
Figure 0004156481
(式中、Rはアルキレン基を示し、R1 は(n+1)価の炭化水素基を示し、Xは一般式(II)
Figure 0004156481
(式中、R2 は水素原子又はメチル基を示す。)
で表される1価基を示し、nは1、2又は3を示し、nが1であるとき、x及びyは共に1であり、nが2であるとき、x及びyはそれぞれ独立に0、1又は2であり、且つ、x+y≧2であり、nが3であるとき、x及びyはそれぞれ独立に0、1、2又は3であり、且つ、x+y≧2である。)
で表される多官能性(メタ)アクリレートを含む溶液に加熱又は活性放射線の照射を施し、上記二官能性(メタ)アクリレートを重合させて、架橋ポリマーを生成させ、この架橋ポリマーからなるマトリックス中に上記電解質塩と溶媒とを保持させたゲルを形成させることを特徴とする膜状ゲル電解質の製造方法。
In the porous substrate membrane, an electrolyte salt, a solvent for the electrolyte salt, and a general formula (I)
Figure 0004156481
Wherein R represents an alkylene group, R 1 represents an (n + 1) -valent hydrocarbon group, and X represents a general formula (II)
Figure 0004156481
(In the formula, R 2 represents a hydrogen atom or a methyl group.)
N represents 1, 2 or 3; when n is 1, x and y are both 1; when n is 2, x and y are each independently When 0, 1 or 2, and x + y ≧ 2, and n is 3, x and y are each independently 0, 1, 2, or 3 and x + y ≧ 2. )
In a matrix composed of the crosslinked polymer, a solution containing a polyfunctional (meth) acrylate represented by the formula (1) is heated or irradiated with actinic radiation to polymerize the bifunctional (meth) acrylate to form a crosslinked polymer. And forming a gel in which the electrolyte salt and the solvent are retained.
アルキレン基が炭素原子数2〜40の直鎖状又は分岐鎖状のアルキレン基である請求項11に記載の膜状ゲル電解質の製造方法。The method for producing a membrane gel electrolyte according to claim 11, wherein the alkylene group is a linear or branched alkylene group having 2 to 40 carbon atoms. 一般式(I)において、nが1であり、RIn general formula (I), n is 1 and R 1 1 が2価の炭化水素基である請求項11に記載の膜状ゲル電解質の製造方法。The method for producing a membranous gel electrolyte according to claim 11, wherein is a divalent hydrocarbon group. 炭化水素基が炭素原子数5〜40の範囲にあるものである請求項14に記載の膜状ゲル電解質の製造方法。The method for producing a membrane gel electrolyte according to claim 14, wherein the hydrocarbon group is in the range of 5 to 40 carbon atoms.
JP2003328712A 2003-09-19 2003-09-19 Gel electrolyte, its production method and its use Expired - Fee Related JP4156481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328712A JP4156481B2 (en) 2003-09-19 2003-09-19 Gel electrolyte, its production method and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328712A JP4156481B2 (en) 2003-09-19 2003-09-19 Gel electrolyte, its production method and its use

Publications (2)

Publication Number Publication Date
JP2005093377A JP2005093377A (en) 2005-04-07
JP4156481B2 true JP4156481B2 (en) 2008-09-24

Family

ID=34458199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328712A Expired - Fee Related JP4156481B2 (en) 2003-09-19 2003-09-19 Gel electrolyte, its production method and its use

Country Status (1)

Country Link
JP (1) JP4156481B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370758A (en) * 2011-02-17 2013-10-23 松下电器产业株式会社 Electrochemical capacitor
JP6059743B2 (en) * 2014-02-17 2017-01-11 富士フイルム株式会社 Solid electrolyte composition, battery electrode sheet and all-solid secondary battery using the same, and method for producing the same
HUE067067T2 (en) * 2018-09-21 2024-09-28 Lg Energy Solution Ltd Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom
EP3894388A1 (en) * 2018-12-13 2021-10-20 Henkel IP & Holding GmbH (meth)acrylate-functionalized waxes and curable compositions made therewith

Also Published As

Publication number Publication date
JP2005093377A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
RU2269841C2 (en) Primary (non-rechargeable) and secondary (rechargeable) magnesium base batteries
KR100284914B1 (en) Secondary Battery and Manufacturing Process Thereof
US7081320B2 (en) High energy density secondary battery for repeated use
US7517615B2 (en) Gel electrolyte, process for producing the same, and use thereof
CN106169630B (en) Lithium air battery and method of manufacturing the same
JP4218183B2 (en) Lithium battery
Liang et al. The Versatile Establishment of Charge Storage in Polymer Solid Electrolyte with Enhanced Charge Transfer for LiF‐Rich SEI Generation in Lithium Metal Batteries
JP4751502B2 (en) Polymer battery
KR20190048524A (en) Lithium metal negative electrode, manufanturing method thereof and lithium metal battery including the same
JP4156481B2 (en) Gel electrolyte, its production method and its use
JP2003331838A (en) Lithium secondary battery
JP2008310981A (en) Lithium ion polymer battery
JP4156495B2 (en) Gel electrolyte, its production method and its use
JPH1186627A (en) Polymer solid electrolyte and its use
JP2004342537A (en) Gel electrolyte and nonaqueous electrolyte battery using same
JP4046559B2 (en) Gel electrolyte secondary battery and manufacturing method thereof
US20240047728A1 (en) Electrode-less, membrane-less high voltage batteries
JP4156420B2 (en) Gel electrolyte, its production method and its use
JP3503657B2 (en) Battery using ion-conductive polymer compound
JPH04253771A (en) Solid polyelectrolyte and electric double-layer capacitor using same
JP3984359B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JP3667005B2 (en) Gel-based electrolyte and method for producing electrochemical element
JP2004214041A (en) Gel electrolyte and nonaqueous electrolyte battery using the same
JPH11149823A (en) Polymerizable compound, polymer solid electrolyte using polymerizable compound and application thereof
US11908997B2 (en) Development of a supercapacitive battery via in-situ lithiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4156481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees