[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60110920A - Electrically conductive composite fiber - Google Patents

Electrically conductive composite fiber

Info

Publication number
JPS60110920A
JPS60110920A JP21427783A JP21427783A JPS60110920A JP S60110920 A JPS60110920 A JP S60110920A JP 21427783 A JP21427783 A JP 21427783A JP 21427783 A JP21427783 A JP 21427783A JP S60110920 A JPS60110920 A JP S60110920A
Authority
JP
Japan
Prior art keywords
fiber
particles
conductive
nylon
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21427783A
Other languages
Japanese (ja)
Inventor
Toshio Jitsumatsu
実松 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP21427783A priority Critical patent/JPS60110920A/en
Publication of JPS60110920A publication Critical patent/JPS60110920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To provide the titled fiber having white color and excellent antistaticity, and free from the abrasion of metals, by using a thermoplastic polymer containing particles of an electrically conductive metal oxide or metallic compound or particles having conductive coating layer as the core component, and a fiber- forming polymer as the sheath component. CONSTITUTION:The objective fiber is composed of (A) an electrically conductive core component consisting of a thermoplastic polymer (e.g. nylon 6) containing 30-85wt% particles of an electrically conductive metal oxide (e.g. tin oxide) or a metallic compound, or particles having the layer of the above substance on the surface, and (B) a sheath component consisting of a fiber-forming polymer (e.g. nylon 6) surrounding the core component. The minimum thickness of the sheath component is <=3mu, and the electrical resistance of the fiber is <10<6>OMEGA.cm at 1kV DC. The diameter of the particle is preferably 0.1-0.5mu.

Description

【発明の詳細な説明】 本発明は金属摩耗性がなく、且つ!iJ電性能に優れた
白色のNI導電性複合繊維関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is free from metal abrasion and! This invention relates to a white NI conductive composite fiber with excellent iJ electrical performance.

従来、カーペットの上を歩いてドアの把手に触れ走時の
放電Vタック、摩擦帯電による火花放電、或い#′i塵
埃の付着などの静電気障害は非常に厄介なものであり、
かなシの不快感中止せしめるものであった。合成繊維や
天然繊維KIIIJ電性を付与する有効な手゛段の1つ
に、導電性カーボンブラックを混合したポリマーからな
る!5itt成分と繊維形成性ポリマーからなる保護成
分とが接合された導電性複合繊維を少量混用する方法が
ある。しかしながら、カーボンブラックを用いた導電性
複合繊維は黒色又は灰色に着色している為、その用途を
制限されているのが実状で6る。
Conventionally, static electricity problems such as discharge V-tack when walking on a carpet and touching a door handle, spark discharge due to frictional charging, and #'i dust adhesion have been extremely troublesome.
It was something that made Kanashi stop feeling uncomfortable. One of the effective means of imparting electrical properties to synthetic fibers and natural fibers is to use polymers mixed with conductive carbon black! There is a method of mixing a small amount of conductive composite fiber in which a 5itt component and a protective component made of a fiber-forming polymer are bonded together. However, since conductive composite fibers using carbon black are colored black or gray, their use is actually limited6.

近年、このような外観の黒色を改良するものとして、白
色又tま無色の導電性物質を含有させた導電性繊維の研
究が盛んである。なかでも導電性金属酸化物やこれらの
反映を有する微粒子は白色に近く、比較的良好な導電性
と混線性を有していることが判り、注目されている。例
えば特開1&57−5919公報及び特開昭57−11
213号公報には酸化亜鉛や酸化錫を主成分とする導電
性金属酸化物を用いた導電性複合繊維が記載されている
。しかし、導電性カーボンブラックを用いた導電性複合
繊#i並みの導電性を得るKは、導電性カーボングラツ
クの場合に比べて、2〜6倍の導電性金属酸化物粒子を
混練する必要があるなど解決すべき問題がいくつか伐さ
れており、実用化が遅れている。
In recent years, there has been active research into conductive fibers containing white or colorless conductive substances in order to improve the black appearance. Among them, conductive metal oxides and fine particles having a reflection thereof are close to white in color and have been found to have relatively good conductivity and crosstalk, and are attracting attention. For example, JP 1 & 57-5919 and JP 57-11
No. 213 describes a conductive composite fiber using a conductive metal oxide whose main component is zinc oxide or tin oxide. However, in order to obtain conductivity comparable to conductive composite fiber #i using conductive carbon black, it is necessary to knead 2 to 6 times as many conductive metal oxide particles as in the case of conductive carbon black. However, there are still some problems that need to be solved, such as the lack of technology, and practical application has been delayed.

又、導電性金属酸化物粒子を多囮に含有した等電成分が
繊維表向に露出している74電性複合繊Itk#′i優
れた制電性能1に有するものの、4を属摩耗性が著しい
という欠点は免れ麹い。零発用者等はかかる欠陥を排除
すべく研究の結果、零発りJを完成した。
In addition, although the 74-conductive composite fiber Itk#'i, in which isoelectric components containing a large amount of conductive metal oxide particles are exposed on the fiber surface, has an excellent antistatic performance of 1, it has a rating of 4 for abrasion resistance. It does not suffer from the drawback that it is very malty. As a result of research to eliminate such flaws, the users of the Zero-Start have completed the Zero-Start J.

本発明の目的は金T14摩耗性がなく、シかも制電性能
に優れた白色の導電性複合繊維を提供するものでろる。
An object of the present invention is to provide a white conductive composite fiber that does not have gold T14 abrasion and has excellent antistatic performance.

すなわち本発明の目的け、#p導電性金属酸化物又は金
j11酸化物の粒子凌いは表1111#/cこれらの皮
膜含有する粒子を50〜85重量%含有する熱可胆性ポ
リマーからなるMI導電性芯成分と、これを取囲む繊維
形成性ポリマーからなる鞘成分とからなシ、且つ横断面
において鞘成分の厚さで最小の部位が6μm以下でらシ
、IKVの遣流電圧下で10″Ω・σ未満の1*抵抗を
有する導電性複合繊維により達成される。
That is, for the purposes of the present invention, particles of #p conductive metal oxide or gold j11 oxide are superior to particles of #p conductive metal oxide or gold j11 oxide. It consists of a conductive core component and a sheath component made of a fiber-forming polymer surrounding it, and the minimum thickness of the sheath component in the cross section is 6 μm or less, and under the IKV current voltage. This is achieved with conductive composite fibers having a 1*resistance of less than 10″Ω·σ.

零゛廃用における金属酸化物粒子としては、酸化錫、酸
化亜鉛、酸化銅、−亜酸化銅、酸化インジウム、酸化ジ
ルコニウム、酸化タングステンなどの粒子があげられる
。金属酸化物の多くのもQは絶縁体に近い半導体であっ
て本発明の目的に充分な*m性を示さないことが多い。
Examples of metal oxide particles for zero waste include particles of tin oxide, zinc oxide, copper oxide, cuprous oxide, indium oxide, zirconium oxide, and tungsten oxide. In many metal oxides, Q is a semiconductor close to an insulator and often does not exhibit sufficient *m properties for the purpose of the present invention.

しかしながら、例えは、金属酸化物に適当な第2成分(
不純物)を少量(50%以下、特VC25%以下)添加
するなどの方法により、導電性を強化し、本発明の目的
に充分な*[性を有するものが得られる。このような導
電性強化制としては、酸化錫に対して酸化アンチモンが
、酸化亜鉛に対してアルミニウム、カリウム、インジウ
ム、ゲルマニウム、錫などの金属酸化物が使える。また
、金属化合物の粒子としては沃化銅、硫化銅、硫化亜鉛
、硫化カドミウムなどで導電性を有するものが利用可能
でちる。
However, the analogy is that the metal oxide has a suitable second component (
By adding a small amount (50% or less, especially VC25% or less) of impurities), the conductivity can be strengthened and a material having properties sufficient for the purpose of the present invention can be obtained. As such conductivity reinforcement systems, antimony oxide can be used for tin oxide, and metal oxides such as aluminum, potassium, indium, germanium, and tin can be used for zinc oxide. Further, as the metal compound particles, conductive particles such as copper iodide, copper sulfide, zinc sulfide, and cadmium sulfide can be used.

叉に1酸化チタン、酸化亜鉛、酸化マグネシウム、酸化
錫、酸化鉄、酸化ケイ素、酸化アルミニウムなどの非瑯
電性無機物粒子のp面に上記金属酸化物又は金属化合物
の導電性政膜を形成した粒子も用いられる。
Furthermore, a conductive film of the above metal oxide or metal compound was formed on the p-plane of non-electrified inorganic particles such as titanium monoxide, zinc oxide, magnesium oxide, tin oxide, iron oxide, silicon oxide, and aluminum oxide. Particles can also be used.

導電性粒子の導電性は、粉末状での比抵抗が106Ω・
α程度以下、特け10!Ω・鍔程度以下が好ましく、1
0’Ω・α程度以下がかも好ましい。
Regarding the conductivity of the conductive particles, the specific resistance in powder form is 106Ω・
Below α level, special 10! Ω・Tsuba level or less is preferable, and 1
It is also preferable that the resistance is about 0'Ω·α or less.

実際に1On−crn〜10−1Ω・crR程度のもの
が得られ、本発明の目的に好適に応用することがてきる
が、丈に優れた4!F@性のものは一層好ましい。粉末
の比抵抗(体積抵抗率)は直径1−の絶縁体の円筒に試
料を5fr詰め、上部からピストンによって200tg
の圧力を加え、直流電圧(例えば0.001〜1000
v)を印加して(電流1 m A以下で)測定する。
In fact, a value of about 1 On-crn to 10-1 Ω·crR can be obtained and can be suitably applied to the purpose of the present invention, but 4! F@ properties are even more preferred. The specific resistance (volume resistivity) of the powder is determined by filling a 1-diameter insulating cylinder with 5 fr of the sample, and applying a piston from the top to 200 tg.
of DC voltage (e.g. 0.001 to 1000
v) is applied (at a current of 1 mA or less) and measured.

導電性粒子は充分小さい粒径のものでなくてけなら々い
。平均粒径が1〜2μmのものも使用不可性ではないが
、通常平均粒径が1μm以下、特K O,5μm以下、
最も好ましくけ06μm以丁のものか′用いられる。粒
径が小さい程ポリマーと混合したとき、より少ない混合
率で高い導電性を示す場合が多い。
The conductive particles must have a sufficiently small particle size. Those with an average particle size of 1 to 2 μm are not unusable, but usually the average particle size is 1 μm or less, especially KO, 5 μm or less,
Most preferably, one with a diameter of 06 μm or less is used. The smaller the particle size, the higher the conductivity in many cases when mixed with a polymer at a smaller mixing ratio.

第7図は導電性粒子と熱可塑性ポリマーの混合物の混合
率と比抵抗の関係の例を示すものである。
FIG. 7 shows an example of the relationship between the mixing ratio of a mixture of conductive particles and a thermoplastic polymer and specific resistance.

曲線01は酸化チタンの表面に導電性酸化錫の皮膜を形
成した粒径025μmの導電性の粒子と非結晶性ポリマ
ー(流動パラフィン)との61台物の例で、粒子の混合
率が高い焦域(70%以上)でも導電性が抵い、同図に
おいて実線819分は混合物が溶融流動可能である胴板
であ夛、点IIA部分は流動が著しく困難又は不可能な
f#4域を示し、点Mけその境界すなわち溶融流動可能
な混合率の上限を示す。
Curve 01 is an example of 61 series of conductive particles with a particle size of 025 μm with a conductive tin oxide film formed on the surface of titanium oxide and an amorphous polymer (liquid paraffin). In the same figure, the solid line 819 is the body plate where the mixture can melt and flow, and the point IIA indicates the f#4 region where it is extremely difficult or impossible to flow. and indicates the boundary of point M, that is, the upper limit of the melt-flowable mixing ratio.

QM以」、の領域では流11J性改善剤、例えば溶剤、
可塑剤、ワックス類や、低粘度のポリマー(例えばポリ
アルキレンズキサイド、脂肪族ポリエステルなど)を添
加する必要がある。曲線C8け同じ直径025μmの導
電性粒子と結晶性ポリマー(ポリエチレン)との混合物
の例で、混合率60%程度以上で充分な導電性が得られ
ている。曲線c、Fi粒径001μmの導電性酸化錫粒
子と結晶性ポリマー(IKリエチレン)との爵合物の例
であり、混合率30%程度以上てすぐれた導電性を示す
が、流動限界点Mは糺55%と比較的低い。
In the area of ``QM and above'', flow improvers such as solvents,
It is necessary to add plasticizers, waxes, and low viscosity polymers (eg, polyalkylene oxides, aliphatic polyesters, etc.). Curve C8 is an example of a mixture of conductive particles having the same diameter of 025 μm and crystalline polymer (polyethylene), and sufficient conductivity is obtained at a mixing ratio of about 60% or more. Curve c is an example of a composite of conductive tin oxide particles with a Fi particle size of 001 μm and a crystalline polymer (IK-lyethylene), and shows excellent conductivity at a mixing ratio of about 30% or more, but the flow limit point M is relatively low at 55%.

一般に、粒径の小さい粒子が高い導電性を示すのけ粒子
が連鎖構造を形成し易いためと想像される。能力粒径の
小さい粒子は極めて凝集し易くポリマー中への分散(均
一混合)が貞−餡に困難で、得られる混合物tましばし
ば粒子が凝集した塊状物を含み、し〃・も流!II性や
曳糸性(紡糸性)が劣る傾IE+7が必めらtLる。曲
襟C3は粒径025μmの粒子と粒径0.01μmの粒
子の1’/1(11!量比)の混合物と、結晶性ポリマ
ーとの混合物の例で、曲線C3と曲線C6との中間に位
置し、両粒子の平均的なti動を示している。
In general, it is thought that this is because particles with a small particle size exhibit high conductivity and are more likely to form a chain structure. Particles with small particle diameters tend to aggregate extremely easily and are difficult to disperse (uniformly mix) in polymers, and the resulting mixture often contains aggregates of particles, which can cause agglomeration! A tendency of IE+7, which has poor thread properties and spinnability (spinning properties), is inevitable. Curved collar C3 is an example of a mixture of a 1'/1 (11! amount ratio) mixture of particles with a particle size of 025 μm and particles with a particle size of 0.01 μm, and a crystalline polymer, and is an example of a mixture between curve C3 and curve C6. , which shows the average ti motion of both particles.

この混合粒子系では、導電性や流i!iII性がかカシ
改善されるが、均−分散の困難性や曳糸性についてはな
お問題が残る。一方、粒径がO「15μm〜012μm
程度の粒子の挙wJFi、前記の025μmの粒子と0
.01μmの粒子の混合系に似ており、導電性に優れる
が均一分散が困難で曳糸性が劣る傾向があめられる。結
局、ポリマー中への分散が比較的容易で、得られる混合
物の均一性、流動性及び曳糸性にすぐれ、取扱いが容易
である点で、粒径025p m 1lTI後のもの、す
なわち0.15 pm 〜0.45pm程度、特に01
5μm〜065μm程度のものが最も実用性が商い。
In this mixed particle system, conductivity and flow i! Although the III properties are improved, problems still remain regarding the difficulty of uniform dispersion and stringiness. On the other hand, the particle size is O'15 μm to 012 μm.
The particle size wJFi is 0.025 μm and 0.02
.. This is similar to a mixed system of 0.01 μm particles, and although it has excellent conductivity, uniform dispersion is difficult and stringiness tends to be poor. In the end, the particle size after 11TI of 025 p m, that is, 0.15, is relatively easy to disperse into the polymer, has excellent uniformity, fluidity and stringability of the resulting mixture, and is easy to handle. pm ~ about 0.45pm, especially 01
A material with a diameter of about 5 μm to 0.65 μm is most practical.

さて、前述のように導電性粒子とポリマーとの混合物の
導電性は粒子の大きさや混合率だけでなく、ポリマーの
結晶性によっても大きく変化する。
Now, as mentioned above, the conductivity of a mixture of conductive particles and a polymer varies greatly not only by the size of the particles and the mixing ratio, but also by the crystallinity of the polymer.

すなわち導電性の見地からは結晶性の高い(結晶化度6
0′ド以上、特に70%以上)ポリマーであるポリエチ
レン、ボリフ′ロビレンなどのポリオレフィン、ポリオ
キシエチレン、ポリオキシエチレン(ポリエチレンオキ
シド)のようなポリエーテル及びその誘導体(例えばポ
リエチレンオキシド/ポリエチレンテレフタレートのブ
ロックコポリマー)、ポリビニルアルコール、ポリカプ
ロラクトンなどが好ましい。また、現在量も多重に生産
されているナイロン6、ナイロン66、ナイロン12な
どのポリアミド、ポリエチレンテレフタレート、ボリプ
チレンチレフタレートなどのポリエステμ、アクリル系
ポリマー、ポリウレタン及びそれらの変性物(共重合物
又は混合物)も導電性粒子を混合せしめるポリマーとし
て好適である。
In other words, from the viewpoint of conductivity, it has high crystallinity (crystallinity 6).
polyolefins such as polyethylene, polyethylene, polyoxyethylene, polyethers such as polyoxyethylene (polyethylene oxide), and derivatives thereof (e.g. blocks of polyethylene oxide/polyethylene terephthalate). copolymers), polyvinyl alcohol, polycaprolactone, etc. are preferred. In addition, polyamides such as nylon 6, nylon 66, and nylon 12, which are currently being produced in multiple quantities, polyester μ such as polyethylene terephthalate and polyethylene terephthalate, acrylic polymers, polyurethanes, and their modified products (copolymers) or mixtures thereof) are also suitable as polymers with which conductive particles are mixed.

上記高結晶性ポリマーは融点が低いために耐熱性に問題
があるものが多く、他方中程度の結晶性を示す上記ポリ
アミド、ポリエステル、アクリル系ポリマーなど(結晶
化度20〜5096程度)は廷仲倍率が高くなるとMI
導電性びIIJ電性が低下している傾向があシ、用途に
よって適切なポリマーを選択する必要がある。
Many of the above highly crystalline polymers have problems with heat resistance due to their low melting points, while the above polyamides, polyesters, acrylic polymers, etc. that exhibit moderate crystallinity (crystallinity of about 20 to 5096) are MI as the magnification increases
There is a tendency for conductivity to decrease, so it is necessary to select an appropriate polymer depending on the application.

導電性無機物粒子の混合率は、粒子の導電性、粒子の連
鎖形成能及び混合する結合材ポリマーの性質や結晶性な
どによって笈るが、通1g゛6 [’1〜85%(重I
I)程度の範囲内であり、多くの場合40〜80%程度
である。80%以上では流動性が不足するので、通常流
動性改善剤の使用が必要となる。一 本発明の繊維のM成分を構成する繊a形成性ポリマーは
繊維形成性のものであれば任意であるが、ナイロン6、
ナイロン66、ナイロン12などのポリアミド、ポリエ
チレンテレフタレート、ポリブチレンテレフタレートな
どのポリ:t /Cf /’、アクリル系ポリマー、ポ
リウレタン及びポリグロピレンfZトのポリオレフィン
及びそれらの変性物(共重合物又は混合物)が好適であ
る。特に上記ポリアミド、ポリエステル、アクリル系ポ
リマーは現在最も多量に開業生産されておシ、ξれらの
合成繊維と混用されて使用される機会が多い導電性複合
繊維の鞘成分のポリマーとして最適である。
The mixing ratio of the conductive inorganic particles varies depending on the conductivity of the particles, the chain-forming ability of the particles, the properties and crystallinity of the binder polymer to be mixed, etc.
I), and in many cases is about 40 to 80%. If it exceeds 80%, the fluidity will be insufficient, so it is usually necessary to use a fluidity improver. The fiber-forming polymer constituting the M component of the fiber of the present invention may be any fiber-forming polymer, including nylon 6,
Polyamides such as nylon 66 and nylon 12, poly(t/Cf/') such as polyethylene terephthalate and polybutylene terephthalate, acrylic polymers, polyolefins such as polyurethane and polyglopylene fZ, and modified products (copolymers or mixtures) thereof are suitable. It is. In particular, the above-mentioned polyamide, polyester, and acrylic polymers are currently being produced in the largest quantities and are most suitable as sheath component polymers for conductive composite fibers, which are often used in combination with other synthetic fibers. .

また、公知の方法によシその染色受答性を改善して(例
えば共重合させて塩基性又は酸性の染色部位を導入する
)合成繊維や天然繊維とのブレンド又は相互染色を容易
にすることもできる。或いは艶消剤、顔刺、着色剤、安
定剤、制電剤(ポリアルキレンオキシド類、界面活性剤
など)などを添加することもできる。
Also, by improving its dye receptivity by known methods (e.g. by copolymerizing to introduce basic or acidic dyeing sites) to facilitate blending or inter-dying with synthetic or natural fibers. You can also do it. Alternatively, matting agents, coloring agents, stabilizers, antistatic agents (polyalkylene oxides, surfactants, etc.), etc. can also be added.

芯及び鞘成分のポリマーの組合せけ延伸等による剥離を
防止するという点から、同種又は近似のポリマー同志の
組合せが望ましいが、本発明の繊維は芯鞘構造であるの
で、並列型とした場合に剥離を伴うポリマーの組合せ(
例えばポリエチレンとナイロン60組合せ)で−もさほ
ど重大な問題りなることは少ない。
Combination of Polymers of Core and Sheath Components From the viewpoint of preventing peeling due to stretching, etc., it is desirable to use a combination of polymers of the same type or similar ones, but since the fiber of the present invention has a core-sheath structure, when it is made into a parallel type. Polymer combinations with exfoliation (
For example, a combination of polyethylene and nylon 60) is not a very serious problem.

用途によっては、flJえば高温スチームジェット嵩高
加工や仮撚加工時の高温処理を行う場合には、導電性の
芯成分が露出してくることがある。このような場合にt
ま鞘成分のポリマーとして篩い融点をもつポリマー勿這
択Tるこ吉が必要である。
Depending on the application, the conductive core component may be exposed when high-temperature treatment is performed during flJ, such as high-temperature steam jet bulking or false twisting. In such a case, t
As the polymer for the sheath component, a polymer with a high melting point is required.

木発りJのw&維は、上記導電性無機物粒子と結合材ポ
リマーとからなる導電性の芯成分とこれを取囲む線維形
成性ポリマーからなる鞘成分とが複合されたものである
。導電性の芯成分は充分な導電性を有していなくてはな
らず、一般に106Ω・m程度以下の比抵抗を有するこ
とが必要であり、106Ω・m以下が好ましく、102
Ω・α以下が特に好ましい。導電性の芯成分の複合比率
(断面積占有率)にりbては、導電性無機物粒子を多量
に混合した#I電酸成分曳糸性(紡糸性)や強伸度など
に劣る傾向があるため、通常6096以下が好ましく、
特に15%以下が好適でるる。他方、複合比率が小さく
なると導電性が不安定になり、或いは低下する傾向が出
てくるため、通常1%以上が好ましく、特に2%以上が
好適である。
Kizori J's w&fiber is a composite of a conductive core component made of the above-mentioned conductive inorganic particles and a binder polymer, and a sheath component surrounding the conductive core component made of a fiber-forming polymer. The conductive core component must have sufficient conductivity, and generally needs to have a specific resistance of about 106 Ω·m or less, preferably 106 Ω·m or less, and 102
Particularly preferably Ω·α or less. Regarding the composite ratio (cross-sectional area occupancy) of the conductive core component, the #I electroacid component mixed with a large amount of conductive inorganic particles tends to be inferior in spinnability (spinnability), strength and elongation, etc. Therefore, it is usually preferably 6096 or less,
Particularly preferred is 15% or less. On the other hand, when the composite ratio becomes small, the conductivity becomes unstable or tends to decrease, so it is usually preferably 1% or more, and particularly preferably 2% or more.

第1図〜第6図は本発明の繊九の横断面の具体例であシ
、また第4図〜第6図は徒米公知の導電性複合繊維の横
断面の具体例である。本発明の繊維の横W「面(輪郭)
は円形でもよく、非円形でもよい。また導電性の芯成分
は単数でも、複数でもよく、また、円形でも、非円形で
もよい。本発明のM2R,は、通常の溶融又は乾式の複
合紡糸方法によっ□て製造することができるが、導電性
の芯成分が表面に露出することなく、鞘成分の最小厚さ
を6μm以下に保持することは、口金の設計において特
別々工大をすることによシ可能と々った。すなわち、(
A)口金の内部オリフィスにおいて、I#導電性芯成分
(2)と鞘成分(1)とが合流する直前に鞘成分の最小
厚さが6μm以下の薄皮を形成させるためのポリマー導
入溝(幅と深さが0. ′5am程度)を付加的に設け
ること、(B)導電性の芯成分(2)と鞘成分(1)と
が内部オリフィスで合流する前後のポリマーの流速をほ
ぼ等しくし、且つ合流する直前の導電性の芯成分(2)
の流速をV、< V、< V、ヤ2とすること、(C)
 41 tkl性無機物粒子を多量に混合した導電性の
芯成分は、通常の繊維形成性ポリマーに比べて、剪wr
速度が10sec 程度以下で溶融流動性が急激に悪く
なる傾向があるので、少なくとも合流する直前の剪断速
度を10aec &!度以上にして、鞘成分の溶融流動
性とlji質の状態で合流させることが必要であった。
1 to 6 are specific examples of cross sections of the fibers of the present invention, and FIGS. 4 to 6 are specific examples of cross sections of known conductive composite fibers. Lateral W surface (contour) of the fiber of the present invention
may be circular or non-circular. Further, the conductive core component may be singular or plural, and may be circular or non-circular. The M2R of the present invention can be manufactured by a conventional melt or dry composite spinning method, but the minimum thickness of the sheath component is 6 μm or less without exposing the conductive core component to the surface. Retention was possible by special engineering in the design of the cap. That is, (
A) In the internal orifice of the cap, just before the I# conductive core component (2) and sheath component (1) join together, a polymer introduction groove (width and (B) approximately equalize the flow velocity of the polymer before and after the conductive core component (2) and sheath component (1) meet at the internal orifice. , and the conductive core component (2) just before merging
Let the flow velocity be V, < V, < V, Ya2, (C)
41 The conductive core component containing a large amount of tkl inorganic particles has a higher shear resistance than ordinary fiber-forming polymers.
Melt fluidity tends to deteriorate rapidly when the speed is less than about 10 seconds, so at least the shear speed just before merging should be set to 10 aec &! It was necessary to combine the sheath components in a melt-fluid and lji-like state at a temperature higher than 100%.

通常、硝酸〃の最小厚さを6μm以下、に保持すること
は容易なことでけ々い。伊」えば第1図のような線心型
芯鞘構造で、導電性の芯成分(2)と鞘成分(1)を内
部オリフィスにおいて単に編心的に合流させた場合には
、鞘成分の最小厚さが4μ2)i程度以上になるか、或
いは4電性の芯成分が表面に突出してしまう。
Normally, it is not easy to maintain the minimum thickness of nitric acid at 6 μm or less. For example, in a wire core-sheath structure as shown in Fig. 1, if the conductive core component (2) and sheath component (1) are simply concentrically merged at the internal orifice, the sheath component Either the minimum thickness is about 4μ2)i or more, or the tetraelectric core component protrudes from the surface.

第8図は、粒径0.25μm%導電粒子75%とポリエ
チレン約25%からなる導電性の芯成分とナイロン6よ
りなる鞘成分とが複合された瑯亀性複合繊維(複合比1
:10、延伸倍率30)について鞘φ1分の最小厚さと
帯電圧とのlll係を示すものである。帯電圧は、約6
餌間隔て絢込んだ(混入率約1%)ナイロン6のMll
lIAの摩擦帯電圧で評価した。この評価方法によれは
8帯電圧が2or)cv以下であれば、はとんどの状況
下で静電気障物を防止することができる。
Fig. 8 shows a porcelain composite fiber (composite ratio: 1
:10, stretching ratio 30), the relationship between the minimum thickness of the sheath φ1 and the electrostatic voltage is shown. The charging voltage is approximately 6
Nylon 6 Mll packed at bait intervals (contamination rate approximately 1%)
Evaluation was made using the frictional charging voltage of lIA. According to this evaluation method, if the charging voltage is 2or)cv or less, static electricity obstruction can be prevented under most circumstances.

第8図の曲線V、は、第4図の同心型芯鞘構造の例で、
I11成〃のノリ、さが承ツ6.5μm<単糸6テ゛ニ
ーμに4υ当〕までiJ厚さが小さくなるに従って、帯
電圧も低下し、3KVb!度まで低十する。しかし、単
糸デニールを丈匠小さくして1テニール(鞘成分の厚さ
は′56μffIVc相当)にすると、予想に反して逆
圧帯電圧がnくなってしまう(同時に導電性も低下して
いる)。単糸1デニールで、複合比率を30y6に上け
だものでも(鞘成分の厚さ22μtnに相当)帯電圧は
FJ 35 K Vで、制@L性#i悪化の傾向を示す
。このように同心型芯鞘構造では、理由が定かではない
が、鞘匝分の(最小)kさを6μm以丁にしても帯電圧
が5に’V程度以下には低下しないことが判った。尚、
41糸テニールが1デニ一ル程度以tのM!、維は辿當
の濱融又岐乾式紡糸でFi孜績aすに困難となり、特別
な紡糸方法を採ハJしなけれはならない。それ故、零発
町り繊維も通常I4L糸デニiルが1デニ一ル程度以上
のものが使用さtLる。
Curve V in FIG. 8 is an example of the concentric core-sheath structure in FIG.
As the iJ thickness decreases up to 6.5 μm <4 υ equivalent to 6 teny μ of a single yarn], the electrostatic voltage decreases to 3 KVb! It's as low as 10 degrees. However, when the length of the single yarn denier is reduced to 1 tenier (the thickness of the sheath component is equivalent to '56 μffIVc), the reverse charging voltage becomes n, contrary to expectations (at the same time, the conductivity also decreases). ). Even when the single yarn is 1 denier and the composite ratio is increased to 30y6 (corresponding to the thickness of the sheath component of 22μtn), the charging voltage is FJ 35 KV, showing a tendency for the control @L property #i to deteriorate. In this way, with the concentric core-sheath structure, although the reason is not clear, it has been found that even if the (minimum) k of the sheath is set to 6 μm or more, the electrostatic voltage does not decrease below about 5'V. . still,
41 thread tenier is less than 1 denier M! However, it becomes very difficult to produce fibers using the traditional dry spinning process, and a special spinning method must be used. Therefore, the yarn denier of I4L yarn is usually 1 denier or more for the yarn made from scratch.

一方、第8図の曲線V2及びV、けぞれそれ不発り→の
第11及び第2−の横貼i1o形状【慣する例で、鞘成
分の最小j′Iさ葡6μm以Fに小さくづることにより
(ilL糸デニールに制ト;されるこ七なく)、弗□t
4川を1000〜5(I[]fJVイ呈J虻筐で飴十さ
せることができ、優れた制電性能を発揮することか判る
On the other hand, the curves V2 and V in Fig. 8, respectively, are not exploding. By twisting (ilL thread denier; not being made), 弗□t
It can be seen that 4 rivers can be reduced to 1000 to 5 (I[]fJV with JV case), demonstrating excellent antistatic performance.

走くVC繊維横ルミ110において、導電性の芯成分に
至る最短距離が6μm以下である繊維表面(以下、薄皮
比率と云う)が109b以上ケ占める招迅のものでは帯
電比が1000〜2+11’lOVのレベルにあり、1
tlJi!性能が牝に優れている。
In the running VC fiber horizontal Lumi 110, when the shortest distance to the conductive core component is 6 μm or less on the fiber surface (hereinafter referred to as thin skin ratio) of 109b or more, the charging ratio is 1000 to 2+11'. It is at the level of lOV and 1
tlJi! Performance is superior to females.

不発ゆ(のMt維は白色又は白色に泊<、fuえは白炭
(反射率)60%以上のものに構造することができ、従
来カーボンブラック系の導電(り一複合縁組が不適当で
あった白色又は淡色の繊維製品にも使用することができ
る。連わ゛Cフィラメント又dステーブル状で、巻縮し
ない状態又は巻縮した状態で他の帯if性の天然繊維又
は人造#&維と混用して繊維製品に制電性能を付与する
ことができる。混用率は、通常01〜10%程度である
が、勿論目的によっては10〜100%や0゜1%以下
の混用率が適用される場合がある。混合は、混線、合糸
、合撚糸、混紡、交織、交編その他公知のあらゆる方法
で行うことができる。
The unexploded Mt fibers are white or white, and the fue can be constructed of white charcoal (reflectance) of 60% or more, and the conventional carbon black-based conductive (reflectance) is inappropriate. It can also be used for white or light-colored textile products.In the form of continuous C filaments or D stable, it can be used in the uncrimped state or in the crimped state with other band-like natural fibers or man-made filaments. It is possible to impart antistatic performance to textile products by mixing it with.The mixing rate is usually about 0.1 to 10%, but of course, depending on the purpose, a mixing rate of 10 to 100% or 0.1% or less may be applied. The mixing may be performed by any known method such as interlacing, doubling, plying, blending, interweaving, interweaving, and other methods.

以下実施例によって不発IJJを説明する。%け特記し
ない限り重量%を示す。
Unexploded IJJ will be explained below with reference to Examples. Weight percentages are shown unless otherwise specified.

実施例1 表面に酸化錫(8n02 )反映を有する酸化チタン粒
子に対して0.75elbの酸化アンチモンを混合焼成
してJ9電性化した粒子をA、とする。A、の平均粒径
け025μm(もン径のバラツキ範囲を10.20〜0
50酸 μmで比較的拵っている)、酪化錫の含有率は15粥、
比抵抗6.5Ω・譚、外v3!、は白色にガl:l/′
1淡灰青色で白炭(光反射率)は86%であった。分子
量14、[l 00のナイロン6(結晶化度45%)の
粉末約2558と導電性粒子Al75%を混合し、丈に
溶融混練して得たJIF電性ポリマーをcp、とする。
Example 1 Particles A are obtained by mixing and firing 0.75 elb of antimony oxide with titanium oxide particles having tin oxide (8n02) reflections on their surfaces to make them J9 electrified. A, the average particle diameter is 025 μm (the variation range of the particle diameter is 10.20 to 0
50 acid μm), the content of tin butyride is 15 porridge,
Specific resistance 6.5Ω・Tan, outside v3! , is white: l/'
1. The color was pale gray-blue and the white charcoal (light reflectance) was 86%. A JIF conductive polymer obtained by mixing approximately 2558 powder of nylon 6 (crystallinity 45%) with a molecular weight of 14 and [l00] and conductive particles of Al 75% and melt-kneading the mixture to a length is referred to as CP.

粒子分散剤としてポリエチレンオキ゛シト/ポリブチレ
ンオキシドのブロック共重合物で(共重合比6/1)分
子量4.000のものをAIに対して0.6%添加し、
ナイロン6粉末に混合するときは流動性改善剤としてス
テアリン酸マグネシウム’14 t” At Ic対し
て1.0%添加した。
As a particle dispersant, a block copolymer of polyethylene oxide/polybutylene oxide (copolymerization ratio 6/1) with a molecular weight of 4.000 was added at 0.6% to AI,
When mixed with nylon 6 powder, 1.0% of magnesium stearate '14 t'' At Ic was added as a fluidity improver.

分子ff116.000のナイロン6に艶消剤として酸
化チタン粒子を0.55%添加したものを鞘成分(或い
は保護成分)とし、前記導電性ホリマーcp。
The conductive polymer CP has a sheath component (or protective component) of nylon 6 with a molecular ff of 116.000 and 0.55% titanium oxide particles added thereto as a matting agent.

を導電成分として、第1図、第2因、第6図及び第4図
、第5因のような複合構造で溶融紡糸した。
was used as a conductive component, and composite structures such as those shown in Figures 1, 2, 6, 4, and 5 were melt-spun.

両成分の複合比(体積)を10:1とし、紡糸温度28
0℃で、直径060fiのオリフィスから紡出し、冷却
・オイリングしながら800m/分の速度で捲取った。
The composite ratio (volume) of both components was 10:1, and the spinning temperature was 28
It was spun from an orifice with a diameter of 060fi at 0°C and wound up at a speed of 800 m/min while cooling and oiling.

次いで90℃、2.4倍で廷伸し、更に170℃の熱板
に接触させた後、+2T/mで加熱しながらパーンに巻
取り、20デニールモノフィラメントの延′仲糸Yt−
Y、を得た。尚s y、の延伸においては約400v〜
8001/の巻量で90%近くが糸切れし、すべてのト
ラベラ−にするどい切込みキズが発生していた。これら
の延伸糸の導電性、IJ導電性金属摩耗性等の性能を第
1表に示す。
Next, it was stretched at 90°C and 2.4 times, and then brought into contact with a hot plate at 170°C, and then wound into a pirn while heating at +2T/m to form a 20-denier monofilament stretched Yt-
I got Y. In addition, in the stretching of sy, about 400v~
At a winding amount of 8001/, nearly 90% of the threads were broken, and all the travelers had incision scratches. Table 1 shows the performance of these drawn yarns, such as conductivity and IJ conductive metal abrasion resistance.

導電性は、長さ10倒の単糸10本を束ねて両端を金属
端子と導電性接着剤で検者し、1[1/の直流電圧t−
中加して抵抗値を測定し、それから算出した導電成分の
比抵抗で評価した。
The conductivity was determined by bundling 10 single yarns with a length of 10 and testing both ends with metal terminals and conductive adhesive, and applying a DC voltage of 1/1 to t-.
The resistance value was measured by adding a medium, and the specific resistance of the conductive component calculated from the resistance value was evaluated.

金挑摩耗性は、直径65μmのステンレス線上を100
m/分の速度で糸を走行させた時の(接触前の糸張力4
〜5F、接触角45°)ステンレス線の切断時間で評価
した。
The gold resistance is 100% on a stainless steel wire with a diameter of 65 μm.
When the thread is run at a speed of m/min (thread tension before contact 4
~5F, contact angle 45°) The cutting time of the stainless steel wire was evaluated.

Y4〜Y、はいずれも比抵抗で10”Ω・個程度の優れ
た導電性を示すが、制電性能は同心型芯鞘構造の!、が
著しく劣る。又、金屑摩耗性においてはサイドバイサイ
ド構造のY、が著しく不良である。一方、本発明の繊維
であるY1〜Y3は制電性、金詞摩耗性ともに優れてい
ることが判る。
Y4 to Y all exhibit excellent conductivity with a specific resistance of about 10"Ω, but their antistatic performance is significantly inferior to that of the concentric core-sheath structure. Also, in terms of metal scrap abrasion resistance, side-by-side Structure Y is extremely poor.On the other hand, fibers Y1 to Y3 of the present invention are found to be excellent in both antistatic properties and metal abrasion properties.

次にY、−Y、をそれぞれナイロン6の糸26007″
ニーlL/140フイラメントと合糸して巻縮加工した
ものを4コースに1本用い、他の6コースはナイロン6
巻縮加工糸2600デニール140フィラメントを用い
てタフテッドカーペット(ループ混用率0.199b)
t−製造した。tMられたカーペット上を皮靴で歩行(
25℃、209vRIi)したときの人体帯電圧を測定
した七ころ、不発9」の繊維をX+ − Ys l用し
たカーペットではそれぞれ一26ICV, ・−181
1.−1.7KVとi& n fc III電導電を有
していた。−力sY*に混用したカーペットでは−4.
1KVで、接地した把手に触れた時放亀シコックを感じ
た。尚、比較のため、カイロ26巻細加工糸2600テ
ニー4− 1 4 (Jフィラメントのみからなるカー
ペットでは人体帯電圧かー’/, 2 K Vで、接地
した把手に触れた時の放電Vaミック赦しいもので、か
なシの恐怖lSを生ぜしめるものであった。
Next, Y and -Y are each made of nylon 6 thread 26007″
Nylon 6 is used for each of the 4 courses, and the other 6 courses are made of nylon 6, which has been twisted and crimped with Knee lL/140 filament.
Tufted carpet using crimped yarn 2600 denier 140 filament (loop mixing ratio 0.199b)
t-manufactured. Walking in leather shoes on the covered carpet (
The human body electrostatic voltage measured at 25°C and 209vRIi) was 126ICV and -181, respectively, for carpets made of X+-Ysl fibers of 7 and 9.
1. It had an i&n fc III conductivity of -1.7KV. -For carpet mixed with force sY* -4.
When I touched the grounded handle at 1KV, I felt the release of the turtle. For comparison, a carpet made of 26 rolls of fine yarn, 2600 yarns, and 4-14 (J filaments) has a human body electrostatic voltage of 2 KV, and the discharge Vamic when touching a grounded handle. It was something that caused Kanashi's fear.

その編物ic 6 m間114 (,10本に1本の割
合)で上記Y6〜Y@を含む仮撚糸を混入した(混用率
1.2%)。
False twisted yarns containing the above Y6 to Y@ were mixed into the knitted fabric at an IC 6 m interval of 114 (at a rate of 1 in 10 yarns) (mixing rate: 1.2%).

この編物をよく洗濯、乾燥し、湿温度25℃、65%の
雰U気中、木製の台上でウール布で軽<15回摩擦し、
1分後の帯電圧で評価した。
This knitted fabric was thoroughly washed and dried, and then lightly rubbed <15 times with a wool cloth on a wooden table in an atmosphere of 65% U at a humidity temperature of 25°C.
The charging voltage was evaluated after 1 minute.

Y6〜Y、はいずれも比抵抗で1o2Ω・CM程度の優
れたJ#導電性有しているが、111電性においてd本
発明の繊I41Y6% Yt ’(混用した一物岐優れ
た制電性能を示すのに対し、同心型芯鞘構造のysを混
用したものはtiJ亀性能が不充力であることがヤJる
0尚、比較のためポリエチレンテレフタレート1507
’ニー/I/48フイラメントの仮撚糸のみからなる編
集2表
Y6 to Y all have excellent J# conductivity with a specific resistance of about 102Ω・CM, but the fibers of the present invention I41Y6% Yt' (combined with a single product with excellent antistatic properties) However, for comparison, polyethylene terephthalate 1507 was used for comparison.
Edited table 2 consisting only of 'Knee/I/48 filament false twisted yarn

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第か図に本発明繊維の横断面図の具体例である
。第4図〜第6図は従来のJI!覧性視性複合繊維1f
+面図てあり、第4図に111心型芯鞘禍造、第5し:
と第6図は4電成分が縁組表面に地山した構造の例であ
る。第7図ajg1電性鄭機物粒子と熱可塑性ポリマー
との混合物の粒子混合率と電気抵抗の関係の具体例を示
す。第8因#′i芯鞘型構造の導電性複合繊維の鞘成分
の献小厚さと摩擦帯電圧7の関係の具体例を示すもので
ある。 0 20 40 60 80 100 混9 * (’/、) 手続補正書 昭和59年3月S日 昭和58年特許願第214277号 2、発明の名称 導電性複合繊維 8、補正をする者 事件との囲体 特許出願人 住所 東京都墨田区線田五丁目17番4号〒534大阪
市部島区友淵町1丁目5番90号鐘紡株式会社特許部 電話(06)921−1251 4、補正により増加する発明の数 な し5、補正の対
象 明a書の「発明の詳細な説明」の欄 6、補正の内容 − 以上
FIGS. 1 to 3 show specific examples of cross-sectional views of the fibers of the present invention. Figures 4 to 6 are conventional JI! Visual visibility composite fiber 1f
There is a + side view, and Figure 4 shows the 111-core core-sheath structure, and the 5th one:
Figure 6 shows an example of a structure in which four electric components are piled up on the bonded surface. FIG. 7 shows a specific example of the relationship between the particle mixing ratio and electrical resistance of a mixture of ajg1 electrically conductive particles and a thermoplastic polymer. 8th factor #'i A specific example of the relationship between the thickness of the sheath component of the conductive conjugate fiber having the core-sheath type structure and the frictional charging voltage 7 is shown. 0 20 40 60 80 100 Mixed 9 * ('/,) Procedural amendment document March S, 1980, Patent Application No. 214277, filed in 1982, 2, title of invention Conductive composite fiber 8, amendment with the case of the person making the amendment Enclosure Patent Applicant Address 5-17-4 Senda, Sumida-ku, Tokyo 1-5-90 Tomobuchi-cho, Bejima-ku, Osaka 534 Kanebo Co., Ltd. Patent Department Tel: (06) 921-1251 4. As amended. Increased number of inventions None 5, "Detailed description of the invention" column 6 of the statement of subject matter of the amendment a, Contents of the amendment - Above

Claims (1)

【特許請求の範囲】 (1)導電性の金属酸化物又は金属化合物の粒子或いは
表面にこれらの皮膜を有する粒子を60〜85重景%含
有する熱可塑性ポリマーからなる導電性の芯成分と−4
これを取囲む繊維形成性ポリマーからなる鞘成分とから
なり、且つ横1ν[向において鞘成分の厚さで最小部位
が3μm以下でらシ、txvの直流電圧下で1060・
m未満の電気抵抗を有する導電性複合繊維。 (2)粒子の粒径が01〜05μmのものである特許請
求の範囲第1項記載の繊維。 (5)導電性の芯成分を形成する熱可塑性ポリマーがナ
イロン6、ナイロン66、ナイロン12などのポリアミ
ド、ポリエチレンテレフタレート、ポリブチレンテレフ
タレートなどのポリエステル、アクリル系ポリマー、ポ
リエチレン、ポリプロ上0レンなどのポリオレフィン、
ポリオキシメチレン、ポリオキシエチレンなどのポリエ
ーテル、ポリウレタン及びこれらの共重合物でらる特「
トM氷の範囲第1項記載の繊維。 (4)繊維形成性ポリマーがナイロン6、ナイロン66
、ナイロン12などのポリアミド、ポリエチレンテレフ
タレート、ポリブチレンテレフタレートなどのポリエス
テル、アクリ/L’系ポリマー、ボリグロビレン、ポリ
ウレタン及びこれらの共m合物である特許請求の範囲第
1項記載の繊維。 (5)繊維構l1lrIlIIにおいて導電性の芯成分
が−fI】槓の1〜6096を占める特許請求の範囲第
1項記載の繊維。 (6) 繊維横断面において導電性の芯成分に至る最短
距離が6μm以下である繊維表面が10%以上を占める
特許請求の範囲第1墳記載の繊維。
[Scope of Claims] (1) A conductive core component made of a thermoplastic polymer containing 60 to 85 weight percent of conductive metal oxide or metal compound particles or particles having a coating thereof on the surface; 4
and a sheath component made of a fiber-forming polymer surrounding it, and the minimum thickness of the sheath component in the transverse direction is 3μm or less, and under a DC voltage of txv, the thickness of the sheath component is 1060μm or less.
A conductive composite fiber having an electrical resistance of less than m. (2) The fiber according to claim 1, wherein the particles have a particle size of 01 to 05 μm. (5) The thermoplastic polymer forming the conductive core component is polyamide such as nylon 6, nylon 66, and nylon 12, polyester such as polyethylene terephthalate and polybutylene terephthalate, acrylic polymer, polyolefin such as polyethylene, polypropylene, etc. ,
Special products made from polyethers such as polyoxymethylene and polyoxyethylene, polyurethanes, and copolymers thereof.
Fibers according to item 1. (4) Fiber-forming polymers are nylon 6 and nylon 66
, polyamides such as nylon 12, polyesters such as polyethylene terephthalate and polybutylene terephthalate, acrylic/L'-based polymers, polyglobylene, polyurethane, and co-compounds thereof. (5) The fiber according to claim 1, in which the conductive core component occupies 1 to 6096 of -fI] in the fiber structure l1lrIlII. (6) The fiber according to claim 1, wherein 10% or more of the fiber surface has a shortest distance to the conductive core component of 6 μm or less in the cross section of the fiber.
JP21427783A 1983-11-14 1983-11-14 Electrically conductive composite fiber Pending JPS60110920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21427783A JPS60110920A (en) 1983-11-14 1983-11-14 Electrically conductive composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21427783A JPS60110920A (en) 1983-11-14 1983-11-14 Electrically conductive composite fiber

Publications (1)

Publication Number Publication Date
JPS60110920A true JPS60110920A (en) 1985-06-17

Family

ID=16653065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21427783A Pending JPS60110920A (en) 1983-11-14 1983-11-14 Electrically conductive composite fiber

Country Status (1)

Country Link
JP (1) JPS60110920A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0212626A2 (en) * 1985-08-27 1987-03-04 Teijin Limited Electroconductive composite fiber and process for preparation thereof
JPS6253416A (en) * 1985-08-27 1987-03-09 Teijin Ltd Electrically conductive fiber and production thereof
JPS63219624A (en) * 1987-03-06 1988-09-13 Teijin Ltd Electrically conductive yarn and production thereof
JPH01183520A (en) * 1988-01-18 1989-07-21 Teijin Ltd Electrically conductive fiber
JPH01314716A (en) * 1988-06-10 1989-12-19 Unitika Ltd White fabric having heat insulating property
US5318845A (en) * 1988-05-27 1994-06-07 Kuraray Co., Ltd. Conductive composite filament and process for producing the same
US5654096A (en) * 1995-03-30 1997-08-05 Teijin Limited Electroconductive conjugate fiber
JP2002363826A (en) * 2001-06-06 2002-12-18 Unitica Fibers Ltd Conductive yarn
CN103320891A (en) * 2013-05-24 2013-09-25 宁波三邦日用品有限公司 Antistatic polyester and polypropylene fiber composite superfine fiber and production method thereof
JP2018168518A (en) * 2017-03-30 2018-11-01 Kbセーレン株式会社 Heat storage thermal insulation fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143723A (en) * 1975-05-27 1976-12-10 Monsanto Co Static resistant artificial yarn filament
JPS56107043A (en) * 1980-01-22 1981-08-25 Asahi Chemical Ind Polyester knitted fabric
JPS57161126A (en) * 1981-03-23 1982-10-04 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber
JPS58132121A (en) * 1982-02-01 1983-08-06 Unitika Ltd Preparation of electrically conductive fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143723A (en) * 1975-05-27 1976-12-10 Monsanto Co Static resistant artificial yarn filament
JPS56107043A (en) * 1980-01-22 1981-08-25 Asahi Chemical Ind Polyester knitted fabric
JPS57161126A (en) * 1981-03-23 1982-10-04 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber
JPS58132121A (en) * 1982-02-01 1983-08-06 Unitika Ltd Preparation of electrically conductive fiber

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0137487B2 (en) * 1985-08-27 1989-08-08 Teijin Ltd
JPS6253416A (en) * 1985-08-27 1987-03-09 Teijin Ltd Electrically conductive fiber and production thereof
US4743505A (en) * 1985-08-27 1988-05-10 Teijin Limited Electroconductive composite fiber and process for preparation thereof
US4756926A (en) * 1985-08-27 1988-07-12 Teijin Limited Process for preparation of electroconductive composite fiber
EP0212626A2 (en) * 1985-08-27 1987-03-04 Teijin Limited Electroconductive composite fiber and process for preparation thereof
JPH0364604B2 (en) * 1987-03-06 1991-10-07 Teijin Ltd
JPS63219624A (en) * 1987-03-06 1988-09-13 Teijin Ltd Electrically conductive yarn and production thereof
JPH01183520A (en) * 1988-01-18 1989-07-21 Teijin Ltd Electrically conductive fiber
US5318845A (en) * 1988-05-27 1994-06-07 Kuraray Co., Ltd. Conductive composite filament and process for producing the same
JPH01314716A (en) * 1988-06-10 1989-12-19 Unitika Ltd White fabric having heat insulating property
JPH0440456B2 (en) * 1988-06-10 1992-07-03 Unitika Ltd
US5654096A (en) * 1995-03-30 1997-08-05 Teijin Limited Electroconductive conjugate fiber
JP2002363826A (en) * 2001-06-06 2002-12-18 Unitica Fibers Ltd Conductive yarn
CN103320891A (en) * 2013-05-24 2013-09-25 宁波三邦日用品有限公司 Antistatic polyester and polypropylene fiber composite superfine fiber and production method thereof
JP2018168518A (en) * 2017-03-30 2018-11-01 Kbセーレン株式会社 Heat storage thermal insulation fiber

Similar Documents

Publication Publication Date Title
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
CA1081416A (en) Antistatic biconstituent polymeric filament with partially encapsulated constituent containing carbon black
JPS60110920A (en) Electrically conductive composite fiber
JPH0364603B2 (en)
JPWO2002075030A1 (en) Fiber composite and its use
JPS5841910A (en) Electrically conductive mixed filament yarn
JPS6156334B2 (en)
JPH01292116A (en) Electrically conductive fiber and production thereof
JPS60224813A (en) Antistatic conjugated fiber
EP0276756B1 (en) Conductive composite filaments and fibrous articles containing the same
JPH10310974A (en) Production of electrically conductive fiber
JPS61174469A (en) Production of conductive composite fiber
JPS61152823A (en) Conductive conjugated fiber
JPH0122365B2 (en)
JPH01213411A (en) Electrically conductive yarn
JPH01183520A (en) Electrically conductive fiber
JPH03241010A (en) Electrically conductive conjugate fiber
JPH0122366B2 (en)
JP2988818B2 (en) Polyolefin-based conductive composite fiber
JPS61113824A (en) Electrically conductive composite fiber
JPH01148811A (en) Production of electrically conductive conjugate fiber
JPH042808A (en) Electrically conductive conjugate fiber
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JP3129602B2 (en) Polyolefin-based conductive composite fiber
JPS6411747B2 (en)