JPS60118037A - Cooler of motor in refrigerator - Google Patents
Cooler of motor in refrigeratorInfo
- Publication number
- JPS60118037A JPS60118037A JP58224154A JP22415483A JPS60118037A JP S60118037 A JPS60118037 A JP S60118037A JP 58224154 A JP58224154 A JP 58224154A JP 22415483 A JP22415483 A JP 22415483A JP S60118037 A JPS60118037 A JP S60118037A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- electric motor
- refrigerant
- pressure
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
- H02K9/20—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
- H02K9/197—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、ターボ冷凍機やスクリュー冷凍機などの冷凍
機における電動機冷却装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a motor cooling device for a refrigerator such as a centrifugal refrigerator or a screw refrigerator.
従来の電動機冷却方法としては、特開昭に示さ九ている
ように、電動機のロータとステータとを区分することな
く冷媒液をふりかけ、その蒸発潜熱により冷却していた
。そのため、高圧かつ気液共存状態中でロータが高速回
転することになるので摩擦損失が大きく、また冷却−に
用いる冷媒を凝縮器から取り、蒸発器に戻していたこと
がら、冷凍サイクル中に電動機冷却に要する仕事が含ま
れてしまい、冷凍機全体としての効率が低下するという
問題があった。As disclosed in Japanese Patent Application Laid-Open No. 9-11911, a conventional method for cooling a motor is to sprinkle a refrigerant liquid on the rotor and stator of the motor without separating them, and cool them using the latent heat of vaporization. As a result, the rotor rotates at high speed under high pressure and gas-liquid coexistence, resulting in large friction losses.Also, because the refrigerant used for cooling was taken from the condenser and returned to the evaporator, the electric motor was moved during the refrigeration cycle. There is a problem in that the work required for cooling is included, and the efficiency of the refrigerator as a whole is reduced.
本発明の目的は、冷凍機における電動機を冷媒液冷却す
る際の摩擦損失を低減することにある。An object of the present invention is to reduce friction loss when cooling an electric motor in a refrigerator with a refrigerant liquid.
摩擦損失の主たる原因は、高圧かつ気液共存中でロータ
が高速回転するためであり、一方冷却すべき発熱の大半
を占るのは、静止部であるステータ部である。そこで、
本発明は、ステータのみを冷媒液で冷却する構成とする
ため、ステータを包囲する隔壁を設け、この隔壁によっ
て形成された密閉空間に冷却用の冷媒液を導入するもの
である。The main cause of friction loss is that the rotor rotates at high speed under high pressure and in the coexistence of gas and liquid, while the stationary stator section accounts for most of the heat generated to be cooled. Therefore,
In order to cool only the stator with a refrigerant liquid, the present invention provides a partition wall surrounding the stator, and introduces a cooling refrigerant liquid into the sealed space formed by the partition wall.
以下本発明の一実施例を第1図、第2図、第3図および
第4図、第1図および第2図は、本発明の第1の実施例
を示すものである。ターボ冷凍機は、電動機1によって
駆動され、冷媒蒸気を昇圧するターボまたはスクリュー
圧縮機2.ターボ圧縮機2で昇圧された冷媒蒸気は、凝
縮器3に流入し、ここで管3A内を通る冷却水によって
冷却されて液化する。液化した冷媒液は、減圧機構4を
経由し減圧され、その後蒸発器5に流入する。冷媒液は
この蒸発器5内で、管5A内を流れる水から熱を奪って
蒸発し、冷媒蒸気となり、圧縮機2に吸入され、再び圧
縮され、これを繰り返す。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1, 2, 3 and 4 show an embodiment of the present invention. FIGS. 1 and 2 show a first embodiment of the present invention. A turbo refrigerator is driven by an electric motor 1 and includes a turbo or screw compressor 2 that boosts the pressure of refrigerant vapor. The refrigerant vapor pressurized by the turbo compressor 2 flows into the condenser 3, where it is cooled and liquefied by cooling water passing through the pipe 3A. The liquefied refrigerant liquid is depressurized via the decompression mechanism 4, and then flows into the evaporator 5. In this evaporator 5, the refrigerant liquid takes heat from the water flowing in the pipe 5A and evaporates, becoming refrigerant vapor, which is sucked into the compressor 2, compressed again, and repeats this process.
前記蒸発器5で冷媒液が蒸発する際、管5A内の水から
熱を奪い、管5A内の水を冷やし、冷水を生成する。上
記の冷凍機は、最も基本的な冷凍サイクルを例に説明し
たが、これに変更を加えた冷凍サイクルたとえばエコノ
マイザを付設したものなどに適用できる。When the refrigerant liquid evaporates in the evaporator 5, heat is removed from the water in the tube 5A, cooling the water in the tube 5A and producing cold water. Although the above-mentioned refrigerator has been explained using the most basic refrigeration cycle as an example, it can be applied to a refrigeration cycle that has been modified, such as one equipped with an economizer.
次に電動機の冷却構造を第2図により説明する・電動機
1は、ハウジング6、このハウジング6の内壁に取付け
られたステータ7、軸8に取付けられたロータ9.ステ
ータ7を包囲するようにハウジング6に取付けた隔壁1
0、ハウジング6に形成された流入口11.流出口12
から構成されている。凝縮器3の冷媒液の領域と流入口
IJとは、冷却用冷媒液の導入通路13により連絡され
、流出口12と蒸発器5とは、冷却した後の冷媒蒸気の
排出通路14により連絡されている。Next, the cooling structure of the electric motor will be explained with reference to FIG. Partition wall 1 attached to housing 6 so as to surround stator 7
0, an inlet 11 formed in the housing 6. Outlet 12
It consists of The refrigerant liquid region of the condenser 3 and the inlet IJ are connected through an introduction passage 13 for cooling refrigerant liquid, and the outlet 12 and the evaporator 5 are connected through an exhaust passage 14 for refrigerant vapor after cooling. ing.
また、導入通路13の途中には、通過する冷媒液量を調
節するとともに減圧するための弁13Aを有する。この
弁13Aとしては、電動機1のステータ7の温度によっ
て冷却用冷媒液流量を調節する形式の弁を利用すること
ができる。Further, in the middle of the introduction passage 13, there is a valve 13A for adjusting the amount of refrigerant liquid passing therethrough and reducing the pressure. As this valve 13A, a valve of a type that adjusts the flow rate of the cooling refrigerant liquid depending on the temperature of the stator 7 of the electric motor 1 can be used.
次に動作を説明する。Next, the operation will be explained.
冷媒液は、導入通路13を通って、流入口11から隔壁
10によって形成された密閉空間10Aに流入する。冷
媒液は、この密閉空間10A内で、ステータ7から発生
する熱によって気化し、冷媒蒸気となる。冷媒液が気化
する際の気化潜熱によって、ステータ7およびその周囲
が冷却される。The refrigerant liquid passes through the introduction passage 13 and flows from the inlet 11 into the closed space 10A formed by the partition wall 10. The refrigerant liquid is vaporized in this closed space 10A by the heat generated from the stator 7, and becomes refrigerant vapor. The stator 7 and its surroundings are cooled by latent heat of vaporization when the refrigerant liquid vaporizes.
密閉空間10A内の冷媒蒸気は、流出口12から排出通
路14を通って、蒸発器5または、圧縮機2の吸入側に
流れる。上記のように、冷却用冷媒液をステータの周囲
のみに導入し、ロータ9を収容しているハウジング6に
は、冷却用冷媒を導入しないので、ハウジング6内の圧
力は、密閉空間10Aよりも低く維持され、圧力が低い
分だけロータ9が回転した際の摩擦損失が小さくなる。Refrigerant vapor in the closed space 10A flows from the outlet 12 through the discharge passage 14 to the evaporator 5 or the suction side of the compressor 2. As mentioned above, since the cooling refrigerant liquid is introduced only around the stator and the cooling refrigerant is not introduced into the housing 6 housing the rotor 9, the pressure inside the housing 6 is lower than that in the closed space 10A. The friction loss when the rotor 9 rotates is reduced by the lower pressure.
また、電動機において主に発熱するのは、ステータ9で
あり、この部分を冷却しているので、冷却も充分にでき
る。第3図は、本発明の第2の実施例を示すもので、導
入通路13の途中に減圧送用のポンプ15を設け、排出
通路14の出口を凝縮器3に連絡したものである。Furthermore, since the stator 9 is the main component that generates heat in the electric motor, and this portion is cooled, sufficient cooling can be achieved. FIG. 3 shows a second embodiment of the present invention, in which a pump 15 for reducing pressure is provided in the middle of the introduction passage 13, and the outlet of the discharge passage 14 is connected to the condenser 3.
本実施例は、ポンプ15によって冷却用冷媒液:液を密
閉空間10Aに圧送し、ステータ7を冷却した後の冷媒
蒸気を凝縮器3に戻すようにしたものである。In this embodiment, a cooling refrigerant liquid is pumped into the closed space 10A by a pump 15, and the refrigerant vapor is returned to the condenser 3 after cooling the stator 7.
本実施例によれば、電動機から放出される熱量を冷媒お
よび凝縮器3の冷却水を介して冷凍機外へ放出できるの
で、第1の実施例に対して電動機の冷却に要する熱量に
相当する分だけ冷却能力が大きくなる。According to this embodiment, the amount of heat released from the electric motor can be released to the outside of the refrigerator via the refrigerant and the cooling water of the condenser 3, so that the amount of heat released from the electric motor is equivalent to the amount of heat required to cool the electric motor compared to the first example. The cooling capacity increases accordingly.
第4図は、本発明の第3の実施例を示すもので、排出通
路14の途中に冷却コイル16を設け、この冷却コイル
16を凝縮器3の管の下方または、冷媒液中に配置した
ものである。このようにすると、周囲の冷媒液または上
方の管で凝縮した冷媒液が落下して冷却コイル16にふ
りかかることによって冷却コイル16が冷却される。従
って、冷却コイル16の内部を通る冷媒蒸気は、冷却コ
イル16の部分で液化し、同時に圧力も低くなる。FIG. 4 shows a third embodiment of the present invention, in which a cooling coil 16 is provided in the middle of the discharge passage 14, and this cooling coil 16 is placed below the pipe of the condenser 3 or in the refrigerant liquid. It is something. In this way, the surrounding refrigerant liquid or the refrigerant liquid condensed in the upper tube falls and sprinkles on the cooling coil 16, thereby cooling the cooling coil 16. Therefore, the refrigerant vapor passing through the cooling coil 16 is liquefied in the cooling coil 16, and at the same time, the pressure is also lowered.
この冷却コイル16の部分の圧力と、凝縮器3内の圧力
との差により、冷媒液は導入通路16を通って密閉空間
10Aに流れ、冷却用冷媒が凝縮器3→導入通路13→
流入ロ11→密閉空間10A→流出ロ12→排出通路1
3→冷却コイル16→排出通路13→蒸発器5の経路で
循環する。Due to the difference between the pressure at the cooling coil 16 and the pressure inside the condenser 3, the refrigerant liquid flows through the introduction passage 16 into the closed space 10A, and the cooling refrigerant flows from the condenser 3 to the introduction passage 13 to
Inflow hole 11 → closed space 10A → outflow hole 12 → discharge passage 1
3→cooling coil 16→discharge passage 13→evaporator 5.
本実施例によれば、第2の実施例と同様に、電動機から
奪った熱を冷凍機外に放出することができるとともに、
冷却用冷媒液をポンプを用いずに循環させることができ
、冷媒液の圧送用ポンプおよびポンプ用の動力源が不要
となる。According to this embodiment, as in the second embodiment, the heat taken from the electric motor can be released to the outside of the refrigerator, and
The cooling refrigerant liquid can be circulated without using a pump, and a pump for pressure-feeding the refrigerant liquid and a power source for the pump become unnecessary.
尚、冷却コイル16は、凝縮器3の冷却水ヘッダ内に配
置してもよいし、また、独立したシェル内に冷却コイル
16を配置し、シェル内に冷却水を循環させもよい。Note that the cooling coil 16 may be disposed within the cooling water header of the condenser 3, or may be disposed within an independent shell, and the cooling water may be circulated within the shell.
以上のように本発明によれば、電動機のロータが収容さ
れている空間には冷媒液を入れないで、該空間を低圧に
維持し、かつ、冷媒液が回転しているロータに衝突しな
いので摩擦損失を大幅に低減することができる。これに
よって、冷凍機の効率を向上する効果がある。As described above, according to the present invention, the space in which the rotor of the electric motor is housed is not filled with refrigerant liquid, the space is maintained at a low pressure, and the refrigerant liquid does not collide with the rotating rotor. Friction loss can be significantly reduced. This has the effect of improving the efficiency of the refrigerator.
第1図〜第4図は本発明の詳細な説明図であって第1図
は第1の実施例の系統図、第2図は第1の実施例の要部
説明図、第3図は第2の実施例の系統図、第4図は第3
の実施例の系統図である。
1・・・電動機、2・・・圧縮機、3・・・凝縮器、4
・・・減圧機構、5・・・蒸発器、6・・・ハウジング
、7・・・ステータ、8・・・軸、9・・・ロータ、1
0・・・隔壁、IOA・・・密閉空間、11・・・流入
口、12・・・流出口、13・・・導入通路、14・・
・排出通路、15・・・ポンプ、16・・・冷却コイル
。
第1 to 4 are detailed explanatory diagrams of the present invention, in which FIG. 1 is a system diagram of the first embodiment, FIG. 2 is an explanatory diagram of main parts of the first embodiment, and FIG. The system diagram of the second embodiment, FIG.
It is a system diagram of an example of. 1... Electric motor, 2... Compressor, 3... Condenser, 4
... Pressure reduction mechanism, 5 ... Evaporator, 6 ... Housing, 7 ... Stator, 8 ... Shaft, 9 ... Rotor, 1
0... Partition wall, IOA... Sealed space, 11... Inflow port, 12... Outlet port, 13... Introduction passage, 14...
- Discharge passage, 15...pump, 16...cooling coil. No.
Claims (1)
発器で蒸発した冷媒蒸気を昇圧する圧縮機、この圧縮機
を駆動する電動機、圧縮機で昇圧された冷媒蒸気を冷却
して液化させる凝縮器および凝縮した冷媒液が蒸発器に
到達する前に、これを減圧する減圧機構を備えたターボ
冷凍機において、電動機のステータを包囲する隔壁を有
し、この隔壁によって形成された密閉空間内に、ターボ
冷凍機の冷媒液を導入する経路および冷媒蒸気を排出す
る経路を有することを特徴とするターボ冷凍機における
電動機の冷却装置。 2、特許請求の範囲第1項において、密閉空間の冷媒蒸
気を排出する経路は、凝縮器内に配置された冷却管に連
絡され、前記密閉空間内の冷媒蒸気がこの冷却管を通過
した際に液化され、その後に蒸発器に流入するようにな
っている冷凍機における電動機の冷却装置。[Claims] 1. An evaporator that produces cold water by evaporating refrigerant liquid, a compressor that boosts the pressure of the refrigerant vapor evaporated by this evaporator, an electric motor that drives this compressor, and an electric motor that boosts the pressure of the refrigerant vapor that has been boosted by the compressor. In a turbo chiller equipped with a condenser that cools and liquefies the liquid and a decompression mechanism that reduces the pressure of the condensed refrigerant before it reaches the evaporator, it has a partition that surrounds the stator of the electric motor, and is formed by this partition. 1. A cooling device for an electric motor in a centrifugal chiller, comprising a passage for introducing refrigerant liquid of the centrifugal chiller and a passage for discharging refrigerant vapor in a sealed space. 2. In claim 1, the path for discharging the refrigerant vapor in the closed space is connected to a cooling pipe arranged in the condenser, and when the refrigerant vapor in the closed space passes through this cooling pipe, A cooling system for an electric motor in a refrigerator, which is liquefied into liquid and then flows into an evaporator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58224154A JPS60118037A (en) | 1983-11-30 | 1983-11-30 | Cooler of motor in refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58224154A JPS60118037A (en) | 1983-11-30 | 1983-11-30 | Cooler of motor in refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60118037A true JPS60118037A (en) | 1985-06-25 |
Family
ID=16809376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58224154A Pending JPS60118037A (en) | 1983-11-30 | 1983-11-30 | Cooler of motor in refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60118037A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1109298A1 (en) * | 1999-12-15 | 2001-06-20 | Technicrea Recherche Société à responsabilité limitée | Cooling device for an electric machine, and motor-wheel utilizing the same |
EP1241773A2 (en) | 2001-03-14 | 2002-09-18 | Nissan Motor Co., Ltd. | Rotating electrical machine with air-gap sleeve |
DE102012020958A1 (en) | 2012-10-25 | 2014-04-30 | Volkswagen Aktiengesellschaft | Cooling device for cooling an electrical machine and electrical machine with such |
-
1983
- 1983-11-30 JP JP58224154A patent/JPS60118037A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1109298A1 (en) * | 1999-12-15 | 2001-06-20 | Technicrea Recherche Société à responsabilité limitée | Cooling device for an electric machine, and motor-wheel utilizing the same |
EP1241773A2 (en) | 2001-03-14 | 2002-09-18 | Nissan Motor Co., Ltd. | Rotating electrical machine with air-gap sleeve |
EP1241773A3 (en) * | 2001-03-14 | 2004-03-03 | Nissan Motor Co., Ltd. | Rotating electrical machine with air-gap sleeve |
DE102012020958A1 (en) | 2012-10-25 | 2014-04-30 | Volkswagen Aktiengesellschaft | Cooling device for cooling an electrical machine and electrical machine with such |
WO2014063982A2 (en) | 2012-10-25 | 2014-05-01 | Volkswagen Aktiengesellschaft | Cooling device for cooling an electrical machine and electrical machine having such a cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7181928B2 (en) | System and method for cooling a compressor motor | |
US3232074A (en) | Cooling means for dynamoelectric machines | |
US4903497A (en) | Methods and devices for cooling a motor of a refrigerating machine with liquid and economizer gas | |
JP3716061B2 (en) | Turbo refrigerator | |
JPS5481513A (en) | Scroll compressor | |
US2776542A (en) | Motor cooling means for hermetically sealed refrigerant compressor unit | |
US3105633A (en) | Rotary compressor injection cooling arrangement | |
JPH0192598A (en) | Gas-compressor | |
JPS60118037A (en) | Cooler of motor in refrigerator | |
JP2019100695A (en) | Refrigeration cycle device and method for driving refrigeration cycle device | |
JP6495053B2 (en) | Refrigeration system, refrigeration system operation method, and refrigeration system design method | |
JPH11132581A (en) | Refrigerator | |
JP2001200791A (en) | Hermetically sealed compressor and cooling method for hermetically sealed compressor | |
KR20000009209A (en) | Freezing cycle | |
JPH10292948A (en) | Refrigerator | |
JPS5849776B2 (en) | Two-stage compression refrigeration equipment | |
US1367266A (en) | Refrigerating apparatus | |
JPH05141382A (en) | Freezing device | |
US11162495B2 (en) | Oil circulation in a scroll compressor | |
KR100414104B1 (en) | Turbo compressor cooling structure | |
JPS63224269A (en) | Superfluidity helium cooling equipment | |
JPS59131796A (en) | Cooling of oil cooling rotary compressor | |
JP2001012809A (en) | Refrigerating device | |
JPH0599179A (en) | Refrigerating device | |
JPH0678849B2 (en) | Refrigeration equipment |