[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10292948A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH10292948A
JPH10292948A JP11520797A JP11520797A JPH10292948A JP H10292948 A JPH10292948 A JP H10292948A JP 11520797 A JP11520797 A JP 11520797A JP 11520797 A JP11520797 A JP 11520797A JP H10292948 A JPH10292948 A JP H10292948A
Authority
JP
Japan
Prior art keywords
liquid refrigerant
refrigerant
pressure
cooling
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11520797A
Other languages
Japanese (ja)
Inventor
Kenji Ueda
憲治 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11520797A priority Critical patent/JPH10292948A/en
Publication of JPH10292948A publication Critical patent/JPH10292948A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To cool a closed type electric motor efficiently without decreasing the efficiency in a refrigerator equipped with a multistage compressor that is driven by the closed type electric motor cooled by a refrigerant. SOLUTION: The first intermediate cooler 35 is provided to cool the liquid refrigerant condensed by a condenser 6 by decompressing it to the first intermediate pressure, and then the gas refrigerant which is evaporated by this first intermediate cooler 35 is returned to the intermediate stage of a multistage compressor 1 through an intermediate suction pipe 11 and an intermediate suction valve 8 interposed therein, so that the total amount of the liquid refrigerant cooled by this first intermediate cooler 35 is supplied to a stator 3 of the closed type electric motor 2 to cool it. The second intermediate cooler 38 is provided to decompress the liquid refrigerant after cooling the stator 3 to the second intermediate pressure to cool the liquid refrigerant. The liquid refrigerant which is cooled by this second intermediate cooler 38 is supplied to an evaporator 5, and the total amount of the gas refrigerant which is evaporated by this second intermediate cooler 38 is supplied to a rotor 4 of the closed type electric motor 2 to cool the rotor. The gas refrigerant after cooling the rotor 4 is returned to the suction pipe 9 of the back stream side of the evaporator 5 through the return pipe 19 and an automatic valve 20 interposed therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷凍機に関する。[0001] The present invention relates to a refrigerator.

【0002】[0002]

【従来の技術】従来の冷凍機の1例が図2に示されてい
る。冷凍機を運転すると、多段圧縮機1から吐出された
高圧のガス冷媒は吐出管10を経て凝縮器6に入り、ここ
で伝熱管18内を流過する冷却水等の冷却媒体に放熱する
ことによって凝縮液化する。
2. Description of the Related Art An example of a conventional refrigerator is shown in FIG. When the refrigerator is operated, the high-pressure gas refrigerant discharged from the multi-stage compressor 1 enters the condenser 6 via the discharge pipe 10 and radiates heat to a cooling medium such as cooling water flowing through the heat transfer pipe 18. To condense and liquefy.

【0003】この液冷媒は液溜め14から抽出されて中間
冷却器7に入り、その高圧側絞り機構24で中間圧力まで
絞られることにより液冷媒の一部が蒸発してエリミネー
タ26で液滴を分離した後、中間吸込管11及びこれに介装
された中間吸込弁8を経て多段圧縮機1の高段側羽根車
28に吸い込まれる。残部の液冷媒は蒸発潜熱によって冷
却された後、低圧側絞り機構25により絞られることによ
って流量が調整されると同時に断熱膨張して低圧の気液
二相流となる。
The liquid refrigerant is extracted from the liquid reservoir 14 and enters the intercooler 7, where it is throttled to an intermediate pressure by the high-pressure side throttle mechanism 24. After being separated, the high-stage side impeller of the multi-stage compressor 1 passes through the intermediate suction pipe 11 and the intermediate suction valve 8 interposed therebetween.
Inspired by 28. After the remaining liquid refrigerant is cooled by the latent heat of evaporation, the flow rate is adjusted by being throttled by the low-pressure side throttle mechanism 25, and at the same time, adiabatically expands to a low-pressure gas-liquid two-phase flow.

【0004】この冷媒は蒸発器5に入り、ここで伝熱管
16内を流過するブライン、冷水等の被冷却媒体から吸熱
することによって蒸発気化して低圧のガス冷媒となり、
吸込管9を経て多段圧縮機1に吸い込まれ、その入口ベ
ーン15を経て低段側羽根車27及び高段側羽根車28によっ
て圧縮される。
[0004] This refrigerant enters the evaporator 5, where the heat transfer tube
16Brine flowing through the inside, heat is absorbed from the medium to be cooled such as cold water, and evaporates and evaporates to become a low-pressure gas refrigerant,
It is sucked into the multi-stage compressor 1 through the suction pipe 9 and compressed by the low-stage impeller 27 and the high-stage impeller 28 through the inlet vane 15.

【0005】多段圧縮機1の羽根車27及び28は回転軸29
に固着されて密閉ハウジング30の内部に収納されてい
る。この回転軸29は歯車31、32を介して電動機2の出力
軸33に固着され、電動機2のロータ4及びステータ3は
密閉ケーシング34内に収容されている。
[0005] The impellers 27 and 28 of the multi-stage compressor 1 have a rotating shaft 29.
And housed inside the sealed housing 30. The rotating shaft 29 is fixed to an output shaft 33 of the electric motor 2 via gears 31 and 32, and the rotor 4 and the stator 3 of the electric motor 2 are housed in a closed casing 34.

【0006】凝縮器6の液溜め14から抽出された液冷媒
が供給管12を経て電動機2のステータ3の外周に供給さ
れてその外周面を冷却する。次いで、液冷媒の一部はス
テータ3の外周面から内周面に向かう通路を通ってステ
ータ3の内周面とロータ4の外周面との隙間に流入して
これらを冷却する過程で蒸発気化した後、戻り管13を通
って蒸発器5に吸入される。
The liquid refrigerant extracted from the liquid reservoir 14 of the condenser 6 is supplied to the outer periphery of the stator 3 of the electric motor 2 through the supply pipe 12 to cool the outer peripheral surface. Next, a part of the liquid refrigerant passes through a passage from the outer peripheral surface of the stator 3 to the inner peripheral surface, flows into a gap between the inner peripheral surface of the stator 3 and the outer peripheral surface of the rotor 4, and evaporates in a process of cooling these. After that, it is sucked into the evaporator 5 through the return pipe 13.

【0007】この冷凍サイクルのモリエル線図が図3に
示されている。冷媒ガスはターボ圧縮機1の低段側羽根
車27で圧縮されることによりAからBの状態になり、C
の状態で高段側羽根車28に吸い込まれて圧縮されること
によりDの状態となる。
A Mollier diagram of the refrigeration cycle is shown in FIG. The refrigerant gas is changed from A to B by being compressed by the low-stage impeller 27 of the turbo compressor 1,
In the state described above, the air is sucked into the high-stage impeller 28 and compressed, whereby the state becomes D.

【0008】このガス冷媒は凝縮器6で冷却されること
によりEの状態になり、次いで、凝縮することによりF
の状態の飽和液冷媒となる。この飽和液冷媒は中間冷却
器7の高圧側絞り機構24によって絞られることによりG
の状態となる。そして、その一部は蒸発してHの状態と
なり、次いで、中間吸込弁8で減圧されてIの状態とな
りCの状態で高段側羽根車28に吸い込まれる。
[0008] The gas refrigerant is cooled by the condenser 6 to the state of E, and then condensed to form F
Saturated liquid refrigerant. This saturated liquid refrigerant is throttled by the high-pressure side throttle mechanism 24 of the intercooler 7 to
State. Then, a part thereof evaporates to an H state, and then the pressure is reduced by the intermediate suction valve 8 to become an I state, and is sucked into the high stage impeller 28 in a C state.

【0009】残部の液冷媒は冷却されることによりJの
状態となり、低圧側絞り機構25によって絞られることに
よりKの状態となる。この冷媒は蒸発器5で蒸発するこ
とによってLの状態となって多段圧縮機1に吸い込ま
れ、入口ベーン15で減圧されてAの状態となる。
The remaining liquid refrigerant is cooled to be in the state of J, and is throttled by the low-pressure side throttle mechanism 25 to be in the state of K. The refrigerant evaporates in the evaporator 5 to be in the state of L in the multistage compressor 1 and is decompressed by the inlet vane 15 to the state of A.

【0010】凝縮器6の液溜め14から抽出された液冷媒
は電動機2を冷却することによって破線で示す系路を経
てMの状態となって蒸発器5に吸入される。なお、Nは
飽和液線、Oは飽和蒸気線である。
The liquid refrigerant extracted from the liquid reservoir 14 of the condenser 6 is cooled to the electric motor 2 to enter the state of M through a system shown by a broken line and is sucked into the evaporator 5. Note that N is a saturated liquid line, and O is a saturated vapor line.

【0011】[0011]

【発明が解決しようとする課題】上記従来の冷凍機にお
いては、液冷媒がステータ3の内周面とロータ4の外周
面との隙間内で蒸発して気液二相となるので、ロータ4
の回転抵抗が増大し、電動機2の機械損失が大きくなる
という問題があった。
In the above-described conventional refrigerator, the liquid refrigerant evaporates in the gap between the inner peripheral surface of the stator 3 and the outer peripheral surface of the rotor 4 to form a gas-liquid two-phase.
Has a problem that the rotational resistance of the motor 2 increases and the mechanical loss of the electric motor 2 increases.

【0012】また、電動機2を冷却するために多量の液
冷媒を要するので、冷凍機の効率が悪化するという問題
があった。更に、凝縮器6の伝熱管18内を流過する冷却
媒体の温度及び蒸発器5の伝熱管16内を流過する被冷却
媒体の温度によって電動機2に供給される液冷媒の圧力
が変化するので、電動機2の冷却に必要な冷媒量が確保
できない場合があった。
Further, since a large amount of liquid refrigerant is required to cool the electric motor 2, there is a problem that the efficiency of the refrigerator is deteriorated. Further, the pressure of the liquid refrigerant supplied to the electric motor 2 changes depending on the temperature of the cooling medium flowing through the heat transfer tube 18 of the condenser 6 and the temperature of the cooling medium flowing through the heat transfer tube 16 of the evaporator 5. Therefore, the amount of refrigerant required for cooling the electric motor 2 may not be secured.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題を解決
するために発明されたものであって、その要旨とすると
ころは、冷媒によって冷却される密閉形電動機により駆
動される多段圧縮機と、凝縮器と、蒸発器とを具備する
冷凍機において、上記凝縮器で凝縮した液冷媒を第1の
中間圧に減圧することによって冷却する第1の中間冷却
器を設け、この第1の中間冷却器で蒸発したガス冷媒を
中間吸込管を経て上記多段圧縮機の中間段に戻すととも
にこの第1の中間冷却器で冷却された液冷媒を上記密閉
形電動機のステータに供給してこれを冷却し、このステ
ータを冷却した後の液冷媒を上記第1の中間圧より低い
第2の中間圧に減圧することによって冷却する第2の中
間冷却器を設け、この第2の中間冷却器で冷却された液
冷媒を上記蒸発器に供給するとともにこの第2の中間冷
却器で蒸発したガス冷媒を上記密閉形電動機のロータに
供給してこれを冷却することを特徴とする冷凍機にあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its gist is to provide a multi-stage compressor driven by a hermetic motor cooled by a refrigerant. , A condenser including a condenser and an evaporator, a first intermediate cooler for cooling the liquid refrigerant condensed by the condenser by reducing the liquid refrigerant to a first intermediate pressure. The gas refrigerant evaporated by the cooler is returned to the intermediate stage of the multi-stage compressor through the intermediate suction pipe, and the liquid refrigerant cooled by the first intermediate cooler is supplied to the stator of the hermetic motor to cool it. A second intermediate cooler for cooling the liquid refrigerant after cooling the stator by reducing the liquid refrigerant to a second intermediate pressure lower than the first intermediate pressure is provided, and the second intermediate cooler cools the liquid refrigerant. The evaporator The gas refrigerant evaporated in the second intercooler supplies in the refrigerator, characterized by cooling the supplied to the rotor of the sealed motor.

【0014】他の特徴とするところは、上記中間吸込管
に上記多段圧縮機の吸込圧と中間吸込圧との差圧を一定
以上に維持する中間吸込弁を介装するとともに上記密閉
形電動機のロータを冷却した後のガス冷媒を上記蒸発器
の後流側に戻す戻し管にこのガス冷媒の温度を一定値以
下に維持する自動弁を介装したことにある。
Another feature is that the intermediate suction pipe is provided with an intermediate suction valve for maintaining a differential pressure between the suction pressure of the multi-stage compressor and the intermediate suction pressure at a certain level or more, and the sealed motor is provided with An automatic valve for maintaining the temperature of the gas refrigerant below a certain value is provided in a return pipe for returning the gas refrigerant after cooling the rotor to the downstream side of the evaporator.

【0015】[0015]

【発明の実施の形態】本発明の実施形態が図1に示され
ている。凝縮器6で凝縮した液冷媒はその液溜め14から
第1の中間冷却器35に入り、その絞り機構36で絞られる
ことによって第1の中間圧に減圧される。これによって
液冷媒の一部が蒸発しその蒸発潜熱により残部の液冷媒
が冷却される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIG. The liquid refrigerant condensed in the condenser 6 enters the first intermediate cooler 35 from the liquid reservoir 14 and is reduced to the first intermediate pressure by being throttled by the throttle mechanism 36. As a result, a part of the liquid refrigerant evaporates, and the remaining liquid refrigerant is cooled by the latent heat of evaporation.

【0016】このガス冷媒はエリミネータ37を流過する
過程でこの中に含まれる液冷媒のミストを分離した後、
中間吸込管11及びこれに介装された中間吸込弁8を経て
多段圧縮機1の中間段に吸い込まれる。この中間吸込弁
8を入口ベーン15と同時に制御することによって多段圧
縮機1の吸込圧と中間吸込圧との差圧が一定以上に維持
される。
This gas refrigerant separates the mist of the liquid refrigerant contained therein in the process of flowing through the eliminator 37,
It is sucked into the intermediate stage of the multi-stage compressor 1 via the intermediate suction pipe 11 and the intermediate suction valve 8 interposed therebetween. By controlling the intermediate suction valve 8 simultaneously with the inlet vane 15, the differential pressure between the suction pressure of the multi-stage compressor 1 and the intermediate suction pressure is maintained at a certain level or more.

【0017】第1の中間冷却器35で冷却された液冷媒は
密閉形電動機2のケーシング34内を仕切ることによって
形成された室42内に入ってその中に収容されたステータ
3を冷却する。
The liquid refrigerant cooled by the first intercooler 35 enters a chamber 42 formed by partitioning the inside of the casing 34 of the closed electric motor 2 and cools the stator 3 housed therein.

【0018】ステータ3を冷却した液冷媒は第2の中間
冷却器38に入り、その絞り機構39で絞られることによっ
て第1の中間圧より低い第2の中間圧に減圧される。こ
れによって液冷媒の一部が蒸発しその蒸発潜熱により残
部の液冷媒が冷却される。
The liquid refrigerant that has cooled the stator 3 enters a second intermediate cooler 38, and is reduced by a throttle mechanism 39 to a second intermediate pressure lower than the first intermediate pressure. As a result, a part of the liquid refrigerant evaporates, and the remaining liquid refrigerant is cooled by the latent heat of evaporation.

【0019】このガス冷媒はエリミネータ40を流過する
過程でこの中に含まれる液冷媒のミストを分離した後、
密閉形電動機2のケーシング34内に形成された室43内に
入り、この中に収容されたロータ4を冷却する。
This gas refrigerant separates the mist of the liquid refrigerant contained therein in the process of flowing through the eliminator 40,
It enters a chamber 43 formed in a casing 34 of the hermetic motor 2 and cools the rotor 4 housed therein.

【0020】ロータ4を冷却したガス冷媒は戻し管19及
びこれに介装された自動弁20を経て蒸発器5の後流側の
吸込管9に入る。この自動弁20はロータ4を冷却した後
のガス冷媒の温度を検知する温度センサ44からの指令に
よって制御されこのガス冷媒の温度を一定値以下に維持
する。
The gas refrigerant that has cooled the rotor 4 enters the suction pipe 9 on the downstream side of the evaporator 5 via the return pipe 19 and the automatic valve 20 interposed therebetween. The automatic valve 20 is controlled by a command from a temperature sensor 44 for detecting the temperature of the gas refrigerant after cooling the rotor 4, and maintains the temperature of the gas refrigerant at a certain value or less.

【0021】第2の中間冷却器38で冷却された液冷媒は
蒸発器5に入りここで蒸発した後、戻し管19から流入し
たガス冷媒と合流して多段圧縮機1に吸い込まれる。
The liquid refrigerant cooled by the second intercooler 38 enters the evaporator 5, evaporates there, merges with the gas refrigerant flowing from the return pipe 19, and is sucked into the multi-stage compressor 1.

【0022】この冷凍サイクルのモリエル線図が図3に
示されている。第1の中間冷却器35からJの状態で抽出
された液冷媒は電動機2のステータ3を冷却することに
よって破線で示す系路を経てPの状態となる。この冷媒
は第2の中間冷却器38で気液分離され、分離された液冷
媒はQの状態で絞り機構39で減圧されることによりRの
状態となって蒸発器5に供給される。
A Mollier diagram of this refrigeration cycle is shown in FIG. The liquid refrigerant extracted in the state of J from the first intercooler 35 is cooled to the stator 3 of the electric motor 2 to be in the state of P through the system shown by the broken line. This refrigerant is separated into gas and liquid by the second intercooler 38, and the separated liquid refrigerant is depressurized by the expansion mechanism 39 in the state of Q, and is then supplied to the evaporator 5 in the state of R by being depressurized.

【0023】分離されたガス冷媒はSの状態でロータ4
に供給されこれを冷却することによってTの状態とな
り、自動弁20で絞られることによってUの状態となり、
蒸発器5からのガス冷媒と合流してVの状態で多段圧縮
機1に吸込まれ、その低段側羽根車27で圧縮されてB'の
状態となる。他の構成、作用は図2に示す従来のものと
同様であり、対応する部材には同じ符号を付してその説
明を省略する。
The separated gas refrigerant is in the state of S in the rotor 4
And cooled to a state T, and throttled by the automatic valve 20 to a state U,
It merges with the gas refrigerant from the evaporator 5 and is sucked into the multi-stage compressor 1 in the state of V, and is compressed by the lower stage impeller 27 to be in the state of B ′. Other configurations and operations are the same as those of the conventional one shown in FIG. 2, and corresponding members are denoted by the same reference numerals and description thereof is omitted.

【0024】[0024]

【発明の効果】本発明においては、第1の中間冷却器で
冷却された液冷媒の全量を電動機のステータに供給して
これを冷却するとともに第2の中間冷却器で蒸発したガ
ス冷媒の全量を電動機のロータに供給してこれを冷却す
るので、冷凍機の効率を悪化させることなく電動機を効
果的に冷却することができる。
According to the present invention, the total amount of the liquid refrigerant cooled by the first intercooler is supplied to the stator of the electric motor to cool it, and the total amount of the gas refrigerant evaporated by the second intercooler is reduced. Is supplied to the rotor of the motor to cool the rotor, so that the motor can be effectively cooled without deteriorating the efficiency of the refrigerator.

【0025】中間吸込管に介装された中間吸込弁によっ
て多段圧縮機の吸込圧と中間吸込圧との差圧を一定以上
に維持するとともに戻し管に介装された自動弁によって
電動機のロータを冷却した後のガス冷媒の温度を一定値
以下に維持すれば、電動機を冷却するのに充分な冷媒の
温度と量を安定して確保できる。
The differential pressure between the suction pressure of the multistage compressor and the intermediate suction pressure is maintained at a certain level or more by an intermediate suction valve interposed in the intermediate suction pipe, and the rotor of the motor is controlled by an automatic valve interposed in the return pipe. If the temperature of the gas refrigerant after cooling is maintained at a certain value or less, it is possible to stably secure a sufficient temperature and amount of the refrigerant for cooling the electric motor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】従来の冷凍機の系統図である。FIG. 2 is a system diagram of a conventional refrigerator.

【図3】本発明及び従来の冷凍機のモリエル線図であ
る。
FIG. 3 is a Mollier diagram of the present invention and a conventional refrigerator.

【符号の説明】[Explanation of symbols]

1 多段圧縮機 2 電動機 34 密閉ケーシング 42、43 室 3 ステータ 4 ロータ 5 蒸発器 6 凝縮器 35 第1の中間冷却器 36 絞り機構 37 エリミネータ 38 第2の中間冷却器 39 絞り機構 40 エリミネータ 11 中間吸込管 8 中間吸込弁 19 戻し管 20 自動弁 DESCRIPTION OF SYMBOLS 1 Multistage compressor 2 Electric motor 34 Closed casing 42, 43 chambers 3 Stator 4 Rotor 5 Evaporator 6 Condenser 35 First intercooler 36 Throttle mechanism 37 Eliminator 38 Second intermediate cooler 39 Throttle mechanism 40 Eliminator 11 Intermediate suction Pipe 8 Intermediate suction valve 19 Return pipe 20 Automatic valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒によって冷却される密閉形電動機に
より駆動される多段圧縮機と、凝縮器と、蒸発器とを具
備する冷凍機において、 上記凝縮器で凝縮した液冷媒を第1の中間圧に減圧する
ことによって冷却する第1の中間冷却器を設け、この第
1の中間冷却器で蒸発したガス冷媒を中間吸込管を経て
上記多段圧縮機の中間段に戻すとともにこの第1の中間
冷却器で冷却された液冷媒を上記密閉形電動機のステー
タに供給してこれを冷却し、このステータを冷却した後
の液冷媒を上記第1の中間圧より低い第2の中間圧に減
圧することによって冷却する第2の中間冷却器を設け、
この第2の中間冷却器で冷却された液冷媒を上記蒸発器
に供給するとともにこの第2の中間冷却器で蒸発したガ
ス冷媒を上記密閉形電動機のロータに供給してこれを冷
却することを特徴とする冷凍機。
1. A refrigerator comprising a multi-stage compressor driven by a hermetic motor cooled by a refrigerant, a condenser, and an evaporator, wherein the liquid refrigerant condensed by the condenser is subjected to a first intermediate pressure. A first intercooler is provided for cooling by reducing the pressure, and the gas refrigerant evaporated in the first intercooler is returned to an intermediate stage of the multi-stage compressor through an intermediate suction pipe, and the first intermediate cooling is performed. Supplying the liquid refrigerant cooled by the heater to the stator of the hermetic motor to cool it, and reducing the liquid refrigerant after cooling the stator to a second intermediate pressure lower than the first intermediate pressure. Providing a second intercooler for cooling by
The liquid refrigerant cooled by the second intercooler is supplied to the evaporator, and the gas refrigerant evaporated by the second intercooler is supplied to the rotor of the hermetic motor to cool it. Characterized refrigerator.
【請求項2】 上記中間吸込管に上記多段圧縮機の吸込
圧と中間吸込圧との差圧を一定以上に維持する中間吸込
弁を介装するとともに上記密閉形電動機のロータを冷却
した後のガス冷媒を上記蒸発器の後流側に戻す戻し管に
このガス冷媒の温度を一定値以下に維持する自動弁を介
装したことを特徴とする請求項1記載の冷凍機。
2. An intermediate suction pipe having an intermediate suction valve for maintaining a differential pressure between the suction pressure of the multi-stage compressor and the intermediate suction pressure at a certain level or more and cooling a rotor of the hermetic motor. 2. The refrigerator according to claim 1, wherein an automatic valve for maintaining the temperature of the gas refrigerant at a certain value or less is interposed in a return pipe for returning the gas refrigerant to a downstream side of the evaporator.
JP11520797A 1997-04-17 1997-04-17 Refrigerator Withdrawn JPH10292948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11520797A JPH10292948A (en) 1997-04-17 1997-04-17 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11520797A JPH10292948A (en) 1997-04-17 1997-04-17 Refrigerator

Publications (1)

Publication Number Publication Date
JPH10292948A true JPH10292948A (en) 1998-11-04

Family

ID=14657021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11520797A Withdrawn JPH10292948A (en) 1997-04-17 1997-04-17 Refrigerator

Country Status (1)

Country Link
JP (1) JPH10292948A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG89409A1 (en) * 2000-10-13 2002-06-18 Mitsubishi Heavy Ind Ltd Multistage compression refrigeration machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil
CN103237991A (en) * 2010-12-16 2013-08-07 江森自控科技公司 Motor cooling system
CN107196462A (en) * 2017-07-17 2017-09-22 珠海格力电器股份有限公司 Centrifugal water chilling unit, central air conditioner and condensation preventing method
WO2023169709A1 (en) * 2022-03-10 2023-09-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluid circulation device, installation and method using such a device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG89409A1 (en) * 2000-10-13 2002-06-18 Mitsubishi Heavy Ind Ltd Multistage compression refrigeration machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil
US6460371B2 (en) 2000-10-13 2002-10-08 Mitsubishi Heavy Industries, Ltd. Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
KR100408960B1 (en) * 2000-10-13 2003-12-11 미츠비시 쥬고교 가부시키가이샤 Multistage compression refrigerating machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil
JP2016029325A (en) * 2010-12-16 2016-03-03 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Power unit cooling system
KR20130099198A (en) * 2010-12-16 2013-09-05 존슨 컨트롤스 테크놀러지 컴퍼니 Motor cooling system
JP2014501377A (en) * 2010-12-16 2014-01-20 ジョンソン コントロールズ テクノロジー カンパニー Power system cooling system
CN103237991A (en) * 2010-12-16 2013-08-07 江森自控科技公司 Motor cooling system
US9291166B2 (en) 2010-12-16 2016-03-22 Johnson Controls Technology Company Motor cooling system
EP2652333B1 (en) * 2010-12-16 2019-10-16 Johnson Controls Technology Company Motor cooling system
CN107196462A (en) * 2017-07-17 2017-09-22 珠海格力电器股份有限公司 Centrifugal water chilling unit, central air conditioner and condensation preventing method
CN107196462B (en) * 2017-07-17 2024-01-19 珠海格力电器股份有限公司 Centrifugal water chilling unit, central air conditioner and condensation prevention method
WO2023169709A1 (en) * 2022-03-10 2023-09-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluid circulation device, installation and method using such a device
FR3133433A1 (en) * 2022-03-10 2023-09-15 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluid circulation device, installation and method using such a device.

Similar Documents

Publication Publication Date Title
JP3716061B2 (en) Turbo refrigerator
US6460371B2 (en) Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
JP4973976B2 (en) Sealed turbo compression refrigerator
EP1848934B1 (en) Refrigeration circuit with improved liquid/vapour receiver
KR100200087B1 (en) Cooling cycle of two-stage centrifugal compressor
US8336324B2 (en) Turbo chiller and control method therefor
US5381665A (en) Refrigerating system with compressor cooled by liquid refrigerant
JP2007078340A (en) Ejector type refrigerating cycle
KR20020031409A (en) Turbo compressor and refrigerator with the compressor
JP2007315687A (en) Refrigerating cycle
JP5412193B2 (en) Turbo refrigerator
JP2002022295A (en) Ejector cycle
JP6097109B2 (en) Turbo refrigerator
JP2002188865A (en) Multiple stage compression type refrigerating machine
JP2019100695A (en) Refrigeration cycle device and method for driving refrigeration cycle device
CA3117235C (en) System and method of mechanical compression refrigeration based on two-phase ejector
JP6176470B2 (en) refrigerator
JPH10292948A (en) Refrigerator
JP2010060202A (en) Cooling structure in motor for refrigerator
US10234175B2 (en) Turbo refrigerator
JPH11132581A (en) Refrigerator
JP2002286257A (en) Refrigeration cycle
JP2007255781A (en) Freezer
JP2004300928A (en) Multistage compressor, heat pump and heat utilization device
KR100414104B1 (en) Turbo compressor cooling structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706