JPS644436B2 - - Google Patents
Info
- Publication number
- JPS644436B2 JPS644436B2 JP55137647A JP13764780A JPS644436B2 JP S644436 B2 JPS644436 B2 JP S644436B2 JP 55137647 A JP55137647 A JP 55137647A JP 13764780 A JP13764780 A JP 13764780A JP S644436 B2 JPS644436 B2 JP S644436B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- current
- induction machine
- control circuit
- command
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000006698 induction Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 10
- 230000004907 flux Effects 0.000 claims description 6
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 230000005284 excitation Effects 0.000 description 11
- 241000555745 Sciuridae Species 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/045—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Description
【発明の詳細な説明】
本発明はサイリスタ変換器により駆動されるか
ご形誘導機の制御方法に係り、特に該電動機の誘
起々電力による電流制御回路のゲイン低下を防止
するための制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for a squirrel cage induction machine driven by a thyristor converter, and more particularly to a control method for preventing a decrease in the gain of a current control circuit due to induced electromotive force of the motor.
最近、ベクトル制御と呼ばれる誘導機の制御方
式が検討されている。この制御方式は励磁電流成
分と2次電流成分のそれぞれを独立に制御するこ
とができるので、速度応答性能を直流機と同等に
することが可能である。 Recently, a control method for induction machines called vector control has been studied. Since this control method can independently control each of the excitation current component and the secondary current component, it is possible to make the speed response performance equivalent to that of a DC machine.
第1図はこの制御方式を適用した従来例を示
す。 FIG. 1 shows a conventional example to which this control method is applied.
図において、1は交流電源、2は可変周波の交
流を発生するサイクロコンバータである。3はか
ご形誘導機、4は誘導機3の回転速度を検出する
速度発電機、5は誘導機3の回転速度を指令する
速度指令回路、6は速度指令回路5と速度発電機
4の出力信号偏差に応じて働く速度制御回路で、
その出力信号は誘導機3の2次電流成分を指令す
る信号となる。7は誘導機3の励磁電流成分を指
令する励磁電流指令回路、8は速度制御回路6の
出力信号に比例して誘導機3のすべり周波数を演
算するすべり周波数演算回路、9はすべり周波数
演算回路8と速度発電機4の出力信号の和をと
り、誘導機3の1次周波数を指令する加算器10
は加算器9の出力信号に比例した周波数の正弦波
信号(互いに90度の位相差を有する2相信号)を
出力する発振器で、その出力信号は誘導機3の2
次鎖交磁束の位置基準信号となる。11,12は
発振器10の出力信号の励磁電流指令回路7およ
び速度制御回路6からの2次電流成分指令を掛算
するための掛算器、13は掛算器11,12の出
力信号を加算し誘導機3の1次電流を指令する加
算器で、その出力信号は1次電流の瞬時値を指令
する交流の正弦波信号となる。14は誘導機の1
次電流を検出する電流検出器、15は加算器13
と電流検出器14の出力信号偏差に応じて働らく
電流制御回路、16は電流制御回路15の出力信
号に従つてサイリスタ回路UP,UNの点弧位相を
制御する自動パルス移相器、17はサイリスタ回
路UP,UNの出力電流の正負の向きに応じて、サ
イリスタ回路のUPあるいはUNに交互にゲート信
号を供給するゲート出力回路である。なお、図は
サイリスタ回路UP,UNに対する制御回路のみを
示しており、他のサイリスタ回路VP,VN,WP,
WNに対しても同一の制御回路であるが、それに
ついては省略する。 In the figure, 1 is an AC power supply, and 2 is a cycloconverter that generates variable frequency AC. 3 is a squirrel cage induction machine, 4 is a speed generator that detects the rotational speed of the induction machine 3, 5 is a speed command circuit that commands the rotational speed of the induction machine 3, and 6 is the output of the speed command circuit 5 and the speed generator 4. A speed control circuit that operates according to signal deviation.
The output signal becomes a signal that commands the secondary current component of the induction machine 3. 7 is an excitation current command circuit that commands the excitation current component of the induction machine 3; 8 is a slip frequency calculation circuit that calculates the slip frequency of the induction machine 3 in proportion to the output signal of the speed control circuit 6; 9 is a slip frequency calculation circuit 8 and the output signal of the speed generator 4, and an adder 10 that commands the primary frequency of the induction machine 3.
is an oscillator that outputs a sine wave signal (a two-phase signal with a phase difference of 90 degrees from each other) with a frequency proportional to the output signal of the adder 9, and the output signal is
This becomes the position reference signal for the secondary magnetic flux linkage. 11 and 12 are multipliers for multiplying the output signal of the oscillator 10 by the secondary current component commands from the excitation current command circuit 7 and the speed control circuit 6; and 13 is a multiplier for adding the output signals of the multipliers 11 and 12, 3, which commands the primary current, and its output signal is an alternating current sine wave signal which commands the instantaneous value of the primary current. 14 is induction machine 1
A current detector that detects the next current, 15 is an adder 13
16 is an automatic pulse phase shifter that controls the firing phase of the thyristor circuits U P and U N in accordance with the output signal of the current control circuit 15; Reference numeral 17 denotes a gate output circuit that alternately supplies a gate signal to UP or UN of the thyristor circuits depending on the positive or negative direction of the output current of the thyristor circuits UP or UN . Note that the figure only shows the control circuit for the thyristor circuits UP and UN , and the other thyristor circuits VP , VN , WP ,
Although the same control circuit is used for WN , the explanation thereof will be omitted.
この回路は誘導機の2次電流成分と励磁電流成
分をそれぞれ直流機における電機子電流、界磁電
流に対応させて制御することが特徴である。2次
電流成分指令信号と励磁電流成分指令信号から正
弦波の磁束基準信号を基に誘導機の1次電流の瞬
時値指令信号を演算し、この信号に応じて1次電
流の瞬時値を制御する。このように制御すると高
応答で精度のよいトルク制御が可能となる。 This circuit is characterized in that it controls the secondary current component and excitation current component of the induction machine in correspondence with the armature current and field current in the DC machine, respectively. Calculate the instantaneous value command signal of the primary current of the induction machine based on the sine wave magnetic flux reference signal from the secondary current component command signal and the excitation current component command signal, and control the instantaneous value of the primary current according to this signal. do. Controlling in this manner enables highly responsive and accurate torque control.
しかしながら部品番号14〜17で構成される
電流制御回路には次のような課題がある。すなわ
ち、電流制御回路の指令信号は零から定格周波数
(16Hz)まで連続的に変化する。このとき、誘導
機の誘起々電力が制御系に対して擾乱として加わ
るため、運転周波数が高くなるに従い指令信号に
対する帰還信号(1次電流)の偏差が大きくな
る。このため、電流指令に対する1次電流のゲイ
ン低下を招くことになり、1次電流を指令信号に
精度よく追従させることができなくなる。この課
題の解決法として、誘導機の端子電圧を検出し電
流制御回路に加える方法が考えられる。しかしこ
のものでは検出信号の波形歪みが大きいため、電
流制御回路に加えると自動パルス移相器の制御信
号が脈動しサイリスタの点弧が正常に行われなく
なり、1次電流の脈動が増加するという不具合が
ある。 However, the current control circuit composed of part numbers 14 to 17 has the following problems. That is, the command signal of the current control circuit changes continuously from zero to the rated frequency (16Hz). At this time, the induced electric power of the induction machine is added to the control system as a disturbance, so as the operating frequency becomes higher, the deviation of the feedback signal (primary current) from the command signal becomes larger. This results in a decrease in the gain of the primary current with respect to the current command, making it impossible to cause the primary current to accurately follow the command signal. A possible solution to this problem is to detect the terminal voltage of the induction machine and apply it to the current control circuit. However, this method has a large waveform distortion of the detection signal, so if it is added to the current control circuit, the control signal of the automatic pulse phase shifter will pulsate, the thyristor will not fire properly, and the pulsation of the primary current will increase. There is a problem.
本発明の目的は、以上の不具合がなく電流制御
回路のゲイン低下を防止できる制御方法を提供す
ることにある。 An object of the present invention is to provide a control method that is free from the above-mentioned problems and can prevent a decrease in the gain of a current control circuit.
本発明の特徴とするところは、誘導機の誘起々
電力を励磁電流指令および1次周波数指令と磁束
基準指令信号から演算して求め、電流制御回路に
バイアス信号として加えるようにしたことにあ
る。 A feature of the present invention is that the induced power of the induction machine is calculated and determined from the excitation current command, the primary frequency command, and the magnetic flux reference command signal, and is applied as a bias signal to the current control circuit.
第2図に本発明の一実施例を示す。部品番号1
〜17に示すものは第1図と同一物を示す。18
は、誘導機3の1次周波数指令信号と励磁電流指
令信号を掛け合わせるための掛算器、19は発振
器10の出力信号と掛算器18の出力信号を掛け
合わせるための掛算器、20は掛算器19の出力
信号を電流制御回路15の出力信号に加えるため
の加算器である。 FIG. 2 shows an embodiment of the present invention. Part number 1
Items 1 to 17 are the same as those shown in FIG. 18
19 is a multiplier for multiplying the primary frequency command signal of the induction machine 3 and the excitation current command signal, 19 is a multiplier for multiplying the output signal of the oscillator 10 and the output signal of the multiplier 18, and 20 is a multiplier 19 is an adder for adding the output signal of the current control circuit 15 to the output signal of the current control circuit 15.
次に回路の動作について述べる。 Next, the operation of the circuit will be described.
誘導機3の1次角周波数ω1はすべり角周波数
ωsと速度検出器の信号ωr(電気回転角周波数相
当)との加算により決定されるが、その加算信号
にもとづいて発振器10は電動機磁束の回転位相
に同期した二相正弦波信号を発生する。このた
め、発振器10の出力信号(Asinω1t)から誘導
機の電圧に同相の指令を検出することができる。
一方、電圧の大きさは励磁電流指令および1次周
波数指令の大きさに比例する。したがつて、上記
両者の信号を掛け合わせることにより、誘起々電
力と位相が一致し、大きさが比例した信号を取り
出される。 The primary angular frequency ω 1 of the induction machine 3 is determined by adding the slip angular frequency ω s and the signal ω r (corresponding to the electrical rotation angular frequency) of the speed detector. Based on the added signal, the oscillator 10 controls the electric motor. Generates a two-phase sine wave signal synchronized with the rotational phase of the magnetic flux. Therefore, a command in phase with the voltage of the induction machine can be detected from the output signal (Asinω 1 t) of the oscillator 10.
On the other hand, the magnitude of the voltage is proportional to the magnitude of the excitation current command and the primary frequency command. Therefore, by multiplying the above two signals, a signal whose phase matches the induced electromotive force and whose magnitude is proportional to the induced electromotive force is extracted.
この信号を電流制御回路に加えることによつて
電流制御回路のゲイン低下は次のようにして補償
される。すなわち、電流制御回路のゲイン低下は
誘導機の誘起々電力が制御系に対して擾乱として
加わるために生ずるものであるので、この擾乱を
打消すような信号を掛算器18,19によつて検
出し電流制御回路15の出力信号に加算すれば電
流制御回路のゲイン低下が補償できる。 By applying this signal to the current control circuit, the decrease in gain of the current control circuit is compensated for in the following manner. That is, since the decrease in the gain of the current control circuit occurs because the induced power of the induction machine is added to the control system as a disturbance, multipliers 18 and 19 detect signals that cancel this disturbance. By adding it to the output signal of the current control circuit 15, the decrease in gain of the current control circuit can be compensated for.
また、掛算器18,19によつて検出された信
号は誘起々電力が忠実に演算検出されたものであ
るのでゲイン補償が精度よく行われる。 Further, since the signals detected by the multipliers 18 and 19 are obtained by faithfully calculating and detecting the induced electromotive force, gain compensation is performed with high precision.
以上述べたように、本発明によれば、誘起々電
力が忠実に演算されるので、電流制御回路のゲイ
ン補償が精度よく行われる。 As described above, according to the present invention, the induced power is calculated faithfully, so that the gain compensation of the current control circuit is performed with high accuracy.
なお、前述では誘起々電力の大きさを励磁電流
指令と1次周波数指令より演算する方法について
説明したがすべり周波数が小さい場合には励磁電
流指令と速度検出器の信号から演算できる。 In addition, although the method for calculating the magnitude of the induced electric power from the excitation current command and the primary frequency command was described above, when the slip frequency is small, it can be calculated from the excitation current command and the signal of the speed detector.
第1図は従来の誘導機制御装置の回路構成図、
第2図は本発明の一実施例を示す構成図である。
1……交流電源、2……サイクロコンバータ、3
……誘導機、4……速度発電機、5……速度指令
回路、6……速度制御回路、7……励磁電流指令
回路、8……すべり周波数演算回路、9……加算
器、10……発振器、11,12……掛算器、1
3……加算器、14……電流検出器、15……電
流制御回路、16……自動パルス移相器、17…
…ゲート出力回路。
Figure 1 is a circuit diagram of a conventional induction motor control device.
FIG. 2 is a configuration diagram showing an embodiment of the present invention.
1...AC power supply, 2...cycloconverter, 3
... Induction machine, 4 ... Speed generator, 5 ... Speed command circuit, 6 ... Speed control circuit, 7 ... Exciting current command circuit, 8 ... Slip frequency calculation circuit, 9 ... Adder, 10 ... ...Oscillator, 11, 12...Multiplier, 1
3... Adder, 14... Current detector, 15... Current control circuit, 16... Automatic pulse phase shifter, 17...
...Gate output circuit.
Claims (1)
動される誘導機の制御方法において、誘導機の1
次周波数および励磁電流あるいは磁束に比例した
信号と、前記誘導機の磁束位相に同期した信号と
にそれぞれもとづいて誘起起電力を演算し、この
演算結果を前記変換器の出力電圧を制御する電流
制御回路の出力信号に加算することを特徴とする
誘導機の制御方法。1. In a method for controlling an induction machine driven by a converter capable of controlling voltage and frequency,
Current control that calculates induced electromotive force based on a signal proportional to the next frequency and exciting current or magnetic flux, and a signal that is synchronized with the magnetic flux phase of the induction machine, and uses this calculation result to control the output voltage of the converter. A method for controlling an induction machine, characterized by adding the signal to an output signal of a circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55137647A JPS5762791A (en) | 1980-10-03 | 1980-10-03 | Control device for induction machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55137647A JPS5762791A (en) | 1980-10-03 | 1980-10-03 | Control device for induction machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5762791A JPS5762791A (en) | 1982-04-15 |
JPS644436B2 true JPS644436B2 (en) | 1989-01-25 |
Family
ID=15203523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55137647A Granted JPS5762791A (en) | 1980-10-03 | 1980-10-03 | Control device for induction machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5762791A (en) |
-
1980
- 1980-10-03 JP JP55137647A patent/JPS5762791A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5762791A (en) | 1982-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58123394A (en) | Controller for ac motor | |
EP0083945A2 (en) | Method and apparatus of controlling induction motors | |
JPH0775399A (en) | Variable speed device | |
US4322672A (en) | Electric motor control apparatus | |
JPH0773438B2 (en) | Variable speed controller for induction motor | |
JPS644436B2 (en) | ||
JP3053121B2 (en) | Control method of induction motor | |
JPH0344509B2 (en) | ||
JP3124019B2 (en) | Induction motor control device | |
JP2527161B2 (en) | Vector control arithmetic unit for electric motor | |
JPH0213555B2 (en) | ||
JPS583586A (en) | Torque controller for thyristor motor | |
JP3007989B2 (en) | Driving device for stepping motor | |
JPS63316687A (en) | Vector controlling arithmetic device for induction motor | |
JPH05146191A (en) | Controller for synchronous motor | |
JPS6330236Y2 (en) | ||
JPH11206200A (en) | Induction motor control equipment | |
JPH0634724A (en) | Motor constant identifying method in vector control device for induction motor | |
JPS58215992A (en) | Vector contorller for induction motor | |
JPS6115582A (en) | Controlling method of induction motor | |
JPH0552154B2 (en) | ||
JPH0345632B2 (en) | ||
JPS5936517B2 (en) | AC motor control device | |
JPS6233838B2 (en) | ||
JPH0667256B2 (en) | Cycloconverter control device |