[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5988307A - Manufacture of product coated with silicon carbide - Google Patents

Manufacture of product coated with silicon carbide

Info

Publication number
JPS5988307A
JPS5988307A JP57195702A JP19570282A JPS5988307A JP S5988307 A JPS5988307 A JP S5988307A JP 57195702 A JP57195702 A JP 57195702A JP 19570282 A JP19570282 A JP 19570282A JP S5988307 A JPS5988307 A JP S5988307A
Authority
JP
Japan
Prior art keywords
silicon carbide
substrate
organosilicon compound
plate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57195702A
Other languages
Japanese (ja)
Other versions
JPS6117910B2 (en
Inventor
Morinobu Endo
守信 遠藤
Minoru Takamizawa
高見沢 稔
Tatsuhiko Motomiya
本宮 達彦
Yasushi Kobayashi
小林 泰史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP57195702A priority Critical patent/JPS5988307A/en
Priority to US06/533,649 priority patent/US4560589A/en
Publication of JPS5988307A publication Critical patent/JPS5988307A/en
Publication of JPS6117910B2 publication Critical patent/JPS6117910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/126Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Textile Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To manufacture easily a product coated with silicon carbide by thermally decomposing a specified organosilicon compound in a vapor phase, and depositing the resulting silicon carbide on a substrate. CONSTITUTION:An organosilicon compound having one or more Si-H bonds and no Si-X bond (X is halogen or O) is used. The organosilicon compound is preferably selected from methyl hydrogen silanes obtd. by thermally decomposing dimethylpolysilane represented by the formula (where (x) is an integer) at >=about 350 deg.C. A substrate such as a carbon plate, a metallic silicon plate, a ceramic plate or a metallic plate is placed in a reaction zone, and said organosilicon compound is introduced into the zone with a carrier gas such as H2, N2 or Ar. The compound is thermally decomposed at 700-1,400 deg.C in a vapor phase, and a reaction product (silicon carbide) is deposited on the substrate to coat the substrate.

Description

【発明の詳細な説明】 本発明は炭化けい素抜覆物、特には各種電子材料などの
表面に炭化けい素を被覆させてなる炭化けい素抜覆物の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon carbide-free covering, particularly a silicon carbide-free covering in which the surfaces of various electronic materials are coated with silicon carbide.

高純度の炭化けい素抜覆膜が耐熱性、耐酸化性、耐薬品
性さらには熱伝導性にすぐnて−ることはよく知らnて
いるところであるが、こnはまた半導体特性音もってい
るので、この炭化けい素は半導体基板を始めとする各種
電子材料およびそtらの治具への被覆材料としての応用
が試みらnている。
It is well known that high-purity silicon carbide-free coatings have excellent heat resistance, oxidation resistance, chemical resistance, and even thermal conductivity, but this also has semiconductor characteristics. Therefore, attempts have been made to apply silicon carbide as a coating material for various electronic materials such as semiconductor substrates and jigs thereof.

他方、各種基体表面に結晶質の炭化けい素被覆を施こす
方法については、従来、(1)炭化けい素を2000℃
以上の高温で昇華させ、こni基体上で再結晶させて炭
化けい素抜覆膜を作る方法(特公昭41−9332号参
照) 、(2) (CBm ) ns 5C14−nr
ニーn=0〜3〕 で示さnるシシンとメタンなどの炭
化水素化付物との混会ガスを熱分解させる方法(41!
f公昭44−18575号参照) 、(3)水素化けい
素化付物(SiH,)  と炭化水素化付物との混会ガ
スを高温熱分解する方法(英国特許第1039748号
参照) 、C4)SiO鵞またはSiと炭素の混曾粉末
’k1500℃以上の高温に加熱する方法(特開昭52
−42365号参照)などが知らnて―る。しかし、こ
の(1)の方法は2000℃以上の高温を必要とするた
めこの基体が制限さnるという不利がち5、(2)の方
法にはとnもがな夛の高温が必要とさrLるほか、加水
分解しやすく、取り扱いの難しいクロロシラン類を使用
するという難点がある。また、(3)の方法は比較的低
温で結晶質炭化けい素被暖を得ることができるが、こ扛
にはSin、と炭化水素化合物との間の熱分解温度差お
よび速度差が大きいために、この反応系にHClを添加
するか、あるいはSin、と炭化水素化合物の濃度調整
が必要とさnるという不利があバさらにこの(4)の方
法には1500℃以上の高温が必要とさnるためこnに
は基体の選択に制限があるという欠点がある。
On the other hand, conventional methods for applying crystalline silicon carbide coatings to the surfaces of various substrates include (1) heating silicon carbide to 2000°C;
A method for making a silicon carbide-free coating film by sublimating at a high temperature above and recrystallizing on a Ni substrate (see Japanese Patent Publication No. 41-9332), (2) (CBm) ns 5C14-nr
A method of thermally decomposing a mixed gas of n and a hydrocarbon adduct such as methane (41!) where n = 0 to 3]
(See British Patent No. 1039748), (3) Method of high-temperature pyrolysis of a mixed gas of a hydrogenated silicide (SiH) and a hydrocarbonated compound (see British Patent No. 1039748), C4 ) A method of heating SiO powder or a mixed powder of Si and carbon to a high temperature of 1,500°C or more (Japanese Patent Laid-Open No. 52
-42365) etc. are known. However, method (1) requires a high temperature of 2,000°C or higher, which limits the substrate size5, and method (2) requires extremely high temperatures. Another disadvantage is that it uses chlorosilanes, which are easily hydrolyzed and difficult to handle. In addition, method (3) can obtain crystalline silicon carbide heating at a relatively low temperature, but this method requires a large thermal decomposition temperature difference and speed difference between Sin and the hydrocarbon compound. However, there is the disadvantage that it is necessary to add HCl to the reaction system or to adjust the concentration of Sin and hydrocarbon compounds.Furthermore, method (4) requires a high temperature of 1500°C or more. The drawback of this method is that it limits the selection of substrates.

本発明はこのような不利全解決することのできる炭化け
い素抜覆物の製造方法に関するものであり、こnは分子
中に少なくとも1個の水素−けφ素結@−全有し、Si
X結曾(Xはハロゲン原子、酸素原子を示す)は含有し
ない有機けい素化合物’i、700〜1400℃で気相
熱分解させ、基体上に炭化けい素被覆を施すことを特徴
とするものである。
The present invention relates to a method for producing a silicon carbide-free coating that can overcome all of these disadvantages, and this silicon carbide has at least one hydrogen bond in its molecule, and is composed of silicon carbide.
An organosilicon compound 'i which does not contain X (X represents a halogen atom or an oxygen atom), which is characterized by being thermally decomposed in the gas phase at 700 to 1400°C and coating the substrate with silicon carbide. It is.

こn’e説明すると、本発明者らは各種基体上に高純度
の炭化けい素被覆を施す方法について種々検討の結果、
こ扛にはその分子中に、5’(H基を含む有機けい素化
合物が比較的低温で熱分解するものであるということに
注目し、とnについてさらに研究を進め、と扛について
はSiX結曾を含まないものとすnば、そnが700〜
1400℃で熱分解して炭化けい素となること、したが
ってこnによnば従来法にくらべて比較的低温で容易に
炭化けい素を得ることができるので、この基材も比較的
自由に選択することができ、結果において各種金属、セ
ラミック物質などt基材とする炭化けい素抜覆物および
炭化けい素基板を工業的に有利に製造することができる
こと全確認して本発明を完成させた。
To explain this, the inventors of the present invention have conducted various studies on methods for applying high-purity silicon carbide coatings on various substrates, and have found that
Focusing on the fact that this organosilicon compound contains a 5' (H group) in its molecule, which thermally decomposes at a relatively low temperature, further research on andn was conducted, and SiX If the number does not include the weight, the number is 700~
Since it thermally decomposes to silicon carbide at 1400°C, and therefore silicon carbide can be easily obtained at a relatively low temperature compared to conventional methods, this base material can also be used relatively freely. The present invention has been completed by fully confirming that silicon carbide-free coverings and silicon carbide substrates using various metals, ceramic materials, etc. as base materials can be industrially advantageously manufactured. Ta.

本発明の方法において始発材料として使用さnる有機け
い素化合物は前記したように、その分子中に少なくとも
1個の5i−H結合を含むが、しかしSiX結合を含ま
ないものであり、こnは例えば一般式Rt n−4−、
(Si) n に\にRばその少なくとも1個が水素原
子である、水素原子またはメチル基、エチル基、グロビ
ル基、フェニル基、ビニル基などから選ばする1価の炭
化水素基、nは1〜4の正数〕で示さnるクランまたは
ポリ7ラン類、および一般式 〔ここにRd前記と同じ、R1はメチレン基、エチレン
基またはフェニレン基、mは1〜2の正数〕で示さnる
フルアルキレン化合物またはシルフェニレン化合物、あ
るいは同一分子中にこの両者の主骨格をもつ化付物があ
げらnる。そして、この有機けい素化付物としては、次
式 %式% CH3CM。
As mentioned above, the organosilicon compound used as a starting material in the method of the present invention contains at least one 5i-H bond in its molecule, but does not contain a SiX bond, and this For example, the general formula Rt n-4-,
(Si) n is a monovalent hydrocarbon group selected from a hydrogen atom or a methyl group, an ethyl group, a globyl group, a phenyl group, a vinyl group, etc., at least one of which is a hydrogen atom; n is 1; [a positive number of ~4], and a general formula [where Rd is the same as above, R1 is a methylene group, ethylene group, or phenylene group, m is a positive number of 1 to 2]; Examples include a fullalkylene compound or a silphenylene compound, or an adduct having the main skeletons of both in the same molecule. And, as this organosiliconized adduct, the following formula % formula % CH3CM.

CD、       CE。CD, CE.

CHs      CHs CHs l         1  1 H−8i −CH,−8i −8i −Hl     
   1  1 CB、     CH,CH。
CHs CHs CHs l 1 1 H-8i -CH, -8i -8i -Hl
1 1 CB, CH, CH.

で示さnるシラン、ポリ7ランが例示さnlこわらはそ
の1種または2種あるいは2種以上の混合物として使用
さjLるが、こしらについてはジメチルポリシラン’r
 350 ’C以上の温度で熱分解させて得らオ゛しる
ジメチルポリ7ランを主体とするメチルハイドロジエン
シラン類が好ましいものとさ2する。なお、こnらの¥
i機けい素化合物は、従来公知の方法で製造することが
できるが、こtらは蒸溜工程によって容易に高純度化す
ることができるので、この気相熱分解によって得らnる
炭化けい素も極めて純度の高いものになるという有利性
が与えらnる。
Examples of silanes and poly-7ranes are shown in Table 1.
Methylhydrodiene silanes mainly composed of dimethylpoly7-rane obtained by thermal decomposition at a temperature of 350'C or higher are preferred. In addition, these ¥
Silicon carbide compounds can be produced by conventionally known methods, but they can be easily purified to a high degree by a distillation process, so silicon carbide obtained by vapor phase pyrolysis is It also has the advantage of being extremely pure.

本発明方法の実施は、上記した有機けい素化合物全所定
温度に加熱した反応帯域には輩常圧下で導入し、この反
応帯域中でこの有機けい素化合物を熱分解させnばよい
が、この有機けい素化付物は水素ガスまたは窒素、ヘリ
ウム、アルゴンなどの不活性ガスあるいはこnらの混合
ガスをキャリヤーガスとし、こnに搬流さnるようにす
nばよい。この反応帯域の温度は700℃以下ではこの
有機けい素化合物の熱分解速度が遅いので、目的とする
炭化けい素を収率よく取得するためにはとnk700℃
以上とすることが必要とさnるが、こA’に1400℃
以上とすると炭化けい素結晶の成長速度は向上するが結
晶の成長が不均一なものとなり、基体への密着性がわる
くなるので、こnは700〜1400℃、好ましくは9
00〜1200℃の範囲とすtばよい。
In carrying out the method of the present invention, all of the above-mentioned organosilicon compounds may be introduced under normal pressure into a reaction zone heated to a predetermined temperature, and the organosilicon compounds may be thermally decomposed in this reaction zone. The organosiliconized adduct may be carried by using hydrogen gas, an inert gas such as nitrogen, helium, or argon, or a mixed gas thereof as a carrier gas. If the temperature of this reaction zone is below 700°C, the rate of thermal decomposition of this organosilicon compound is slow.
It is necessary to set the temperature above 1400℃ at A'.
If above, the growth rate of silicon carbide crystals will be improved, but the crystal growth will be non-uniform and the adhesion to the substrate will be poor.
It is sufficient that the temperature is in the range of 00 to 1200°C.

なお、本発明の実施に使用さnる基板は特にとrtを限
定する必要はないが、電子材料用としての炭化けい素抜
覆物′(i−得るためにはとf′Lを炭素、金属けい素
、サファイヤ、窒化けい素などのセラミック物資、石英
ガラス、各種金属板などとし、こnらの表面に上述した
方法で適切な厚さの炭化けい素被覆を施せばよい。
Note that it is not necessary to particularly limit the rt of the substrate used in carrying out the present invention, but in order to obtain a silicon carbide free covering for electronic materials (i), Ceramic materials such as metal silicon, sapphire, and silicon nitride, quartz glass, various metal plates, etc. may be used, and a silicon carbide coating of an appropriate thickness may be applied to the surface by the method described above.

本発明の方法で得らnる結晶質炭化けい素抜覆物はこの
被覆によって耐熱性、耐酸化性、耐薬品性が与えら扛る
ので各梅用途に広く使用さnlこnは特に半導体基板、
電子材料用治具として、さらには各種のシール材、また
熱導性部材として、有用とさnるが、この炭化けい素抜
覆物はその基板を俗解または浴融することによって炭化
けい素基板を取得するようにしてもよい。
The crystalline silicon carbide-free coating obtained by the method of the present invention has heat resistance, oxidation resistance, and chemical resistance, so it is widely used for various applications, especially semiconductors. substrate,
It is said to be useful as a jig for electronic materials, as well as various sealing materials and thermally conductive members. You may also try to obtain .

つぎに本発明方法の実施例をあげるが1こnらは本発明
の範囲全限定するものではない。
Examples of the method of the present invention will be given below, but they are not intended to limit the scope of the present invention.

実施例 1 表面を充分に清浄化した黒鉛質の炭素板を石英管中に載
皺してから、こnを980℃に加熱し、こ\に5容量チ
のテトラメチルシフランを含む水素ガスを100 C,
C,A+の速度で30分間導入してから、冷却後この炭
素板を取り出したところ、この炭素板表面には厚さ5μ
mの均一なβ型SiCの微細な結晶被覆の施さnている
ことが認めらnた。
Example 1 A graphitic carbon plate whose surface had been thoroughly cleaned was placed in a quartz tube and then heated to 980°C, and hydrogen gas containing 5 volumes of tetramethylsifuran was added to the tube. 100 C,
The carbon plate was introduced for 30 minutes at speeds C and A+, and after cooling, the carbon plate was taken out.
It was observed that a uniform microcrystalline coating of β-type SiC was applied.

つぎに、この炭素板を空気中で1300℃にくυ返し加
熱をしたが、この表面被覆には全く変化がなく、この被
覆は酸化を防止する強固で均一な、ピンボールのないも
のであることが確認さ扛た。
Next, this carbon plate was repeatedly heated to 1,300°C in air, but there was no change in the surface coating, and this coating was strong and uniform to prevent oxidation, without pinballs. That was confirmed.

しかし、比較のため上記における反応帯域の温度を14
50℃としたにかは同一条件でテトラメチルシフランの
熱分解を行なったところ、この場合には炭素板上に形成
さnた炭化けい累被覆はこのβ型SiCが結晶が大きく
不均一であるため、その表面に凹凸があシ、こnKはま
たその一部にクラックのあることが認めらnた。
However, for comparison, the temperature of the reaction zone in the above was set to 14
When tetramethylsifuran was thermally decomposed under the same conditions as 50°C, it was found that the silicon carbide coating formed on the carbon plate was composed of β-type SiC with large and non-uniform crystals. Because of this, the surface was uneven, and it was also observed that there were cracks in some parts of the surface.

実施例 2 サファイヤ単結晶板を石英管中に載置し、こnil 0
50℃に加熱してから、こ\に5容量チのジメチルシラ
ンを含む水素ガスとアルゴンガスの等量混会ガス11o
oc、c。7分の速度で30分間導入して、ジメチルシ
ランを熱分解させたところ、冷却後に取り出したす7ア
イヤ単結晶板の表面には厚さ約5μmの炭化けい素被覆
が均一に施さnていた。
Example 2 A sapphire single crystal plate was placed in a quartz tube, and the nil 0
After heating to 50°C, a mixture of equal amounts of hydrogen gas and argon gas containing 5 volumes of dimethylsilane was added to 11 liters of gas.
oc, c. When the dimethylsilane was thermally decomposed by introducing the dimethylsilane at a rate of 7 minutes for 30 minutes, a silicon carbide coating with a thickness of approximately 5 μm was uniformly applied to the surface of the 7-year single crystal plate taken out after cooling. .

実施例 3 石英ガラス管’(i?1120℃に加熱し、と>K3C
1i、    CB。
Example 3 A quartz glass tube' (i?1120℃ heated to >K3C
1i, CB.

で示さnるオルカッ7ランを含む水素ガスを150C,
C,7分の速度で30分間導入したところ、この石英ガ
ラス管内面は約7μmの厚さの微結晶質の炭化けい素で
被覆さnlこの被膜は常温から1000℃のヒートサイ
クルのく9返しによってもクラックを発生したシ、はが
nるということがなく、石英ガラス面に強固に密着して
いた。
150C,
When introduced for 30 minutes at a speed of 7 minutes, the inner surface of this quartz glass tube was coated with microcrystalline silicon carbide approximately 7 μm thick. It did not develop any cracks or peel off even when exposed to water, and was firmly adhered to the quartz glass surface.

実施例 屯 けい素板を石英管中に載置し、とnを1030℃に加熱
したのち、こ\に5容量チのテトラメチルジシランを含
む水素ガスと7容量チのジメチルクランを含むアルゴン
ガスを、そnぞn100C0C0/分、50C0C0/
分の速度で1時間にわたって導入したところ、このけい
素板には厚さ約20μmで炭化けい素が被覆さnた。
Example A silicon plate was placed in a quartz tube, heated to 1030°C, and then hydrogen gas containing 5 volumes of tetramethyldisilane and argon gas containing 7 volumes of dimethylclane were added. , so n100C0C0/min, 50C0C0/
The silicon plate was coated with silicon carbide to a thickness of about 20 .mu.m when the silicon plate was introduced at a rate of 1.0 min over a period of 1 hour.

つぎに、このけい素板を弗硝酸中に浸漬して、このけい
素を溶、解除去した七ころ、約20μmの厚さの炭化は
9累基板が得らnた。
Next, this silicon plate was immersed in fluoronitric acid to dissolve and remove the silicon, yielding a carbonized substrate with a thickness of about 20 μm.

4646

Claims (1)

【特許請求の範囲】[Claims] 1  分子中に少なくとも1個のけい素−水素結合を有
し、SiX結会(Xはハロゲン原子、酸素原子を示す)
を含有しない有機けい素化付物を、700〜1400℃
 で気相熱分解させ、基体上に炭化けい素被覆を施すこ
とを特徴とする炭化けい素抜覆物の製造方法。
1 Has at least one silicon-hydrogen bond in the molecule, SiX bond (X represents a halogen atom or an oxygen atom)
Organosiliconized adducts that do not contain
1. A method for producing a silicon carbide-free covering, which comprises performing vapor-phase pyrolysis in a gas phase to form a silicon carbide coating on a substrate.
JP57195702A 1982-09-22 1982-11-08 Manufacture of product coated with silicon carbide Granted JPS5988307A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57195702A JPS5988307A (en) 1982-11-08 1982-11-08 Manufacture of product coated with silicon carbide
US06/533,649 US4560589A (en) 1982-09-22 1983-09-19 Method for providing a coating layer of silicon carbide on substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195702A JPS5988307A (en) 1982-11-08 1982-11-08 Manufacture of product coated with silicon carbide

Publications (2)

Publication Number Publication Date
JPS5988307A true JPS5988307A (en) 1984-05-22
JPS6117910B2 JPS6117910B2 (en) 1986-05-09

Family

ID=16345554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195702A Granted JPS5988307A (en) 1982-09-22 1982-11-08 Manufacture of product coated with silicon carbide

Country Status (1)

Country Link
JP (1) JPS5988307A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489377A (en) * 1990-07-27 1992-03-23 Natl Res Inst For Metals High-strength sic/carbon fiber composite material and production thereof
JP2002293523A (en) * 2001-03-30 2002-10-09 Japan Fine Ceramics Center Carbon nanotube membrane, sic substrate containing the same, product made of the same and their production method
JP2003063813A (en) * 2001-08-29 2003-03-05 Japan Fine Ceramics Center Carbon nanotube film, carbon nanotube film body and substrate with carbon nanotube film, and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POWDER METALLUGY INTERNATIONAL=1980 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489377A (en) * 1990-07-27 1992-03-23 Natl Res Inst For Metals High-strength sic/carbon fiber composite material and production thereof
JP2002293523A (en) * 2001-03-30 2002-10-09 Japan Fine Ceramics Center Carbon nanotube membrane, sic substrate containing the same, product made of the same and their production method
JP2003063813A (en) * 2001-08-29 2003-03-05 Japan Fine Ceramics Center Carbon nanotube film, carbon nanotube film body and substrate with carbon nanotube film, and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6117910B2 (en) 1986-05-09

Similar Documents

Publication Publication Date Title
KR100284374B1 (en) Method of Forming Crystalline Silicon Carbide Film
JP3545459B2 (en) Method of making crystalline silicon carbide coating at low temperature
JPS59128281A (en) Manufacture of silicon carbide coated matter
JPS6346039B2 (en)
EP0723600B1 (en) Process for the preparation of silicon carbide films using single organosilicon compounds
JPS5988307A (en) Manufacture of product coated with silicon carbide
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
US20050255245A1 (en) Method and apparatus for the chemical vapor deposition of materials
JPS6221868B2 (en)
JPS6115150B2 (en)
WO2010032673A1 (en) Nickel-containing film‑formation material, and nickel-containing film‑fabrication method
JPS63225591A (en) Manufacture of silicon carbide-coated graphite material
JP2001262346A (en) METHOD FOR MANUFACTURING SiC COATED GRAPHITE MEMBER WITH REDUCE PINHOLES
TWI747440B (en) Novel silylcyclodisilazane compound and method for manufacturing silicon-containing thin film using the same
JP3925884B2 (en) Method for coating SiC film
JP4289141B2 (en) ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND
JP2822970B2 (en) Method of forming silicon carbide thin film
JPS627620A (en) Reaction tube for producing polycrystalline silicon
JP4336929B2 (en) Insulating film forming material and insulating film forming method
JP2649679B2 (en) Susceptor for vapor phase growth and method for producing the same
JPS60234973A (en) Manufacture of thin silicon nitride film
JPH05124864A (en) Production of high purity silicon carbide body
JP2615409B2 (en) Synthesis of boron nitride by pyrolysis
JPH02129365A (en) Coated structural material
JPH05124863A (en) Production of high purity silicon carbide body