[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2973215B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2973215B2
JP2973215B2 JP2109926A JP10992690A JP2973215B2 JP 2973215 B2 JP2973215 B2 JP 2973215B2 JP 2109926 A JP2109926 A JP 2109926A JP 10992690 A JP10992690 A JP 10992690A JP 2973215 B2 JP2973215 B2 JP 2973215B2
Authority
JP
Japan
Prior art keywords
layer
type
active layer
laser device
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2109926A
Other languages
Japanese (ja)
Other versions
JPH047887A (en
Inventor
誠治 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2109926A priority Critical patent/JP2973215B2/en
Publication of JPH047887A publication Critical patent/JPH047887A/en
Application granted granted Critical
Publication of JP2973215B2 publication Critical patent/JP2973215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、単一横モードで発振するAlGaInP系の半導
体レーザ装置に関する。
Description: TECHNICAL FIELD The present invention relates to an AlGaInP-based semiconductor laser device that oscillates in a single transverse mode.

(従来の技術) 最近、有機金属熱分解法(以後MOVPEと略す)による
結晶成長により形成され、単一横モードで発振するAlGa
InP系の半導体レーザ装置として、第3図に示すような
構造が報告されている(第50回応用物理学会学術講演会
講演予稿集 第3分冊 p893 28a−ZG−4)。この構
造の製作においては、第一回目の成長でn型GaAs基板1
上に、n型(Al0.6Ga0.40.5In0.5Pクラッド層2、Ga
InP活性層3、P型(Al0.6Ga0.40.5In0.5Pクラッド
層4、p型Ga0.5In0.5P層8、p型GaAsコンタクト層9
を順次に形成する。次にフォトリソグラフィーによりSi
Oをマスクとして、メサストライプを形成する。そしてS
iOマスクをつけたまま、第二回目の成長を行ないエッチ
ングしたところをAl0.5In0.5P層11、n型GaAs層12で埋
め込む。次にSiOマスクを除去し、p,n各電極を形成しレ
ーザチップに加工する。
(Prior Art) Recently, AlGa oscillated in a single transverse mode formed by crystal growth by metal organic pyrolysis (hereinafter abbreviated as MOVPE).
As an InP-based semiconductor laser device, a structure as shown in FIG. 3 has been reported (Preliminary Proceedings of the 50th Annual Meeting of the Japan Society of Applied Physics, Third Volume p893 28a-ZG-4). In manufacturing this structure, the n-type GaAs substrate 1
On the n-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P cladding layer 2, Ga
InP active layer 3, P-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P cladding layer 4, p-type Ga 0.5 In 0.5 P layer 8, p-type GaAs contact layer 9
Are sequentially formed. Next, by photolithography,
A mesa stripe is formed using O as a mask. And S
With the iO mask attached, the second growth is performed and the etched portion is buried with an Al 0.5 In 0.5 P layer 11 and an n-type GaAs layer 12. Next, the SiO mask is removed, and p and n electrodes are formed and processed into a laser chip.

この構造により電流はAl0.5In0.5P層11、n型GaAs層
12によりブロックされメサストライプ部にのみ注入され
る。また、メサストライプ形成のエッチングのときに、
メサストライプ部以外のp型クラッド層4の厚みを光の
閉じ込めには不十分な厚みまでエッチングするのでAl
0.5In0.5P層11のある部分では、このAl0.5In0.5P層11
に光が反射され、横方向に実屈折率差がつきメサストラ
イプ部にのみ光は導波される。このようにこの構造で
は、電流狭窄機構と光導波機構が同時に作り付けられ、
実屈折率導波型のレーザとなるから非点収差も小さい。
With this structure, the current is Al 0.5 In 0.5 P layer 11, n-type GaAs layer
Blocked by 12 and injected only into the mesa stripes. Also, at the time of etching for forming the mesa stripe,
Since the thickness of the p-type cladding layer 4 other than the mesa stripe portion is etched to a thickness insufficient for confining light, Al
In parts of the 0.5 an In 0.5 P layer 11, the Al 0.5 In 0.5 P layer 11
Then, the light is reflected, and there is a difference in the actual refractive index in the lateral direction, so that the light is guided only to the mesa stripe portion. Thus, in this structure, the current confinement mechanism and the optical waveguide mechanism are simultaneously created,
Since it is a real refractive index guided laser, astigmatism is also small.

(発明が解決しようとする課題) 上述の第3図の構造では、成長回数を二回にとどめて
電極を形成しているがこの方法だとP型コンタクト層と
電極の接触面積が小さく素子の電気特性を良好に再現性
よく得ることが難しくなる。この問題を防ぐには、成長
回数を一回増し全面にP型コンタクト層を成長して全面
電極とした構造があるが、これだと成長回数が増え煩雑
になってしまう。また従来の製作方法では、Al0.5In0.5
P層を誘電体膜をマスクとして選択的に結晶成長してい
るが、Alを含む混晶系は誘電体膜上に析出しやすく適当
な成長技術の確立が困難である。このように従来の半導
体レーザ装置には解決すべき課題があった。
(Problem to be Solved by the Invention) In the structure of FIG. 3 described above, the electrode is formed by limiting the number of times of growth to two times. However, according to this method, the contact area between the P-type contact layer and the electrode is small, and It is difficult to obtain good electrical characteristics with good reproducibility. In order to prevent this problem, there is a structure in which the number of times of growth is increased once and a P-type contact layer is grown on the entire surface to form a full-surface electrode, but this increases the number of times of growth and becomes complicated. In the conventional manufacturing method, Al 0.5 In 0.5
Although the P layer is selectively grown using a dielectric film as a mask, a mixed crystal system containing Al is easily deposited on the dielectric film, and it is difficult to establish an appropriate growth technique. As described above, the conventional semiconductor laser device has a problem to be solved.

本発明の目的は、上述の課題を解決し、簡便に製作で
き、非点収差の小さい横モード制御構造のAlGaInP系半
導体レーザ装置を提供することにある。
An object of the present invention is to provide an AlGaInP-based semiconductor laser device which solves the above-described problems, can be manufactured easily, and has a lateral mode control structure with small astigmatism.

(課題を解決するための手段) 本発明の半導体レーザ装置は、n型GaAs基板上に、Ga
InP若しくはAlGaInP又はそれらの量子井戸層からなる活
性層と、この活性層を挟み活性層よりも屈折率の小さな
AlGaInPからなるクラッド層とからなるダブルヘテロ構
造が形成してあり、前記活性層の上側の前記クラッド層
はp型(AlXGa1-X0.5In0.5Pでなり、この上側のクラ
ッド層は層厚が部分的に厚くなることにより形成される
ストライプ状のメサ構造を有し、このメサ構造の上面に
p型GaInP層を有し、これらの構造の上全面に、前記p
型GaInP層上面以外の部分で量子準位が活性層のエネル
ギーギャップよりも大きくなる厚みとされるGaAs層を有
し、 これらの構造の上全面にp型(AlYGa1-Y0.5In0.5
(Y>X)層を有することを特徴とする。
(Means for Solving the Problems) The semiconductor laser device of the present invention comprises a Ga laser
An active layer composed of InP or AlGaInP or a quantum well layer thereof, and a smaller refractive index than the active layer sandwiching the active layer.
A double heterostructure composed of a cladding layer made of AlGaInP is formed, and the cladding layer above the active layer is made of p-type (Al X Ga 1-X ) 0.5 In 0.5 P, and the upper cladding layer is made of It has a stripe-shaped mesa structure formed by partially increasing the layer thickness, and has a p-type GaInP layer on the upper surface of the mesa structure.
GaAs layer whose quantum level is larger than the energy gap of the active layer in the portion other than the upper surface of the p-type GaInP layer, and p-type (Al Y Ga 1-Y ) 0.5 In 0.5 P
(Y> X) layer.

(作用) 本発明の構造によれば、メサ構造の上面以外の部分で
は量子準位が活性層のエネルギーギャップよりも大きく
なる厚みのGaAs層を有している。このGaAs層を挟み込ん
でいるp型(AlXGa1-X0.5In0.5Pクラッド層とp型
(AlYGa1-Y0.5In0.5P(Y>X)層に、GaAs層との大
きなバンド不連続によるキャリヤーの空乏層が広がり、
素子にバイアスしてもその電圧は、p型(AlXGa1-X
0.5In0.5Pクラッド層中の空乏層にかかり、ホールが流
れることができなくなり電流のブロック層として働く。
これに対しメサ部分ではp型(AlXGa1-X0.5In0.5Pク
ラッド層とGaAs層の間にp型GaInP層があるので、バン
ド不連続は小さくなり、ホールはこの部分を流れること
ができる。このようにして電流はメサ部分のみに注入さ
れる。またGaAs層は、量子準位が活性層のエネルギーギ
ャップよりも大きくなる厚みと規定してあるので活性層
の光は吸収できない。そして構造の上全面のp型(AlYG
a1-Y0.5In0.5P(Y>X)層はp型(AlXGa1-X0.5I
n0.5Pクラッド層よりも屈折率が小さいので、光の吸収
を用いない実屈折率型の導波機構となり非点収差を小さ
く押さえることができる。そしてこの構造では二回の少
ない成長回数で全面電極が形成でき、しかも良好な電気
特性を容易に得ることができる。
(Operation) According to the structure of the present invention, the portion other than the upper surface of the mesa structure has a GaAs layer whose quantum level is larger than the energy gap of the active layer. The p-type (Al X Ga 1-X ) 0.5 In 0.5 P cladding layer and the p-type (Al Y Ga 1-Y ) 0.5 In 0.5 P (Y> X) layer sandwiching the GaAs layer The carrier depletion layer due to large band discontinuity expands,
Even if the element is biased, the voltage is p-type (Al X Ga 1-X )
The 0.5 In 0.5 P is applied to the depletion layer in the cladding layer, so that holes cannot flow and functions as a current blocking layer.
On the other hand, in the mesa portion, there is a p - type GaInP layer between the p-type (Al X Ga 1-x ) 0.5 In 0.5 P cladding layer and the GaAs layer, so that band discontinuity is reduced and holes flow through this portion. Can be. In this way, current is injected only into the mesa portion. Also, the GaAs layer cannot absorb light from the active layer because the quantum level is defined as a thickness that is larger than the energy gap of the active layer. And the p-type (Al Y G
a 1-Y ) 0.5 In 0.5 P (Y> X) layer is p-type (Al X Ga 1-X ) 0.5 I
Since the refractive index is smaller than that of the n 0.5 P cladding layer, a real refractive index type waveguide mechanism that does not use light absorption is provided, and astigmatism can be suppressed to a small value. With this structure, the entire surface electrode can be formed with a small number of growth times of two, and good electrical characteristics can be easily obtained.

(実施例) 本発明の実施例を図面を用いて説明する。(Example) An example of the present invention will be described with reference to the drawings.

第1図は本発明の半導体レーザ装置の一実施例を示す
断面図であり、第2図はその工程図である。第1図は、
実施例のレーザチップを共振器軸に垂直な面で切断して
示している。
FIG. 1 is a sectional view showing an embodiment of a semiconductor laser device according to the present invention, and FIG. 2 is a process diagram thereof. Figure 1
The laser chip of the example is cut along a plane perpendicular to the resonator axis.

本実施例の製作においては、まず一回目の減圧MOVPE
による成長で、n型GaAs基板1(Siドープ;n=2×1018
cm-3)上に、n型(Al0.6Ga0.40.5In0.5Pクラッド層
2(n=5×1017cm-3;厚み1μm)、Ga0.5In0.5P活
性層3(アンドープ;厚み1μm)、p型(Al0.6G
a0.40.5In0.5Pクラッド層4(p=5×1017cm-3;厚
み1.0μm)、p型Ga0.5In0.5Pキャップ層5を順次に
成長した(第2図(a))。成長条件は、温度700℃、
圧力70Torr、V/III=200、キャリヤガス(H2)の全流量
151/minとした。原料としては、トリメチルインジウム
(TMI:(CH33In)、トリエチルガリウム(TEG:(C
2H53Ga)、トリメチルアルミニウム(TMA:(CH33A
l)、アルシン(AsH3)、ホスフィン(PH3)、n型ドー
パント:セレン化水素(H2Se)、p型ドーパント:シク
ロペンタヂエニルマグネシウム(Cp2Mg)を用いた。こ
うして成長したウェハにフォトリソグラフィにより幅4
μmのスイライプ状のSiO2マスク10を形成した(第2図
(b))。次にこのSiO2マスク10を用いて臭化水素酸系
のエッチング波により、p型(Al0.6Ga0.40.5In0.5
クラッド層4の途中まで(ここでは0.8μmとした)を
メサ状にエッチングした(第2図(c))。つぎにSiO2
マスクを除去した(第2図(d))。そして減圧MOVPE
により二回目の成長を行ない、p型GaAs層6、p型(Al
0.6Ga0.20.5In0.5Pキャップ層7(p=5×1017c
m-3;厚み1.0μm)、p型Ga0.5In0.5P層8、p型GaAs
コンタクト層9、を形成した(第2図(e))。最後に
p,n両電極を形成してキャビティ長300μmにへき開し、
個々のチップに分離した。
In the production of this embodiment, first, the first decompression MOVPE
N-type GaAs substrate 1 (Si-doped; n = 2 × 10 18)
cm −3 ), an n-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P cladding layer 2 (n = 5 × 10 17 cm −3 ; thickness 1 μm), a Ga 0.5 In 0.5 P active layer 3 (undoped; thickness 1 μm) ), P-type (Al 0.6 G
a 0.4 ) 0.5 In 0.5 P clad layer 4 (p = 5 × 10 17 cm −3 ; thickness 1.0 μm) and a p-type Ga 0.5 In 0.5 P cap layer 5 were sequentially grown (FIG. 2A). The growth conditions are temperature 700 ℃,
Pressure 70 Torr, V / III = 200, total flow rate of carrier gas (H 2 )
It was 151 / min. As raw materials, trimethyl indium (TMI: (CH 3 ) 3 In), triethyl gallium (TEG: (C
2 H 5) 3 Ga), trimethyl aluminum (TMA: (CH 3) 3 A
l), arsine (AsH 3 ), phosphine (PH 3 ), n-type dopant: hydrogen selenide (H 2 Se), p-type dopant: cyclopentadienyl magnesium (Cp 2 Mg). Photolithography is applied to the wafer thus grown to a width of 4
A μm sweep-shaped SiO 2 mask 10 was formed (FIG. 2 (b)). Next, using the SiO 2 mask 10, a p-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P
A part of the cladding layer 4 (here, 0.8 μm) was etched in a mesa shape (FIG. 2C). Next, SiO 2
The mask was removed (FIG. 2 (d)). And decompression MOVPE
For the second growth, and the p-type GaAs layer 6 and the p-type (Al
0.6 Ga 0.2 ) 0.5 In 0.5 P cap layer 7 (p = 5 × 10 17 c
m -3 ; thickness 1.0 μm), p-type Ga 0.5 In 0.5 P layer 8, p-type GaAs
A contact layer 9 was formed (FIG. 2E). Finally
Form both p and n electrodes and cleave to 300 μm cavity length,
Separated into individual chips.

こうして得られた本発明の半導体レーザ装置における
非点収差は4μm以下である。また、上述の製作工程か
らわかるようにこの良好な特性のレーザ装置を得るため
の成長回数は二回でありかつ全面電極が形成できる。
The astigmatism of the semiconductor laser device of the present invention thus obtained is 4 μm or less. Further, as can be seen from the above-described manufacturing process, the number of times of growth for obtaining the laser device having good characteristics is two times, and the entire surface electrode can be formed.

以上に述べた実施例では、活性層やクラッド層の組成
を規定したが、活性層組成は製作するレーザ装置に要求
される発振波長要件を満たす組成または量子井戸にすれ
ばよく、クラッド層組成は用いる活性層組成に対して光
とキャリヤの閉じ込めが十分にできる組成を選べばよ
い。またレーザ装置に要求される特性によりSCH構造に
するなどクラッド層をより多層化することもできる。
In the above-described embodiments, the composition of the active layer and the cladding layer is specified. However, the composition of the active layer may be a composition or a quantum well that satisfies the oscillation wavelength requirement required for the laser device to be manufactured. A composition that can sufficiently confine light and carriers with respect to the composition of the active layer to be used may be selected. Further, the cladding layer can be made more multilayer, for example, by using a SCH structure depending on the characteristics required for the laser device.

(発明の効果) このように本発明により、非点収差の小さい半導体レ
ーザ装置が自己整合的に、少ない製作工程で製作でき
る。
(Effect of the Invention) As described above, according to the present invention, a semiconductor laser device having small astigmatism can be manufactured in a self-aligned manner with a small number of manufacturing steps.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す断面図、第2図(a)〜
(e)はその実施例の制作工程を示す断面図、第3図は
従来の半導体レーザ装置の例を示す断面図である。 1……n型GaAs基板、2……n型(Al0.6Ga0.40.5In
0.5Pクラッド層、3……Ga0.5In0.5P活性層、4……
p型(Al0.6Ga0.40.5In0.5Pクラッド層、5……p型
Ga0.5In0.5Pキャップ層、6……p型GaAs層、7……p
型(Al0.8Ga0.20.5In0.5Pキャップ層、8……p型Ga
0.5In0.5P層、9……p型GaAsコンタクト層、10……Si
O2膜、11……Al0.5Ga0.5P層、12……n型GaAs層。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIGS.
(E) is a sectional view showing a production process of the embodiment, and FIG. 3 is a sectional view showing an example of a conventional semiconductor laser device. 1... N-type GaAs substrate, 2... N-type (Al 0.6 Ga 0.4 ) 0.5 In
0.5 P clad layer, 3 ... Ga 0.5 In 0.5 P active layer, 4 ...
p-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P clad layer, 5 ... p-type
Ga 0.5 In 0.5 P cap layer, 6 ...... p-type GaAs layer, 7 ...... p
Type (Al 0.8 Ga 0.2 ) 0.5 In 0.5 P cap layer, 8 ... p-type Ga
0.5 In 0.5 P layer, 9 ... p-type GaAs contact layer, 10 ... Si
O 2 film, 11... Al 0.5 Ga 0.5 P layer, 12... N-type GaAs layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】n型GaAs基板上に、GaInP若しくはAlGaInP
又はそれらの量子井戸層からなる活性層と、この活性層
を挟み活性層よりも屈折率の小さなAlGaInPからなるク
ラッド層とからなるダブルヘテロ構造が形成してあり、 前記活性層の上側の前記クラッド層はp型(AlXGa1-X
0.5In0.5Pでなり、この上側クラッド層は層厚が部分的
に厚くなることにより形成されるストライプ状のメサ構
造を有し、 このメサ構造の上面にp型GaInP層を有し、 これらの構造の上全面に、前記p型GaInP層上面以外の
部分で量子準位が活性層のエネルギーギャップよりも大
きくなる厚みとされるGaAs層を有し、 これらの構造の上全面にp型(AlYGa1-Y0.5In0.5
(Y>X)層を有することを特徴とする半導体レーザ装
置。
1. An n-type GaAs substrate on which GaInP or AlGaInP
Alternatively, a double hetero structure composed of an active layer made of the quantum well layer and a clad layer made of AlGaInP having a smaller refractive index than the active layer sandwiching the active layer is formed, and the clad above the active layer is formed. Layer is p-type (Al X Ga 1-X )
Becomes at 0.5 an In 0.5 P, the upper clad layer has a stripe-shaped mesa structure formed by the layer thickness becomes thicker partially has a p-type GaInP layer on the upper surface of the mesa structure, these On the entire upper surface of the structure, there is provided a GaAs layer whose quantum level is larger than the energy gap of the active layer in a portion other than the upper surface of the p-type GaInP layer. Y Ga 1-Y ) 0.5 In 0.5 P
A semiconductor laser device having a (Y> X) layer.
JP2109926A 1990-04-25 1990-04-25 Semiconductor laser device Expired - Fee Related JP2973215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109926A JP2973215B2 (en) 1990-04-25 1990-04-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109926A JP2973215B2 (en) 1990-04-25 1990-04-25 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH047887A JPH047887A (en) 1992-01-13
JP2973215B2 true JP2973215B2 (en) 1999-11-08

Family

ID=14522619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109926A Expired - Fee Related JP2973215B2 (en) 1990-04-25 1990-04-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2973215B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080427A (en) * 2004-09-13 2006-03-23 Univ Of Tokyo Semiconductor light emitting device

Also Published As

Publication number Publication date
JPH047887A (en) 1992-01-13

Similar Documents

Publication Publication Date Title
US5757833A (en) Semiconductor laser having a transparent light emitting section, and a process of producing the same
US5604764A (en) Semiconductor laser
JPH0656906B2 (en) Semiconductor laser device
JPH07162086A (en) Manufacture of semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP2003142774A (en) Semiconductor laser and its manufacturing method
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JP2980302B2 (en) Semiconductor laser
US5805628A (en) Semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JP2550725B2 (en) Semiconductor laser and manufacturing method thereof
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
JP2758597B2 (en) Semiconductor laser device
JP2611509B2 (en) Semiconductor laser
WO2023281741A1 (en) Semiconductor optical element
JPH0745902A (en) Semiconductor laser and manufacture thereof
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JPH0437598B2 (en)
JPH07235725A (en) Semiconductor laser element and its manufacture
JP3911342B2 (en) Manufacturing method of semiconductor laser device
JP2001077466A (en) Semiconductor laser
JPH09283846A (en) Semiconductor laser manufacturing method
JPH05235477A (en) Manufacture of semiconductor element
JP2001257421A (en) Semiconductor laser element and its manufacturing method
JPH0353581A (en) Manufacture of semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees