JPS5958736A - Electron gun for indirectly-heated type impregnated cathode - Google Patents
Electron gun for indirectly-heated type impregnated cathodeInfo
- Publication number
- JPS5958736A JPS5958736A JP58154851A JP15485183A JPS5958736A JP S5958736 A JPS5958736 A JP S5958736A JP 58154851 A JP58154851 A JP 58154851A JP 15485183 A JP15485183 A JP 15485183A JP S5958736 A JPS5958736 A JP S5958736A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- heat
- electron gun
- cylinder
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/04—Cathodes
Landscapes
- Solid Thermionic Cathode (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は傍熱型含浸陰極用電子銃の構造に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure of an electron gun for indirectly heated impregnated cathodes.
含浸あるいは補給形と呼ばれる方式の陰極は、撮像管、
ブラウン管などの光電変換管や進行波管、クライストロ
ン、マグネトロンなどのマイクロ波管用きして有望視さ
れている。従来からの含浸陰極は、電子放射物質が含浸
された陰極基体とスリーブとからなり、ヒータなどの発
熱体により陰極を加熱する方式の傍熱型陰極である。こ
の含浸陰極は、Wを主成分きする粉末を適当な焼結条件
で焼結した多孔質の陰極基体にBa0−A/203 ・
CaOなどからなる溶融化合物を電子放射物質として陰
極基体の空孔内に含浸したものである。使用時には、M
oやIll a等の高融点金属の円筒形のスリーブで陰
極基体を保持し、スリーブ内に陰極加熱用のヒータを装
着する傍熱形の構造となっている。ヒータは通常、耐熱
性の良好なW線が用いられ、W線表面に電気的絶縁用の
アルミナ被覆層が形成されている。The cathode of the so-called impregnated or supplemented type is used in an image pickup tube,
It is seen as promising for use in photoelectric conversion tubes such as cathode ray tubes, traveling wave tubes, and microwave tubes such as klystrons and magnetrons. A conventional impregnated cathode is an indirectly heated cathode that consists of a cathode base impregnated with an electron-emitting substance and a sleeve, and is heated by a heating element such as a heater. This impregnated cathode is made of a porous cathode substrate made by sintering powder containing W as the main component under appropriate sintering conditions, and Ba0-A/203.
A molten compound made of CaO or the like is impregnated into the pores of the cathode substrate as an electron emitting substance. When using, M
The cathode substrate is held in a cylindrical sleeve made of a high-melting point metal such as O or Illa, and a heater for heating the cathode is installed inside the sleeve, making it an indirectly heated structure. The heater usually uses a W wire with good heat resistance, and an alumina coating layer for electrical insulation is formed on the surface of the W wire.
従来、撮像管、ブラウン管等の′電子放射源としては、
(Ba、Sr、Ca)Oを主成分とする酸化物カソード
が用いられ−Cいる。酸化物hソードは1000°にで
10 A/ cm2 の飽和電流密度を得ることがで
きる電子源であるが、電子源が(Ba。Conventionally, as electron radiation sources such as image pickup tubes and cathode ray tubes,
An oxide cathode containing (Ba, Sr, Ca)O as a main component is used. The oxide h-sode is an electron source that can obtain a saturation current density of 10 A/cm2 at 1000°;
Sr 、Ca)0の粉末を用いるためイオン衝撃に弱く
、また電気抵抗が(充分活性化された酸化物カソードの
比抵抗は約104Ωcm)大きいため多くの放射電流で
動作するき自己加熱により酸化物カソード自体が劣化す
るという欠点がある。従って酸化物カソードの定常動作
時の放射電流密度は約0.5A/cm (!:低い値
に設定しである。Because Sr, Ca) 0 powder is used, it is vulnerable to ion bombardment, and because the electrical resistance is high (the specific resistance of a fully activated oxide cathode is approximately 104 Ωcm), it operates with a large amount of radiation current, and the oxide is heated by self-heating. The drawback is that the cathode itself deteriorates. Therefore, the radiation current density of the oxide cathode during steady operation is set to a low value of about 0.5 A/cm (!).
一方、含浸型陰極は陰極基体としてWあるいはMoある
いはReあるいはこれらの合金等の高温強度の高い金属
を用いているため、イオン衝撃に強く、また電気抵抗(
Wの比抵抗は約4.9X1ff”Ωc m ) が小
さいので多くの放射電流密度で動作しても自己加熱によ
る陰極基体の温度−ヒ昇らない。On the other hand, impregnated cathodes use metals with high high temperature strength such as W, Mo, Re, or their alloys as the cathode substrate, so they are resistant to ion bombardment and have low electrical resistance (
Since the resistivity of W is small (approximately 4.9×1ff"Ωcm), the temperature of the cathode substrate does not rise due to self-heating even when operated at a high radiation current density.
しかし、含浸型陰極では10 A / cm2の飽和電
流密度を得るには、1000〜1100°Cの高温に陰
極基体を加熱する必要がある。従って、発熱体としての
ヒータから供給される電力を有効に利用するための電子
銃の構造が要求される。However, in order to obtain a saturation current density of 10 A/cm2 with an impregnated cathode, it is necessary to heat the cathode substrate to a high temperature of 1000 to 1100°C. Therefore, there is a need for an electron gun structure that can effectively utilize the electric power supplied from the heater as a heating element.
以下には、従来の傍熱方式による電子銃の構造を、酸化
物カソードを用いた場合と含浸型陰極を用いた場合を例
にとって説明する。Below, the structure of a conventional indirect heating type electron gun will be explained, taking as examples the case where an oxide cathode is used and the case where an impregnated cathode is used.
例1:第1図は従来の傍熱型酸化物カソードを用いた最
も一般的な電子銃の構造を示す。(I3 a 。Example 1: Figure 1 shows the most common structure of an electron gun using a conventional indirectly heated oxide cathode. (I3a.
Sr、Ca)0から成る酸化物は陰極基体1上に塗布さ
れる。陰極基体1の材料は主としてNiが用いられ、他
の少1tiHの活性剤(Mg、Si、A/等)添加され
ている。陰極基体1は耐熱合金(例えばニクロム)製の
支持円筒2で支持され、さらに支持円筒2は、保持台8
を界して、熱反射用筒体を兼ねた陰極支持体4に固定さ
れて、絶縁板7に取付けられる。陰極加熱用のヒータ3
は支持円筒2の内側に挿入して用いる。実用の電子銃と
しては、陰極基体1に対向して電子流を通ず孔を有した
第1グリッド′5及び電子の引出し用の第2グリツド6
の他に複数個の電極を用いて螢光面に電子流を投影する
様になっている。この電子銃構成の欠点は、支持円筒2
の熱容量が大きく、かつ長さも長く、また保持台8、陰
極支持体4への熱の逃げも多いため、ヒータ3も大きい
ものが要求されてくる。また陰極表面温度が定常値に達
する時間も長くなる。さらに支持円筒2の長さが長いと
、温度上昇による熱膨張の欧も増加して、陰極表面と第
1グリツド5の間隔の変動(陰極表面(!:第1グリッ
ドの間隔力月00μmの場合の変動の許容値は10チ以
下と云われている)も大きくなる。An oxide consisting of Sr, Ca)0 is applied onto the cathode substrate 1. The material of the cathode substrate 1 is mainly Ni, with a small amount of other activators (Mg, Si, A/etc.) added thereto. The cathode substrate 1 is supported by a support cylinder 2 made of a heat-resistant alloy (for example, nichrome), and the support cylinder 2 is further supported by a holding base 8.
It is fixed to a cathode support 4 which also serves as a heat reflecting cylinder, and attached to an insulating plate 7. Heater 3 for cathode heating
is used by being inserted inside the support cylinder 2. A practical electron gun includes a first grid '5 facing the cathode substrate 1 and having holes through which electrons do not flow, and a second grid 6 for extracting electrons.
In addition, multiple electrodes are used to project an electron stream onto a fluorescent surface. The disadvantage of this electron gun configuration is that the supporting cylinder 2
has a large heat capacity and a long length, and a large amount of heat escapes to the holding table 8 and the cathode support 4, so the heater 3 is also required to be large. Furthermore, the time required for the cathode surface temperature to reach a steady value becomes longer. Furthermore, if the length of the support cylinder 2 is long, the thermal expansion due to temperature rise will also increase, resulting in fluctuations in the distance between the cathode surface and the first grid 5 (cathode surface (!: When the distance between the first grid and the first grid is 00 μm) (It is said that the permissible value for fluctuation is 10 inches or less) also increases.
例2:第2図は陰極部の熱容量を減らし、かつ熱膨張に
よる変形量も減少する様に工夫された電子銃構成の一例
を示す。陰極基体1は支持円筒2で支持される。陰極加
熱用ヒータ3が、陰極部を集中的に加熱できるように工
夫された結果、支持円筒の長さも例1の場合に比べて半
分以下ζこなっている。支持円筒2は、その円周上の3
箇所もしくは4箇所に取付けられた陰極支持板9により
、陰極支持体4の上部に固定される。他の電極構造は例
1の場合々はとんど同じである。木刀式の特徴は、陰極
部の熱容量が減少したこ乏により、陰極表面温度が定常
値に達する時間が短縮(例1の場合の約174に短縮さ
れている)された。また、支持円筒2の熱膨張による変
形に対して、陰極支持板9はこれを吸収する様な伸びを
して、陰極表面と第1グリツド5との間隔を一定に保つ
様になっている。Example 2: FIG. 2 shows an example of an electron gun configuration designed to reduce the heat capacity of the cathode section and also reduce the amount of deformation due to thermal expansion. The cathode substrate 1 is supported by a support cylinder 2. As a result of the cathode heating heater 3 being designed to heat the cathode portion intensively, the length of the support cylinder is also less than half that of Example 1. The support cylinder 2 has 3 points on its circumference.
It is fixed to the upper part of the cathode support 4 by cathode support plates 9 attached at one or four locations. The other electrode structures are much the same in Example 1. The feature of the wooden sword type is that the time required for the cathode surface temperature to reach a steady value is shortened (reduced to about 174 in the case of Example 1) due to the decrease in the heat capacity of the cathode part. Furthermore, the cathode support plate 9 expands to absorb deformation of the support cylinder 2 due to thermal expansion, thereby maintaining a constant distance between the cathode surface and the first grid 5.
ここに上げた2つの例は、電子放射物質として(Ha、
8r、Ca)0等の酸化物を用いた場合で。The two examples given here are electron-emitting substances (Ha,
When using oxides such as 8r, Ca)0.
従って陰極基体1の温度も高々800℃と低いので、陰
極部から発散する熱を有効に利用するための熱反射用筒
体を兼ねた陰極筒体4に特別の操作をしなくても実用上
は大きな障害はない。Therefore, since the temperature of the cathode substrate 1 is as low as 800°C at most, there is no need for any special operation on the cathode cylinder 4, which also serves as a heat reflecting cylinder to effectively utilize the heat radiated from the cathode. There are no major obstacles.
次に含浸型陰極を用いた電子銃の従来構造の例を示す。Next, an example of a conventional structure of an electron gun using an impregnated cathode will be shown.
例3:第3図は含浸型陰極を用いた傍熱型電子銃の構造
の例を示す。多孔質Wに電子放射物質としてBa0−A
l2O2・CaOを含浸した陰極基体1′は、Moある
いはTaあるいはW等の耐熱金属の薄板(20〜30μ
m厚)で作った支持円筒2で支持される。この支持円筒
2は陰極基体1′と反対の一端ζこおいて、陰極部から
の放射熱を反射する熱反射用筒体を兼用した陰極支持体
4によって保持されている。ヒータ3は支持円筒2の内
側に挿入され、熱伝導と輻射熱により陰極基体1′を加
熱する。陰極基体1′のヒータ3と接する側には、電子
放射物質がヒータ3側に蒸発してヒータ3の絶縁破壊を
生じるのを防止するための障壁板10が設けである。陰
極支持体4は絶縁板7に取付は固定さ才1.る。この様
な含浸型陰極を電子銃として用いる場合、陰極基体1′
に対向して電子線を通す孔を有する第1グリツド5、及
び電子線の引出し用軍極の第2クリツド6の他収束用電
極を用いて螢光面等に投影される。Example 3: FIG. 3 shows an example of the structure of an indirectly heated electron gun using an impregnated cathode. Ba0-A as an electron emitting material in porous W
The cathode substrate 1' impregnated with l2O2.CaO is made of a thin plate (20 to 30 μm) of a heat-resistant metal such as Mo, Ta, or W.
It is supported by a support cylinder 2 made of (m thickness). This support cylinder 2 is held at one end ζ opposite to the cathode base 1' by a cathode support 4 which also serves as a heat reflecting cylinder that reflects radiant heat from the cathode portion. The heater 3 is inserted inside the support cylinder 2 and heats the cathode base 1' by thermal conduction and radiant heat. A barrier plate 10 is provided on the side of the cathode substrate 1' in contact with the heater 3 to prevent the electron emitting substance from evaporating toward the heater 3 and causing dielectric breakdown of the heater 3. The cathode support 4 is fixedly attached to the insulating plate 7.1. Ru. When using such an impregnated cathode as an electron gun, the cathode base 1'
The electron beams are projected onto a fluorescent surface or the like using a first grid 5 which faces the electron beam and has a hole through which the electron beam passes, a second grid 6 which is a pole for extracting the electron beam, and a converging electrode.
含浸型陰極は高電流密度の電子線源として期待されてい
るが、その動作温度が1000〜1100°Cと高いた
め、ヒータの消費電力をできるだけ低くする様な電子銃
構成が期待される。この様な観点から第3図の例をみた
場合、従来の電子銃構造には次の様な欠点がある。すな
わち、陰極基体1′の周囲からの熱放射によって消費さ
れる熱を有効に利用する電子銃構造になっていない。つ
まり、陰極基体1′周囲からの輻射熱を陰極側に反射す
る様な電子銃構造になっていない。The impregnated cathode is expected to be used as a high current density electron beam source, but since its operating temperature is as high as 1000 to 1100°C, an electron gun configuration that reduces the power consumption of the heater as much as possible is expected. When looking at the example shown in FIG. 3 from this perspective, the conventional electron gun structure has the following drawbacks. That is, the electron gun structure does not effectively utilize the heat consumed by heat radiation from the periphery of the cathode substrate 1'. In other words, the electron gun structure does not reflect radiant heat from around the cathode base 1' to the cathode side.
本発明の第1の目的は、陰極基体及びその支持体となる
支持円筒から放散される熱を有効に利用出来、かつ電子
銃構造を簡略化できる傍熱型の含浸陰極用電子銃を提供
することである。A first object of the present invention is to provide an indirectly heated impregnated cathode electron gun that can effectively utilize the heat dissipated from a cathode substrate and a support cylinder serving as its support, and that can simplify the electron gun structure. That's true.
本発明の他の目的は、陰極部からの輻射熱による第1グ
リツドの熱膨張による変形を減少する電子銃構造を提供
することである。Another object of the present invention is to provide an electron gun structure that reduces deformation due to thermal expansion of the first grid due to radiant heat from the cathode section.
本発明の傍熱型含浸陰極用電子銃は、多孔質金属からな
る陰極基体、これを支持する円筒型の支持円筒及び発熱
体とからなる傍熱型の含浸陰極、陰極基体と支持円筒か
ら外側に放散される熱を陰極側に反射する熱反射用筒体
、及び電子流を通ず孔を有し陰極こと対向する第1グリ
ツドから構成される電子銃において、該熱反射用筒体と
第1グリツドを一体の複合体としたことを特徴とする。The indirectly heated impregnated cathode electron gun of the present invention comprises a cathode base made of a porous metal, a cylindrical support cylinder supporting the cathode, and a heating element; In an electron gun, the electron gun is composed of a heat-reflecting cylinder that reflects heat dissipated to the cathode side, and a first grid facing the cathode and having holes through which electrons flow. It is characterized by making one grid into an integrated complex.
以下、本発明を実施例により説明する。 The present invention will be explained below using examples.
実施例1
本発明による電子銃の構造を第4図により説明する。空
孔率20〜25チの多孔質Wに4. B a O・Al
2O3・CaOなる電子放射物質を含浸した陰極基体1
’ (ii径1.4 mmφ、厚さ0.6 nun
)は、肉厚25μm1長さ6mmのMo製の支持円筒2
で支持した。支持円筒2の材質としてはM Oの他、高
温強度の高い耐熱金属であれば、W、Ta、Re。Example 1 The structure of an electron gun according to the present invention will be explained with reference to FIG. 4. Porous W with a porosity of 20 to 25 inches. B a O・Al
Cathode substrate 1 impregnated with an electron-emitting substance called 2O3.CaO
' (ii diameter 1.4 mmφ, thickness 0.6 nun
) is a support cylinder 2 made of Mo with a wall thickness of 25 μm and a length of 6 mm.
I supported it. In addition to MO, the material for the support cylinder 2 may be W, Ta, or Re as long as it is a heat-resistant metal with high high-temperature strength.
Ptやこれらの合金を用いてもよい。発熱体としてのヒ
ータ3は支持円筒2の内側に挿入17て用いる。陰極基
体1′がヒータ3と接する側にIt、電子放射物質の蒸
発によるヒータ3の絶縁誠壊等を防止するための障壁板
10を設けた。障壁板1゜としては、支持円筒2七同様
に高温強度の高い耐熱金属を用いるのが望ましい。本実
施例では肉厚25μmのMo板を用いた。陰極基体1′
と支持円筒2、及び障壁板はR,u −M oのろう材
にて固定した。陰極取イ」け用の孔(カラーブラウン管
のように複数の陰極ある時は複数個の孔)を有するアル
ミナ等の絶縁板7に、陰極取付用孔を中心とした円周上
を3等分(もしくは4等分)した位置において陰極支持
棒12を固定する。陰極支持棒12には陰極支持板9を
界して支持円筒2を固定17た。陰極支持板9としては
、できるだけ支持円筒2と同一材質とした方が望ましい
が、高温強度が高く、熱膨張の少ない耐熱金属であれば
Mo。Pt or an alloy thereof may also be used. The heater 3 as a heating element is inserted 17 inside the support cylinder 2 and used. A barrier plate 10 is provided on the side where the cathode substrate 1' is in contact with the heater 3 in order to prevent breakdown of insulation of the heater 3 due to evaporation of It and electron emitting substances. As with the support cylinder 27, it is desirable to use a heat-resistant metal with high high temperature strength as the barrier plate 1°. In this example, a Mo plate with a wall thickness of 25 μm was used. Cathode substrate 1'
The supporting cylinder 2 and the barrier plate were fixed with R, u-Mo brazing material. An insulating plate 7 made of alumina or the like having a hole for attaching a cathode (multiple holes when there are multiple cathodes like a color cathode ray tube) is divided into three equal parts on the circumference with the hole for attaching the cathode as the center. The cathode support rod 12 is fixed at the (or quartered) position. A support cylinder 2 was fixed 17 to the cathode support rod 12 with a cathode support plate 9 interposed therebetween. It is preferable that the cathode support plate 9 is made of the same material as the support cylinder 2, but if it is a heat-resistant metal with high high-temperature strength and low thermal expansion, Mo may be used.
W、Ta、lLe、Ptあるいはこれらの合金を用いて
も良い。本実施例ではMoを用いた。さらに陰極支持棒
J2の一つに、陰極基体1′の電位設定用の陰極リード
線を設けた。陰極基体1′と支持円筒2の外側には、陰
極基体1′に対向し電子線を通す孔を有する第1クリッ
ド々、陰極基体1′及び支持円筒2から放散される輻射
熱を有効に利用するための熱反射用筒体を兼用した複合
体11を設けた。複合体11は、陰極基体1′及び支持
円筒2の輻射熱で500〜600”O#こ士昇すること
もあるので、複合体11の材質としては高温強度が高く
熱膨張の少ない耐熱合金であればMo。W, Ta, 1Le, Pt, or an alloy thereof may be used. In this example, Mo was used. Further, one of the cathode support rods J2 was provided with a cathode lead wire for setting the potential of the cathode base 1'. On the outside of the cathode base 1' and the support cylinder 2, there are first lids that face the cathode base 1' and have holes through which electron beams pass, which make effective use of the radiant heat radiated from the cathode base 1' and the support cylinder 2. A composite body 11 was provided which also served as a heat reflecting cylinder. Since the composite body 11 may rise by 500 to 600"O# due to the radiant heat of the cathode substrate 1' and the support cylinder 2, the material for the composite body 11 should be a heat-resistant alloy with high high-temperature strength and low thermal expansion. Ba Mo.
W、’[’a 、 lLp 、 Pt 、Niあるい(
まこれらの合金を用いても良い。複合体11の肉厚は陰
極基体1′の動作温度によっても多少異なるが(動作温
度が高いと厚肉が良い)%50〜200μmが適当であ
る。本実施例の複合体11は、Moのブlフックを10
0μm肉厚の形状に削り出したものを用いたが、複合体
11の製法としては深絞りによっても、または円筒と第
1グリツドにあたる孔あきの円板をろう接あるいは溶接
によって行ってもよい。W, '['a, lLp, Pt, Ni or (
Alternatively, alloys of these may be used. The thickness of the composite body 11 varies somewhat depending on the operating temperature of the cathode substrate 1' (the higher the operating temperature, the better the thickness), but a suitable range is 50 to 200 μm. The composite body 11 of this example has 10 Mo blue hooks.
Although a material cut into a shape with a wall thickness of 0 μm was used, the composite body 11 may be manufactured by deep drawing, or by brazing or welding a cylinder and a perforated disk corresponding to the first grid.
また第1クリツドと陰極基体1′の間隔は100μm、
支持円筒2と複合体11との間の間隔は1、Qlnmと
なる様に組立てた。複合体11には電位設定用の第1ク
リツドリード線14を接続した。In addition, the distance between the first crid and the cathode substrate 1' is 100 μm,
The support cylinder 2 and the composite body 11 were assembled so that the distance between them was 1, Qlnm. A first crib lead wire 14 for potential setting was connected to the complex 11.
複合体11の外側に第2グリツド6を設け、さらに第2
グリツドリード線15を接続した。18゜19は絶縁板
7に複合体11および第2グリツド6を固定するための
取付金具である。なお、第4図(blは陰極リード線等
の若干の部分を省略しである。A second grid 6 is provided outside the complex 11, and a second grid 6 is provided outside the complex 11.
Grid lead wire 15 was connected. Reference numerals 18 and 19 denote mounting fittings for fixing the composite body 11 and the second grid 6 to the insulating plate 7. In addition, in FIG. 4 (bl, some parts such as cathode lead wires are omitted).
以上述べた電極構造を用いる事により、同一寸法の陰極
基体1′を同一温度まで加熱するのに安するヒータ3の
消費電力を約15係低減できた。By using the electrode structure described above, the power consumption of the heater 3 to heat the cathode substrate 1' of the same size to the same temperature can be reduced by about 15 times.
複合体11の拐料を別の金属を用いても同様の結果を得
た。Similar results were obtained when a different metal was used as the coating material for composite 11.
実施例2
第5図は、ヒータ3の消費電力低減と複合体11の熱変
形による第1グリツド5′と陰極基体1′の間隔の変化
を減少することを目的と]7た本発明の実施例を示す。Embodiment 2 FIG. 5 shows an embodiment of the present invention aimed at reducing the power consumption of the heater 3 and the change in the distance between the first grid 5' and the cathode substrate 1' due to thermal deformation of the composite 11. Give an example.
複合体11は、電子線を通す孔を有する円板からなる第
1グリツド5′き、側面に輪形型を有する円筒からなる
熱反射用筒体16で構成される。The composite body 11 includes a first grid 5' made of a disk having a hole through which an electron beam passes, and a heat reflecting cylinder 16 made of a cylinder having a ring-shaped side surface.
この複合体11は、高温強度が高く熱膨張の少ない耐熱
金属であればMo 、W、Ta、Re、Ptあるいはこ
れらの合金を用いても良い。また複合体11は、同種の
金属を組合せても、異種の金属を組合せて構成しても良
い。本実施例では、第1グリツド5′と熱反射用円筒体
16としてMoを用いた例につき述べる。第1クリツド
5′は肉厚100μmの円板を用いた。熱反射用筒体1
6は肉厚50μmの円筒の側面に、曲率半径0.5 +
nmの外向けの輪形型17をプレス整形して作ったもの
を用いた。第1グリツド5′と熱反射用筒体16はRu
−M oのろう材により接続した。他に点溶接しても
良い。輪形型17の曲率半径は0.5〜1mmが有効で
ある。また熱反射用筒体16の輪形型17は、円筒の内
側に凸になっても本発明の目的に対しては有効であるが
、支持円筒2と熱反射用筒体16との間隔を接近できる
点からは1輪形型17は円筒の外側に凸にした方が良い
。This composite body 11 may be made of Mo, W, Ta, Re, Pt, or an alloy thereof, as long as it is a heat-resistant metal with high high-temperature strength and low thermal expansion. Moreover, the composite body 11 may be constructed by combining the same types of metals or by combining different types of metals. In this embodiment, an example in which Mo is used as the first grid 5' and the heat reflecting cylinder 16 will be described. A circular plate with a wall thickness of 100 μm was used as the first crid 5'. Heat reflecting cylinder 1
6 has a radius of curvature of 0.5 + on the side of a cylinder with a wall thickness of 50 μm.
A mold made by press-shaping a ring-shaped die 17 facing outward with a diameter of nm was used. The first grid 5' and the heat reflecting cylinder 16 are made of Ru.
- Connection was made using a Mo brazing filler metal. Alternatively, spot welding may be used. An effective radius of curvature of the annular mold 17 is 0.5 to 1 mm. Further, the annular shape 17 of the heat reflecting cylinder 16 is effective for the purpose of the present invention even if it is convex to the inside of the cylinder, but the distance between the supporting cylinder 2 and the heat reflecting cylinder 16 is reduced. From a practical point of view, it is better to make the single ring mold 17 convex to the outside of the cylinder.
本発明の構造の複合体11にするこきによって、第1グ
リツド5′の円板の直径方向の伸びと、熱反射用筒体1
6の軸方向の伸びを、輸杉襞17により緩和することが
できた。輪形型17を有した複合体11を用いることに
より、輪形型17のない複合体を用いた場合に比べて、
熱膨張による変形量を約10係減少でき、その結果、第
1グリツド5′と陰極基体1′の間隔の変化も減少でき
た。The diametrical elongation of the disc of the first grid 5' and the heat-reflecting cylinder 1 are achieved by cutting the composite 11 of the structure of the invention.
6 could be alleviated by the cedar folds 17. By using the composite body 11 having the ring-shaped mold 17, compared to the case where a composite body without the ring-shaped mold 17 is used,
The amount of deformation due to thermal expansion could be reduced by a factor of about 10, and as a result, the change in the distance between the first grid 5' and the cathode substrate 1' could also be reduced.
また、複合体11を有した電子銃構造を用いる事により
、従来の電子銃構造の場合に比べて、約15%のヒータ
3の消費電力を削減できた。Furthermore, by using the electron gun structure having the composite body 11, the power consumption of the heater 3 could be reduced by about 15% compared to the case of a conventional electron gun structure.
以上、説明したごとく本発明によイ]、ば、傍熱型含浸
陰極において、陰極加熱用の発熱体の消費電力を低下で
き、また輪形型を設けることにより第1グリツドの熱膨
張による変形も低減できる。As explained above, according to the present invention, in an indirectly heated impregnated cathode, the power consumption of the heating element for heating the cathode can be reduced, and by providing the annular shape, deformation due to thermal expansion of the first grid can be reduced. Can be reduced.
第1図と第2図は従来の酸化物カンードを用いた傍熱型
電子銃の構造を示す断面図、第3図は含浸型陰極を用い
た従来の傍熱型電子銃の構造を示す断面図、第4図fa
l 、 (blは本発明の一実施例における傍熱型含浸
陰極用電子銃の構造を示す断面図と底面図、第5図は本
発明の他の実施例における傍熱型含浸陰極用電子銃の構
造を示す断面図である。
1.1′・・・陰極基体、2・・・支持円筒、3・・・
ヒータ、4・・・陰極支持体、5.5′ ・・・第1グ
リツド、6・・第2グリツド、7・・・絶縁板、8・・
・保持台、9・・・陰極支持板、10・・・障壁板、1
1・・・複合体、12・・・陰極支持棒、13・・・陰
極リード線、14・・・第1グリツドリード線、15・
・・第2グリツドリード線。
16・・・野反射用筒体、17・・・輪形型、18・・
取付金具、19・・・取付金具。
第 1 図 第Z 図J
瀾 3 図
第S 図Figures 1 and 2 are cross-sectional views showing the structure of a conventional indirectly heated electron gun using an oxide cand, and Figure 3 is a cross-sectional view showing the structure of a conventional indirectly heated electron gun using an impregnated cathode. Fig. 4 fa
l, (bl is a sectional view and bottom view showing the structure of an electron gun for indirectly heated impregnated cathodes in one embodiment of the present invention, and FIG. 5 is an electron gun for indirectly heated impregnated cathodes in another embodiment of the present invention. It is a sectional view showing the structure of 1.1'... Cathode base, 2... Support cylinder, 3...
Heater, 4... Cathode support, 5.5'... First grid, 6... Second grid, 7... Insulating plate, 8...
- Holding stand, 9... Cathode support plate, 10... Barrier plate, 1
DESCRIPTION OF SYMBOLS 1... Composite, 12... Cathode support rod, 13... Cathode lead wire, 14... First grid lead wire, 15...
...Second grid lead wire. 16... cylinder for field reflection, 17... ring-shaped, 18...
Mounting bracket, 19...Mounting bracket. Figure 1 Figure Z Figure J 3 Figure S Figure
Claims (1)
筒型の支持円筒及び発熱体とからなる傍熱型の含浸陰極
、陰極基体と支持円筒から外側に放散される熱を陰極側
に反射する熱反射用筒体、及び電子流を通す孔を有し陰
極に対向する第1グリツドから構成される電子銃におい
て、該熱反射用筒体と第1グリツドを一体の複合体とし
たことを特徴とする傍熱型含浸陰極用電子銃。 2、特許請求の範囲第1項記載の傍熱型含浸陰極用電子
銃において、側面に輪形襞を有する熱反射用筒体と第1
グリツドを一体の複合体としたことを特徴とする傍熱型
含浸陰極用電子銃。[Claims] 1. An indirectly heated impregnated cathode consisting of a cathode base made of porous metal, a cylindrical support cylinder supporting the same, and a heating element, and heat radiated outward from the cathode base and the support cylinder. In an electron gun consisting of a heat-reflecting cylinder that reflects electrons toward the cathode, and a first grid facing the cathode and having holes through which electrons flow, the heat-reflecting cylinder and the first grid are integrated. An electron gun for indirectly heated impregnated cathodes, which is characterized by a body. 2. In the indirectly heated impregnated cathode electron gun according to claim 1, a heat reflecting cylinder having annular folds on the side surface and a first
An electron gun for indirectly heated impregnated cathodes, which is characterized by having a grid as an integrated composite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58154851A JPS5958736A (en) | 1983-08-26 | 1983-08-26 | Electron gun for indirectly-heated type impregnated cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58154851A JPS5958736A (en) | 1983-08-26 | 1983-08-26 | Electron gun for indirectly-heated type impregnated cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5958736A true JPS5958736A (en) | 1984-04-04 |
JPS6350814B2 JPS6350814B2 (en) | 1988-10-12 |
Family
ID=15593287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58154851A Granted JPS5958736A (en) | 1983-08-26 | 1983-08-26 | Electron gun for indirectly-heated type impregnated cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5958736A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4738229A (en) * | 1984-12-10 | 1988-04-19 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine air intake system with variable effective length |
US4793294A (en) * | 1985-03-12 | 1988-12-27 | Toyota Jidosha Kabushiki Kaisha | Apparatus for controlling a variable-effective-length air intake system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51112166A (en) * | 1975-03-27 | 1976-10-04 | Matsushita Electric Ind Co Ltd | Impregnated cathode |
-
1983
- 1983-08-26 JP JP58154851A patent/JPS5958736A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51112166A (en) * | 1975-03-27 | 1976-10-04 | Matsushita Electric Ind Co Ltd | Impregnated cathode |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4738229A (en) * | 1984-12-10 | 1988-04-19 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine air intake system with variable effective length |
US4793294A (en) * | 1985-03-12 | 1988-12-27 | Toyota Jidosha Kabushiki Kaisha | Apparatus for controlling a variable-effective-length air intake system |
Also Published As
Publication number | Publication date |
---|---|
JPS6350814B2 (en) | 1988-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108878232B (en) | Hot cathode assembly for vacuum electronic devices | |
US2539096A (en) | Electron tube and grid for the same | |
US3400294A (en) | Heated cathode and method of manufacture | |
JP2607654B2 (en) | Indirectly heated cathode structure and electron gun structure using the same | |
JPS5958736A (en) | Electron gun for indirectly-heated type impregnated cathode | |
US3821581A (en) | Targets for x ray tubes | |
US3671792A (en) | Fast warm-up indirectly heated cathode structure | |
JPH08222119A (en) | Direct heated cathode structure | |
US1978918A (en) | Thermionic tube | |
JPS6112330B2 (en) | ||
US4471260A (en) | Oxide cathode | |
JP2010015815A (en) | Cathode structure for electron tube | |
JPS5842141A (en) | Pierce type electron gun | |
JPH0612651B2 (en) | Cathode structure and manufacturing method thereof | |
US2114609A (en) | Braun tube | |
JPS6026438Y2 (en) | Cathode structure for electron tube | |
JPH083956Y2 (en) | Impregnated cathode structure | |
US2858471A (en) | Anode for electron discharge device | |
JP2590750B2 (en) | Impregnated cathode structure | |
JP2738694B2 (en) | Method for producing impregnated cathode assembly | |
JPH0821309B2 (en) | Impregnated type cathode | |
KR0147615B1 (en) | Direct Cathode Structure | |
KR920008302B1 (en) | Rapid Impregnation Cathode Structure | |
JPH04249023A (en) | Indirectly heated cathode for cathode-ray tube | |
JPS6151723A (en) | Directly heating impregnated cathode structure |