US3400294A - Heated cathode and method of manufacture - Google Patents
Heated cathode and method of manufacture Download PDFInfo
- Publication number
- US3400294A US3400294A US418591A US41859164A US3400294A US 3400294 A US3400294 A US 3400294A US 418591 A US418591 A US 418591A US 41859164 A US41859164 A US 41859164A US 3400294 A US3400294 A US 3400294A
- Authority
- US
- United States
- Prior art keywords
- cathode
- heater element
- ceramic
- metal
- slurry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/20—Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
Definitions
- Another object of this invention is to provide an improved electrically insulated heated cathode which is more efficient because heat transfer to the cathode surface is quite direct and effective.
- FIG. 8 is a cross-sectional view of a high temperature ceramic discharge device embodying the FIG. 7 cathode
- FIG. 9 is a view of another embodiment of the heated cathode according to the present invention.
- a number of metal powders and combinations and mixtures thereof are suitable for roughening purposes.
- a basic powder is usually one of the refractory materials such as molybdenum, tungsten or rhenium, molybdenum or tungsten being preferred. This basic powder will pro vide the interlocking anchorages for the ceramic material.
- a soldering metal powder such as platinum or a semireactive metal powder such as niobium, vanadium, zirconium, or tantalum. The last four are conveniently employed in the form of a hydride. Powder size should be rather fine, e.g., in the range of about 2 to 10 microns.
- A1 0 or CaO can be used individually if desired.
- Other suitable ceramic materials which have adherent properties and good heat conductivity may be employed either singly or in a mixture. Such materials include beryllia, lanthana, yttria, hafnia, magnesia and the rare earth oxides. It is desirable the ceramic have expansion characteristics similar to the cathode metal.
- the unit is dried and then fired at about 1700 C. (or higher for the more refractory materials) in vacuum or suitable atmosphere, for about 10 minutes, firing the ceramic in place and keeping integral the sintering of ceramic to ceramic and the ceramic to the filamentary conductor.
- the metal powder employed for connecting the end conductors to the filament is sintered and bonded by the same heat treatment.
- the volt-ampere characteristic of the heater element therefore is a measure of the cathode temperature and becomes sensitive to heat energy also received or given up by the cathode in relation to other sources, e.g., ion bombardment, electron cooling, etc.
- a first slurry layer of ceramic material may be deposited around cylindrical extension at 10 and then fired, after which a second layer of ceramic material is employed to partially embed the heater element.
- one slurry of ceramic material 12 may be adhered around the cylindrical extension 10 and the heater element positioned therein for firing in one step, In this case it may be convenient to deposit one layer of slurry which is then dried.
- Another layer of slurry, having a binder, not compatible with the first layers binder, is then deposited and the heater element partially embedded therein. It is understood that end connections are also applied as described in connection with the previous embodiment.
- FIG. 8 there is illustrated a cross-section of the miniature high temperature discharge device employing the heated cathode of FIG. 7.
- the cathode 13 is supported in a 0.0005 inch thick fernico type alloy cylinder 14 which is in turn attached to cathode connecting ring 15.
- cylinder 14 closes off the underside of the cathode from the interelectrode or electron -discharge region of the device.
- anode 16 formed of titanium
- a titanium grid 17 supported on a titanium connecting ring 18 is interposed between the cathode and the anode.
Landscapes
- Electrodes For Cathode-Ray Tubes (AREA)
Description
HEATED CATHODE AND METHOD OF MANUFACTURE Filed Dec. '7. 1964 2 Sheets-Sheet 1 Fig. 7
4 E I [I I I /n venfor 7 August J K/in'g,
by W PEI/av 7 Hi5 Aflorne y Sept. 3, 1968 A. .1. KLING HEATED CATHODE AND METHOD OF MANUFACTURE 2 Sheets-Sheet 2 Filed Dec. 7, 1964 Fig. /2.'
lnvenfor: Augusf J K/fng,
His A fforney.
United States Patent 0 3,400,294 HEATED CATHODE AND METHOD OF MANUFACTURE August J. Kling, Scotia, N.Y., assignor to General Electric Company, a corporation of New York Continuation-impart of application Ser. No. 247,171,
Dec. 26, 1962. This application Dec. 7, 1964, Ser.
4 Claims. (Cl. 313-340) ABSTRACT OF THE DISCLOSURE A low mass, high temperature cathode has a planar metal surface, the underside of which is roughened by deposition of a metal powder and sintering. A ceramic slurry deposited on the powder particles has interlocking engagement with the particles. A heating coil is at least partially embedded in a second layer of slurry which, after firing and sintering, results in a quick heating rigid structure, the interlocking engagement preventing separation of the sintered slurry and embedded heater coil from the planar metal surface during operation.
This application is a continuation-in-part of my application Ser. No. 247,171, filed Dec. 26, 1962, now abandoned entitled, Heated Cathode and Method of Manufacture, and assigned to the assignee of the present application.
This invention relates to heated cathodes for electric discharge devices, and particularly to miniature cathodes capable of reaching a high operating temperature in a short period of time.
Present day electronic equipment to an increasing extent includes greatly miniaturized components which, despite small size, must exhibit complete reliability. Moreover the amplifying devices employed in such equipment should desirably attain immediately operable condition from a cold start, that is without any substantial warmup period after initial turn-on while retaining their reliability. The slow heating or warm-up period characteristic-of many vacuum tubes does not recommend their use in equipment called upon for immediate service.
The slow warm-up time, on the order of 20 seconds for usual vacuum tube types, is attributable to the time required for the vacuum tube filament to raise the temperature of the cathode to its electron-emitting operating temperature. Most vacuum tubes and other electric discharge devices employ radiation heater coils mechanically inserted inside the cathode structure and electrically insulated therefrom. The heat in general must radiate from the coil to the back of the cathode, causing a temperature increase on the forward or emitting surface of the cathode.
In addition to the time lag, a disadvantage relating to the conventional heated cathode arrangement resides in the usual temperature differential between the heater coil and the emitting cathode during operation. This temperature differential is especially serious when miniature high efficiency discharge devices are operated at quite high temperatures. For example, in order to achieve a cathode temperature on the order of 750 to 875 C., the ordinary heater must attain a temperature as great as 1300C. In many tubes, after some period of operation, internal chemical reaction initiated by the high heater temperature causes gaseous evolution from the heater area causing intolerable operating conditions within the tube, including an impaired vacuum.
It is therefore an object of the present invention to provide an improved heated cathode for electric discharge devices requiring a minmum of time for attaining cathode 3,460,294 Patented Sept. 3, 1968 operating temperatures after turn on, while retaining complete reliability.
It is another object of the present invention to provide an improved heated cathode for electric discharge devices wherein the heating element operates at high temperatures quite close to those of the cathode emitting surface.
Another object of this invention is to provide an improved electrically insulated heated cathode which is more efficient because heat transfer to the cathode surface is quite direct and effective.
Briefly stated, in accordance with an embodiment of the present invention, an electric discharge device metal cathode including the shape of a fiat disc has cast thereon a ceramic refractory material in intimate bonded relation with the cathode metal disc. This ceramic material contains a heater element or coil which is desirably incrementally folded and integrally bonded with the ceramic material at the same time the ceramic is fired whereby a close and heat-transmissive but electrically insulating bond exists between the heater element and the cathode surface. The heater element desirably comprises a low heat mass, wire helix.
According to a particular embodiment of the present invention, a slurry of ceramic material is applied directly to the back of a metal planar cathode structure or disc in adherent contact therewith. This slurry forms a layer which is quite thin, for example on the order of about 1 to 5 mils in thickness. The slurry is dried or desirably fired in place at a high temperature to sinter the ceramic. Now a second layer of ceramic slurry is applied, and a heater element is at least partially embedded therein. The ceramic material is adherent to the heater element. Now the combination is fired to a high temperature to fire the ceramic in place for sintering the last ceramic layer and establishing an intimate and strong heat conducting integral bond between the heater element and the cathode, but a bond Which is electrically insulating.
In accordance with one embodiment of the present invention wherein the heater element is not completely embedded in ceramic, the heater element, which may comprise a coil helix or fluted ribbon, is completely embedded at regular reentrant increments along the element and thereby firmly secured to the cathode disc. This form of the invention allows for differential expansion between the heater element and the ceramic. This problem of differential expansion is particularly troublesome in the case of the flat cathode, inasmuch as heat expansion forces during temperature cycling tend to pull a heater element away from a flat surface more than would be the case with an enclosed cylindrical surface or the like.
The heated cathode as constructed in accordance with the present invention is frequently quite miniature, and the planar cathode is disc-shaped at the end of a thin cathode cup. The planar portion may have a diameter on the order of inch and a thickness of about one mil. The cathode and the heater element have low heat mass for aiding rapid heating of the heater element and the cathode surface. Heating to a final temperature of approximately 800 C. typically requires from one to two seconds. Also the heater temperature is found to be very close to that of the emitting surface. Moreover the heater element itself is preferably covered with at least a thin layer of ceramic material and no emission of objectiona-ble gases results during operation.
The subject matter which I regard as my invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. The invention, however, both as to organization and method of operation, together with further objects and advantages thereof, may best be understood by reference to the following description taken in connection with the accompanying drawings wherein like reference characters refer to like elements and in which:
FIG. 1 is a cross-sectional view of a miniature cathode which is partially complete, and further illustrating a first step according to one embodiment of the present invention,
FIG. 2 is a plan view of the underside of a miniature cathode of FIG. 1 illustrating a second manufacturing step in accordance with an embodiment of the present invention,
FIG. 3 is a cross-sectional side view of the FIG. 2 cathode taken at 3-3,
FIG. 4 is a view of an end connection for the heater element in FIG. 2,
FIG. 5 illustrates the FIG. 2 cathode completed and with heater connections in place,
FIG. 6 is a cross-sectional view taken at 66 in FIG. 5,
FIG. 7 is a cross-sectional view of a cathode in accordance with another embodiment of the present invention,
FIG. 8 is a cross-sectional view of a high temperature ceramic discharge device embodying the FIG. 7 cathode,
FIG. 9 is a view of another embodiment of the heated cathode according to the present invention,
FIG. 10 is a cross-sectional view taken at 1010 in FIG. 9,
FIG. 11 is a view of another embodiment of the heated cathode in accordance with the present invention, and
FIG. 12 is a cross-sectional view of yet another embodiment according to the present invention.
Referring to FIG. 1, illustrating a first basic portion of an embodiment of a cathode in accordance with the present invention, there is depicted a thin, low heat mass metal cathode cup having a planar end member or portion 1 and a cylindrical portion 2. The cylindrical portion acts as a support for stifiening the planar portion 1 and for accurately positioning the outside surface 3 of the planar portion in very close spaced electron emitting relation to an anode or another electrode. The cathode may be formed of various of the more refractory cathode base metals, e.g., molybdenum, tungsten, or rhenium, although platinum, hafnium, rhodium, or niobium are also suitable. Also alloys of these metals may be employed. A thin roughened layer is desirably provided inside the flat end portion of the cup for subsequent adherence of a ceramic material, as hereinafter more fully described. If the cathode metal is molybdenum or the like it is preferred to provide a tungsten intersurface between oxide emitting material, which may be applied to surface 3, and the molybdenum cathode metal. In the illustrated embodiment, the cathode surface may be discshaped and quite small, having a diameter on the order of about 1 inch and a thickness on the order of about one mil to obtain a low heat mass while the cylindrical portion may be on the order of 0.03 inch deep. Surface 3 will be customarily coated with barium-calcium-strontium carbonate or a similar material for enhancing electron emission from a heated cathode.
In accordance with the present invention, a ceramic material is tightly adhered in intimate relation to the planar undersurface of the cathode. In order to provide strong adherence, the cathode undersurface is first desirably roughened with an adherent powdered metal forming a part of this surface and which provides interlocking anchorages for the ceramic material. In an exemplary procedure according to the present invention, metal powder is first temporarily attached or applied to the cathode undersurface and then the combination is brought to a high temperature whereupon the powder solders, sinters or Welds to the surface providing a suitably rough base for the intimate bonding of ceramic material thereto. When this roughening procedure is followed, the cathode is preferably constructed from one of the more refractory materials, e.g. tungsten, molybdenum or rhenium, so it can be raised to a high temperature. Hafnium, niobium, rhodium and platinum are also useable.
A number of metal powders and combinations and mixtures thereof are suitable for roughening purposes. A basic powder is usually one of the refractory materials such as molybdenum, tungsten or rhenium, molybdenum or tungsten being preferred. This basic powder will pro vide the interlocking anchorages for the ceramic material. Mixed therewith is a soldering metal powder such as platinum or a semireactive metal powder such as niobium, vanadium, zirconium, or tantalum. The last four are conveniently employed in the form of a hydride. Powder size should be rather fine, e.g., in the range of about 2 to 10 microns.
10 to 100 percent of the soldering or semireactive metal powder is mixed with 0 to percent of the basic refractory powder metal. When platinum powder or the like is used, about 40 percent by weight thereof makes a very suitable mixture, while 20 to 30 percent by weight of the semireactive materials is more suitable. A very thin layer of the mixture is first temporarily adhered to the underside of the cathode as by dusting it upon a sticky film applied to the cathode. An appropriate adhesive film for this purpose is polybutylene which is later volatilized during heat treatment. After the powdered mixture is applied in a thin layer, the cathode is raised to a temperature of from about 1700 to 2100 C., preferably in a vacuum enclosure. The temperature should, of course, be below the melting temperature of the cathode base. Temperatures in this range as exceed the melting temperature of platinum, vanadium and zirconium, and particularly the platinum, will tend to solder the base powder constituent onto the cathode undersurface. In the case of materials which do not melt, the adherent action is more accurately described as sintering; niobium is a particularly good example of the latter type. It is understood the foregoing mixtures are given by way of example. The various metal powders mentioned above, either singly or in combination, may be adhered to the metal cathode so as to form a part thereof. The cathode undersurface is now suitably roughened for the application and adherence of ceramic material thereto. The front or emitting surface of the cathode is desirably similarly roughened for better adherence of the emitting material to the cathode, which is applied thereafter. The powder in this case is preferably tungsten, molybdenum, rhenium, platinum, rhodium or mixtures thereof and the surface upon which the powder is attached is preferably tungsten or rhenium.
Further in accordance with the process according to the present invention, a slurry of ceramic material 4 is applied to the underside of the planar portion of the cathode cup to a thickness of approximately two mils. A uniform coating of thickness just sufficient to provide good electrical insulation is desired. This ceramic material is one which securely adheres to the cathode metal, but one which will provide good heat conduction characteristics. In the instance of one example, such ceramic material comprised a ceramic frit including 2 /2% CaO (calcia) and approximately A1 0 (alumina). This mix was prepared by thoroughly blending and grinding the 95% of A1 0 with a finely ground and fused composition and comprising the remaining 5%, this latter composition being 48 weight percent CaO and 52 weight percent A1 0 The whole blend is incorporated in a homogeneous slurry with a mixture of 15 mg. per ml. of nitrocellulose in butyl Carbitol, about 1 gram of ceramic powder to 0.25 mil of the vehicle giving a satisfactory working consistency.
A1 0 or CaO can be used individually if desired. Other suitable ceramic materials which have adherent properties and good heat conductivity may be employed either singly or in a mixture. Such materials include beryllia, lanthana, yttria, hafnia, magnesia and the rare earth oxides. It is desirable the ceramic have expansion characteristics similar to the cathode metal.
After application of the slurry to the metal cathode member, the cathode is heated in air to dry the ceramic slurry. It is then desirably fired in vacuum or a suitable atmosphere at approximately 1700 C. (or higher for the more refractory materials) for about minutes, to sinter the ceramic material in place in the cathode member, forming a tightly adherent bond with the cathode member.
As illustrated in FIGS. 2 and 3, a second slurry layer of ceramic material 5, which may have the same constituency as the first, is next applied over the first layer of the ceramic material. If layer 4 has been fired, it is desirable to saturate the sintered ceramic layer 4 with the same solvent as used in the slurry, just before application of the second layer, inasmuch as the first layer is usually quite porous. Application of the solvent assures free-flowing and good blending of the second coat of slurry. The second slurry layer of ceramic material 5 may be deposited to a depth of approximately 2 to 5 mils in the case here described.
A second slurry coating thickness of less than 10 mils is preferred. A thicker coating tends to shrink during sintering and distorts the overall structure. Shrinkage close to the planar portion 3 of the cathode is prevented because of the close adherence of the ceramic to the cathode.
A low heat mass filamentary heater element 6 is deposited into the slurry so that it rests upon layer 4. This filament is a small high resistance conductor and may comprise a tungsten, molybdenum, rhenium, or in some cases platinum or rhodium, wire. Alloys of these metals are also suitable as heater elements. In one particular instance the wire was quite small being approximately 0.00068 in diameter enfolded into a helix, wound at 360 turns per inch on a 0.0027" mandrel. The enfolded helical configuration having a long wire length results in considerable conduction of heat from the heater element to the surrounding ceramic and thus to the cathode to which the ceramic is intimately bonded. Wire may be employed up to about 0.001 or 0.002" wire diameter. Above this size, a small ribbon, also formed into a helix, is preferred. The helix is desirably formed into the configuration illustrated, that is, with one end approximately centrally located on the cathode cups underside and thence outward in a circular or coiled configuration passing relatively closer to the outside periphery of the cathode cup. The configuration may be primarily circular or spiral. It is appreciated the heater element may be disposed in other configurations as hereinafter set forth and may be either embedded or partially embedded in the ceramic slurry. However it is important in the case of a helical coil heater, for example, that each incremental turn or element of the coil, where it is reentrant towards the cathode, be at least partially embedded in the slurry in order to result in tight bonding of the heater element in the ceramic material on the underside of the cathode. The helix turns then give excellent bonding-in contact with the ceramic on the flat underside of the cathode.
Embedding of only a portion of each turn, or incremental bonding allows differential expansion between the turns and between the flat heater element and the ceramic as necessary. This can be particularly desirable in the case of the fiat cathode because the fiat construction does not aid in retaining the heater element in place. That is, the heater element is in general not surrounded or mechanically supported other than through the ceramic layer tightly adhered to the cathode. It is desirable to first coat the filament turns individually with some ceramic slurry material as by dipping it in a larger quantity there of before placing it in the cathode cup as shown.
Complete embedding of the heater element (i.e. when the entire form of the helix is out of sight beneath the surface of the ceramic as illustrated in FIGS. 3 and 6) provides increased mechanical protection of the heater element. Total embedding can also be of advantage in heat shielding the heater element, that is in preventing undue escape of heat by radiation from the back of the filament. But embedding to too great a depth, e.g., covering the heater element too deeply can unnecessarily increase the total heat mass without producing attendant advantage. At least-partial embedding is necessary to adequately conduct heat to the cathode surface from the bonded heater element as hereinafter explained.
Next the layer of slurry 5 is partially dried and end conductors 7 and 8, which may be platinum, rhodium or platinum-rhodium alloy wires or stranded leads of fine tungsten, molybdenum, or rhenium, for example, are connected to the ends of the filamentary element, as illustrated in FIGS. 5 and 6. An end conductor prior to mounting is shown in FIG. 4 and is preferably formed with a fiat loop at the connecting extremity for attaching to the heater element, and with the remainder of the conductor extending perpendicularly away from the flat loop. To secure the wire loop to the heater element the loop end is first dipped into a cold solder paste (actually a slurry of principally fine metallic powder) to pick up a small ball of paste. This paste may conveniently comprise a mixture of 325 fine mesh platinum powder in the case of the platinum-rhodium wires and 68 weight percent of the CaO-Al O slurry composition, entioned above, as finely ground and blended in butyl Carbitol containing about '50 mg. nitrocellulose per ml. of solvent. After thus containing a small ball of such paste on the loop end of the conductor, the loop end is set over the end of the heater element, being careful to make a blend contact with the surrounding ceramic slurry but avoiding force which might dislodge the coil. In the case of tungsten, rhenium or molybdenum wires, the powder is preferably the same metal as the wires.
When the leads are thus attached, the unit is dried and then fired at about 1700 C. (or higher for the more refractory materials) in vacuum or suitable atmosphere, for about 10 minutes, firing the ceramic in place and keeping integral the sintering of ceramic to ceramic and the ceramic to the filamentary conductor. At the same time the metal powder employed for connecting the end conductors to the filament is sintered and bonded by the same heat treatment.
It is important in the construction of the heater cathode in accordance with the present invention that each turn of the heater element, which in the example comprises a wire helix, be cooled by the heat mass or heat sink comprising the bonded metal ceramic body. Should a few increments or turns of the filament not be bonded in their ceramic environment, the temperature thereof would rise during operation causing the resistance of that portion of the filament to increase. Further increase in resistance results in further heating and eventual burnout.
of such unbonded section. In cases where the heater element is not completely covered by the bonding frit, the intervals or increments of bonding are regularly controlled and are small enough to avoid hot spots on the heater element. It is understood the filamentary conductor need not be enfolded in specifically a helical shape but other enfolded heater conductors having a long total conductor length may be substituted as herein-after described.
The resulting low heat mass cathode constructed in accordance with the foregoing example, requires about two seconds to heat to of full equilibrium temperature and the power requirement is about 1 watt for emitting temperatures of 850 C. With the size of the cathode given in the example, having a diameter of approximately 0.1 inch, this is about 14 watts per square centimeter of emitting surface at the temperature of 850 C. The rapid heating is attributed to the intimate bonding of cathode and the enfolded heater element, and to their low heat mass. The cup shape and size and heater element size and configuration have been found to be very efficient in fast heating service compared to other configurations which have been employed in miniature tubes having close spaced elements. It is of course understood the present invention is not restricted to any particular size of cathode, but is also applicable to larger cathodes for example.
Remarkably little temperature gradient exists between the heater element and cathode. The heater element runs as little as 30 to 50 above the temperature of the cathode base at 850 C. in the example. In one instance, a cathode has been operated at 1360 C. with a filamentary temperature of 1440 C. Platinum cathode bases have even been melted without burning out the filamentary element and molybdenum bases have been operated above 1600 C. This operation has been attained inside vacuum tubes and the like while retaining very good vacuum, that is without the generation of undesirable gases at the heated filament.
Because of the close coupling between the temperature of the heater element and the temperature of the cathode in the bonded arrangement, it becomes possible to approximately judge the actual cathode temperature by the resistance of the heater element. The volt-ampere characteristic of the heater element therefore is a measure of the cathode temperature and becomes sensitive to heat energy also received or given up by the cathode in relation to other sources, e.g., ion bombardment, electron cooling, etc.
There is found to be extremely low leakage current between cathode and filament despite their close proximity. The ceramic provides substantially complete insulation for the filamentary element as well as physical support and heat conduction therefrom so that breakage, burnout or shorting out of the filamentary element is very infrequent. The ceramic itself exhibits no deleterious effects with respect to cathode operation. The overall member exhibits considerable structural strength despite its small size. Effectively 100% bonding between the oathode and heating element is effectively achieved and reliability is excellent.
FIG. 7 illustrates a heated cathode in accordance with another embodiment of the present invention. This cathode is substantially the same as the cathode thus far described especially as regards like elements referred to with like reference numerals and is constructed in substantially the same manner. In this embodiment the cathode planar section 1 is formed of molybdenum being provided with a tungsten sublayer 3 for application of further emissive material. The planar portion 1 is again discshaped but :has a varying thickness with diameter. An outer portion 9 is quite thin, having a thickness on the order of A inch, while central portion extends farther into the cathode cup area providing a cylindrical expansion and ledge around which a high resistance, e.g., tungsten, heater element 6 is disposed. Helical heater element 6 is here partially embedded in ceramic material 11 which may be the aforementioned combination of CaO and A1 0 Each turn of the helix is also preferably precoated with the same ceramic material.
In completing the heated cathode of FIG. 7, a first slurry layer of ceramic material may be deposited around cylindrical extension at 10 and then fired, after which a second layer of ceramic material is employed to partially embed the heater element. Alternatively, one slurry of ceramic material 12 may be adhered around the cylindrical extension 10 and the heater element positioned therein for firing in one step, In this case it may be convenient to deposit one layer of slurry which is then dried. Another layer of slurry, having a binder, not compatible with the first layers binder, is then deposited and the heater element partially embedded therein. It is understood that end connections are also applied as described in connection with the previous embodiment.
The shape of the heated cathode of FIG. 7 provides certain advantages in that heat is conducted from heater element 6 towards the metal cathode in two directions,
namely, towards surface 3 and towards cylindrical extension 10. However, the addition of cathode metal at extension 10 increases the heat mass such that the additional conduction achieved by partially surrounding the heater element does not all contribute to faster heating.
In FIG, 8 there is illustrated a cross-section of the miniature high temperature discharge device employing the heated cathode of FIG. 7. In this device, the cathode 13 is supported in a 0.0005 inch thick fernico type alloy cylinder 14 which is in turn attached to cathode connecting ring 15. It is noted that cylinder 14 closes off the underside of the cathode from the interelectrode or electron -discharge region of the device. Opposite the cathode emitting surface is disposed an anode 16 formed of titanium, while a titanium grid 17 supported on a titanium connecting ring 18 is interposed between the cathode and the anode. The anode, cathode and grid are insulated from one another by means of fosterite insulating cylinders 19, while fosterite base 20 closes off the underside of the cathode. The cathode heater element 21 is provided with conducting leads 22 for supplying current thereto. A tube of this general type is set forth and claimed in the patent to James E. Beggs, 2,981,897, assigned to the assignee of the present invention. It is understood the other cathodes described herein are applicable to substantially this same discharge device construction.
FIGS. 9 and 10 illustrate respectively the underside plan view and cross-section of a further heated cathode in accordance with the present invention, which is again substantially the same regarding like elements indicated by like reference numerals, In this embodiment the heater element 23 is a tungsten tape or ribbon, less than 5 mils in thickness, disposed edgewise against the ceramic member 4 and at least partially embedded in the second layer of ceramic material 5. The tungsten ribbon heater element is disposed in the general shape of a spiral connected to conductor 7 at its center, with conductor 8 forming the outer terminal. The spiral ribbon configuration has the advantage of high heater current capacity in a small area with a maximum conductive relation between the cathode and the heater element for the size of the heater element. However, because the heater configuration is not enfolded, it is not as advantageous as regards minimum strain and therefore maximum strength of adherence to the cathode.
FIG. 11 illustrates another embodiment of the heated cathode in accordance with the present invention and is similar in general construction to the embodiment of FIGS. 9 and 10. The distinguishing feature as apparent from the drawing in this embodiment is an accordion fluted or folded spiral ribbon 24, which may be formed of tungsten less than 5 mils in thickness, in place of spiral ribbon 23. The heater element is again at least partially embedded in a ceramic layer to effectively bond the heater element to the cathode body. This embodiment has an advantage in that a greater length of heater element is bonded in heat conductive relation to the cathode body, with the same high heater current capacity. Moreover, differential expansion is facilitated in a radial direction. However in regard to strength of bond to the cathode, this embodiment is not as advantageous as those embodiments disclosed herein, illustrating heater elements which are reentrant toward the cathode. This embodiment has essentially the same cross-section as depicted in FIG. 10.
Another embodiment is illustrated in cross-section in FIG. 12. In this instance a ribbon 24 has its fiat side disposed toward the ceramic material but is fluted in accordion fashion so that fluted increments 25 therealong are reentrant in the ceramic material. This incremental bonding allows more freedom of expansion between the heater element and the ceramic. This incremental bonding principle, in addition to being applicable to a wire helix and a fluted ribbon, is also applicable to an embodiment which may employ ribbon having axial twist, with at least incre- 9 mental portions therealong embedded in the ceramic material.
From the foregoing it is apparent that in accordance with the present invention, a heater element is integrally and incrementally bonded in place in intimate and secure contact with the flat cathode member by means of a fritted ceramic material which is sintered and which at least partially covers the heater element. The materials of the cathode member, heater, associated leads and bonding frit are chosen to provide for firing at temperature high enough to achieve adhesion and sintered strength which will maintain the integral relation during high temperature service. These materials, proportions, configurations, and sintering conditions are directed as above indicated to the achievement of an intimate and lasting, high thermal conductivity, stable bond between the heater element and cathode which will, during long and intermittent service, withstand the stresses of transient heating and cooling and unbalances in thermal expansion which may exist.
While I have shown and described several embodiments of my invention, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from my invention in its broader aspects; and I, therefore, intend the appended claims to cover all such changes and modifications as fall within the true spirit and scope of my invention.
What I claim as new and desire to secure by Letters Patent of the United States is:
1. A heated cathode for an electric discharge device K comprising a planar metal disc-shaped member having a roughened undersurface comprising a metal powder attached to said undersurface, a ceramic layer securely and intimately bonded to the roughened undersurface of said planar metallic member wherein interlocking anchorages for the ceramic material are provided by said roughened undersurface, and an extended enfolded heater element securely bonded to said ceramic material and at least partially embedded within said ceramic material, said ceramic material entirely separating said heater element from said metal member to provide electrical insulation but thermal conduction between said heater element and said metal member.
2. The heated cathode according to claim 1 wherein said planar disc-shaped member is formed of metal selected from the group consisting of tungsten, molybdenum, niobium, hafnium, rhodium and rhenium, and wherein said roughened surface thereof is a metal selected from the group consisting of molydenum, tungsten, rhenium, platinum, niobium, vanadium, zirconium, tantalum and combinations thereof.
3. A low mass high temperature heated cathode for an electric discharge device including a planar disc-shaped metal member formed of metal selected from the group consisting of tungsten, molybdenum, rhenium, platinum, rhodium, titanium, niobium and alloys thereof, a metal powder sintered to the undersurface of said member, a ceramic layer securely and intimately bonded to the undersurface of said planar metal member by interlocking engagement with particles of said metal powder, the ceramic material for the ceramic layer being selected from the group consisting of calcia, alumina, lanthana, beryllia, hafnia, yttria, magnesia and mixtures thereof, and an extended enfolded heater element securely bonded to said ceramic layer and at least partially embedded within said ceramic layer.
4. An electric discharge device including a thin metal cup-shaped cathode, a ceramic layer securely and intimately bonded to a planar end of said cup member inside said cup member by interlocking engagement with a plurality of metal particles rigidly attached to the inside surface of such planar end, an electrode in spaced relation to said cup member on the opposite side of said planar end of said cup member from said ceramic layer and defining an interelectrode region therebetween, a support cylinder for said cup member isolating the inside of said cup member from said interelectrode region, and an extended enfolded heater element securely bonded to said ceramic layer and at least partially embedded within said ceramic layer.
References Cited UNlTED STATES PATENTS 1,431,825 10/ 1922 Lemoine.
2,451,297 10/1948 Moore 250-275 2,577,239 12/1951 Eitel et al 313-340 2,864,968 12/1958 Ward 313-275 2,981,897 4/1961 Beggs 331-99 3,226,806 1/1966 Gatewood 29155.62
FOREIGN PATENTS 1,260,743 4/1961 France.
898,448 6/ 1962 Great Britain.
JOHN W. HUCKERT, Primary Examiner.
J. R. SHEWMAKER, Assistant Examiner.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US418591A US3400294A (en) | 1964-12-07 | 1964-12-07 | Heated cathode and method of manufacture |
BE673331D BE673331A (en) | 1964-12-07 | 1965-12-06 | |
FR41173A FR1460995A (en) | 1964-12-07 | 1965-12-07 | Hot cathode and its manufacturing process |
NL6515865A NL6515865A (en) | 1964-12-07 | 1965-12-07 | |
US680517A US3528156A (en) | 1964-12-07 | 1967-11-03 | Method of manufacturing heated cathode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US418591A US3400294A (en) | 1964-12-07 | 1964-12-07 | Heated cathode and method of manufacture |
US680517A US3528156A (en) | 1964-12-07 | 1967-11-03 | Method of manufacturing heated cathode |
Publications (1)
Publication Number | Publication Date |
---|---|
US3400294A true US3400294A (en) | 1968-09-03 |
Family
ID=27024193
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US418591A Expired - Lifetime US3400294A (en) | 1964-12-07 | 1964-12-07 | Heated cathode and method of manufacture |
US680517A Expired - Lifetime US3528156A (en) | 1964-12-07 | 1967-11-03 | Method of manufacturing heated cathode |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US680517A Expired - Lifetime US3528156A (en) | 1964-12-07 | 1967-11-03 | Method of manufacturing heated cathode |
Country Status (4)
Country | Link |
---|---|
US (2) | US3400294A (en) |
BE (1) | BE673331A (en) |
FR (1) | FR1460995A (en) |
NL (1) | NL6515865A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3581144A (en) * | 1969-03-27 | 1971-05-25 | Gen Electric | Metal-clad insulated electrical heater |
US3720985A (en) * | 1971-06-30 | 1973-03-20 | Gte Sylvania Inc | Method of improving adherence of emissive material in thermionic cathodes |
US3722045A (en) * | 1971-06-30 | 1973-03-27 | Gte Sylvania Inc | Methods of improving adherence of emissive material in thermionic cathodes |
FR2476386A1 (en) * | 1980-02-15 | 1981-08-21 | Thomson Csf | INDIRECT HEATING CATHODE HEATING ELEMENT, METHOD OF MANUFACTURING THE SAME, AND INDIRECT HEATING CATHODE COMPRISING SUCH A MEMBER |
US20050001531A1 (en) * | 2002-03-05 | 2005-01-06 | Takao Mineta | Coil filament |
US20200113020A1 (en) * | 2018-10-05 | 2020-04-09 | Serendipity Technologies Llc | Low power high-efficiency heating element |
US11244800B2 (en) | 2020-06-18 | 2022-02-08 | Axcelis Technologies, Inc. | Stepped indirectly heated cathode with improved shielding |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3671792A (en) * | 1969-10-29 | 1972-06-20 | Itt | Fast warm-up indirectly heated cathode structure |
US3710161A (en) * | 1970-10-30 | 1973-01-09 | Gen Electric | Quick-heating impregnated planar cathode |
JPS51147171A (en) * | 1975-06-11 | 1976-12-17 | Sony Corp | Flat surface multilayer cathode |
US5713775A (en) * | 1995-05-02 | 1998-02-03 | Massachusetts Institute Of Technology | Field emitters of wide-bandgap materials and methods for their fabrication |
US20210106056A1 (en) * | 2019-10-10 | 2021-04-15 | Tuanfang Liu | Atomization core |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1431825A (en) * | 1921-07-18 | 1922-10-10 | Lemoine Henri Guido | Electric resistance heater |
US2451297A (en) * | 1944-08-01 | 1948-10-12 | Rca Corp | Rugged gaseous discharge triodes |
US2577239A (en) * | 1949-09-12 | 1951-12-04 | Eitel Mccullough Inc | Cathode and heater structure for electron tubes |
US2864968A (en) * | 1955-10-14 | 1958-12-16 | Varian Associates | Cathode structure |
US2981897A (en) * | 1954-10-22 | 1961-04-25 | Gen Electric | Electric discharge device and socket |
FR1260743A (en) * | 1960-03-31 | 1961-05-12 | Thomson Houston Comp Francaise | Method for manufacturing indirectly heated cathodes for electron tubes and cathodes manufactured using this method |
US3226806A (en) * | 1960-03-18 | 1966-01-04 | Eitel Mccullough Inc | Method of making a cathode heater assembly |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3041209A (en) * | 1955-06-28 | 1962-06-26 | Gen Electric | Method of making a thermionic cathode |
GB820504A (en) * | 1956-07-20 | 1959-09-23 | Mullard Radio Valve Co Ltd | Improvements in and relating to cathodes |
US3307241A (en) * | 1963-10-14 | 1967-03-07 | Litton Prec Products Inc | Process for making cathodes |
-
1964
- 1964-12-07 US US418591A patent/US3400294A/en not_active Expired - Lifetime
-
1965
- 1965-12-06 BE BE673331D patent/BE673331A/xx unknown
- 1965-12-07 FR FR41173A patent/FR1460995A/en not_active Expired
- 1965-12-07 NL NL6515865A patent/NL6515865A/xx unknown
-
1967
- 1967-11-03 US US680517A patent/US3528156A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1431825A (en) * | 1921-07-18 | 1922-10-10 | Lemoine Henri Guido | Electric resistance heater |
US2451297A (en) * | 1944-08-01 | 1948-10-12 | Rca Corp | Rugged gaseous discharge triodes |
US2577239A (en) * | 1949-09-12 | 1951-12-04 | Eitel Mccullough Inc | Cathode and heater structure for electron tubes |
US2981897A (en) * | 1954-10-22 | 1961-04-25 | Gen Electric | Electric discharge device and socket |
US2864968A (en) * | 1955-10-14 | 1958-12-16 | Varian Associates | Cathode structure |
US3226806A (en) * | 1960-03-18 | 1966-01-04 | Eitel Mccullough Inc | Method of making a cathode heater assembly |
FR1260743A (en) * | 1960-03-31 | 1961-05-12 | Thomson Houston Comp Francaise | Method for manufacturing indirectly heated cathodes for electron tubes and cathodes manufactured using this method |
GB898448A (en) * | 1960-03-31 | 1962-06-06 | Thomson Houston Comp Francaise | Cathode assembly |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3581144A (en) * | 1969-03-27 | 1971-05-25 | Gen Electric | Metal-clad insulated electrical heater |
US3720985A (en) * | 1971-06-30 | 1973-03-20 | Gte Sylvania Inc | Method of improving adherence of emissive material in thermionic cathodes |
US3722045A (en) * | 1971-06-30 | 1973-03-27 | Gte Sylvania Inc | Methods of improving adherence of emissive material in thermionic cathodes |
FR2476386A1 (en) * | 1980-02-15 | 1981-08-21 | Thomson Csf | INDIRECT HEATING CATHODE HEATING ELEMENT, METHOD OF MANUFACTURING THE SAME, AND INDIRECT HEATING CATHODE COMPRISING SUCH A MEMBER |
EP0034512A2 (en) * | 1980-02-15 | 1981-08-26 | Thomson-Csf | Heating element for indirectly heated cathodes, process for manufacturing such an element and indirectly heated cathode comprising the same |
EP0034512A3 (en) * | 1980-02-15 | 1982-05-26 | Thomson-Csf | Heating element for indirectly heated cathodes, process for manufacturing such an element and indirectly heated cathode comprising the same |
US20050001531A1 (en) * | 2002-03-05 | 2005-01-06 | Takao Mineta | Coil filament |
US6984928B2 (en) * | 2002-03-05 | 2006-01-10 | Mineta Company Ltd. | Coil filament |
US20200113020A1 (en) * | 2018-10-05 | 2020-04-09 | Serendipity Technologies Llc | Low power high-efficiency heating element |
US11244800B2 (en) | 2020-06-18 | 2022-02-08 | Axcelis Technologies, Inc. | Stepped indirectly heated cathode with improved shielding |
WO2021257712A3 (en) * | 2020-06-18 | 2022-02-10 | Axcelis Technologies, Inc. | Stepped indirectly heated cathode with improved shielding |
Also Published As
Publication number | Publication date |
---|---|
BE673331A (en) | 1966-04-01 |
US3528156A (en) | 1970-09-15 |
FR1460995A (en) | 1966-12-02 |
NL6515865A (en) | 1966-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3400294A (en) | Heated cathode and method of manufacture | |
US3195004A (en) | Cathode heater for electron discharge devices | |
CN108878232B (en) | Hot cathode assembly for vacuum electronic devices | |
US2501089A (en) | Thermionic electron emitter | |
EP0632479A1 (en) | Anisotropic pyrolytic graphite heater | |
US2677781A (en) | Electron tube | |
US2438732A (en) | Electron tube cathode | |
US3175118A (en) | Low power heater | |
US3246197A (en) | Cathode heater having an aluminum oxide and tungesten coating | |
US3638062A (en) | Support for composite electrode structure | |
US3221203A (en) | Sintered metal conductor support | |
US3092748A (en) | Indirectly heated cathode | |
US2769114A (en) | Anode for electron tubes | |
US3671792A (en) | Fast warm-up indirectly heated cathode structure | |
US3227911A (en) | Indirectly heated cathodes | |
US3225246A (en) | Indirectly heated cathode | |
US2447973A (en) | Coated anode for electron discharge devices | |
US4835441A (en) | Directly heated sorption getter body | |
US2847604A (en) | Thermionic cathode and direct current heater assembly | |
US2794933A (en) | Ceramic tetrode | |
EP0059491A1 (en) | Oxide cathode | |
JP2590750B2 (en) | Impregnated cathode structure | |
KR100393990B1 (en) | heater for CRT | |
US1828545A (en) | Vacuum tube and its elements | |
US3284656A (en) | Electron emitting cathodes |