[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5957407A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS5957407A
JPS5957407A JP57169335A JP16933582A JPS5957407A JP S5957407 A JPS5957407 A JP S5957407A JP 57169335 A JP57169335 A JP 57169335A JP 16933582 A JP16933582 A JP 16933582A JP S5957407 A JPS5957407 A JP S5957407A
Authority
JP
Japan
Prior art keywords
layer
type layer
amorphous silicon
type
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57169335A
Other languages
Japanese (ja)
Other versions
JPH0460353B2 (en
Inventor
Masaru Takeuchi
勝 武内
Takashi Shibuya
澁谷 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57169335A priority Critical patent/JPS5957407A/en
Publication of JPS5957407A publication Critical patent/JPS5957407A/en
Publication of JPH0460353B2 publication Critical patent/JPH0460353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To transfer spectroscopic sensitive wavelength to short wavelength side without deteriorating the film quality and to prevent deterioration of photo- electric conversion efficiency caused by light irradiation for a long time, by a method wherein a layer including nitrogen and boron simultaneously is provided on a semiconductor layer of amorphous silicon. CONSTITUTION:A semiconductor layer 3 is composed of, for example, P type layer, I-type layer and N type layer in the order from a transparent electrode film 2 at light incident side. P type layer 3p is made of amorphous silicon carbide formed by glow discharge in atmosphere of silane SiH4 60% and methane CH4 40% including diborane B2H6 0.3% as doping gas. I-type layer 3i is made of amorphous silicon nitride formed under mixed gas atmosphere of SiH4 gas 80-99.99% and ammonia NH3 as nitride 20-0.01% and addition of B2H6 1%- 10ppm N type layer 3n is made of amorphous silicon formed by SiH4 gas and phosphine PH3 1% under doping.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は非晶質シリコン系の半導体層を備えた光起電力
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a photovoltaic device including an amorphous silicon semiconductor layer.

(口1 従来技術 非晶質シリコン系の半導体層を備えた光起電力装置は既
に実用化される一方、種々の改良が施されている。その
改良の内cP工N接合型光起電力装置に於いて、1型(
真性)層として、窒素INIを添加せしめ非晶質シリコ
ンナイトライドta−8ixN1−x)を形成し、窒素
IN+を含まないものに較べ光学的禁止帯幅Eopt 
を大きくして分光感度波長を短波長側に移行せしめたも
のが存在する。
(1) Prior Art Photovoltaic devices equipped with amorphous silicon semiconductor layers have already been put into practical use, and various improvements have been made. Among these improvements, cP N-junction photovoltaic devices In , type 1 (
Nitrogen INI is added to form an amorphous silicon nitride ta-8ixN1-x layer as the intrinsic layer, and the optical bandgap Eopt is lower than that of a layer that does not contain nitrogen IN+.
There is one in which the spectral sensitivity wavelength is shifted to the shorter wavelength side by increasing the wavelength.

斯る嫌波長側への移行により分光感度波長の異なるPI
N接合型光起6イ、力」り置をタンデム若しくは6層以
上に債1ζ・をすることができ1勺)Y;6度波長誠を
広げ、光!【変換肋帛を向、にせしめることが可能とな
るために、光重変換効率の低率が間M(lどなる此の(
=N装置Rに於いて株め“C有益である。
Due to this shift to the disliked wavelength side, the PI has a different spectral sensitivity wavelength.
N-junction type light source 6, power can be placed in tandem or in 6 or more layers with 1ζ. [This (
=N In the device R, the stock "C" is beneficial.

然し乍ら、上述の如くI型層にg素州を添加下ると分光
感度波長を短波長側に移行せしめることがでさるものの
、第1図に示Tようにフェルミレベルl(/がN含有喰
と共に移動し伝導帯に近づく結東、禁止帯の中央(ミツ
ドギャップ)EOから離間し従来から僅かながらもN型
であった■型層はよりN型となり模質を悪化せしめる原
因ど71っていた。
However, as mentioned above, adding G to the I-type layer can shift the spectral sensitivity wavelength to the shorter wavelength side, but as shown in Figure 1, the Fermi level l (/ is As the layer moves closer to the conduction band and moves away from the center of the forbidden band (mid gap) EO, the ■-type layer, which had traditionally been N-type, becomes more N-type, causing the pattern to deteriorate. .

一方、光起電力装置(二於いて主に発?(¥(二寄j4
する電子及びIF孔対な発生TZ+のは上記工を層であ
るどころ、斯る1型層;二強い光を長時間照射した場合
に、光重変換効率が低ドすることが実験的に確A忍され
ている。
On the other hand, photovoltaic devices (2.
The generation of electron and IF hole pairs in TZ+ is not only the layer described above, but also the type 1 layer; A: It's being ignored.

レリ 発明の目的 本発明は斯る点cfiみ°C為されたものであってその
目的は10質を悪化せしめることなく工型層に窒素IN
+を含有せしめ短波長側への分光感度波畏の移行を・可
能7よ1ら[7めると)(じ、長時間光照射による光市
変換効4Hの低下、即ち劣化を防止するものである。以
下第2図乃至第5図を参照して本発明をPIN接合型光
起電力装置に適用した実施例に一〕き詳述する。1才た
′fj6図並びに第7図に本発明の好適な応用例を示T
、。
Purpose of the Invention The present invention has been made to solve this problem, and its purpose is to inject nitrogen into the mold layer without deteriorating the quality.
It is possible to shift the spectral sensitivity wave to the short wavelength side by containing +. Hereinafter, an embodiment in which the present invention is applied to a PIN junction type photovoltaic device will be described in detail with reference to FIGS. 2 to 5. Showing preferred application examples of the invention
,.

に)実施例 第2図は本発明の基本構511を示し、(【1はガラス
耐熱プラスT・ツク”:% (D絶縁性且つ光透過性の
基板。
(2) Embodiment FIG. 2 shows the basic structure 511 of the present invention, ([1 is a glass heat-resistant plus T-tsuku'': % (D is an insulating and light-transmitting substrate.

(21は訪2’s板(1)の−主面に被着された酸化ス
ズ、酸化イ:ノジウトスズ等の透明電極;IΔ、(3)
は該透明電極110121上にシランSj−H4ガス等
のグロー放電により形成された非晶質シリコン系の半導
体層、(4)は該半導体ll−’!r 1311 +:
diに重畳されたアルミニウムチタン等の呉面「は14
119である、if+’i して、本発明の特徴は」−
記半導体層13)の組成にある。即ち、上記半導体層1
3)は光入射側である透明電極11”!+21側からP
型層(3p)、I型(真性)層(3j−)及ヒN’J’
J# (511) 7j111!’l/7Jn1(1−
+4(。
(21 is a transparent electrode such as tin oxide, tin oxide, etc. adhered to the -main surface of the second board (1); IΔ, (3)
is an amorphous silicon-based semiconductor layer formed on the transparent electrode 110121 by glow discharge of silane Sj-H4 gas, etc., and (4) is the semiconductor ll-'! r 1311 +:
Kure surface such as aluminum titanium superimposed on di is 14
119, if+'i, the feature of the present invention is "-
The composition of the semiconductor layer 13). That is, the semiconductor layer 1
3) is P from the transparent electrode 11”!+21 side which is the light incidence side.
Type layer (3p), I type (intrinsic) layer (3j-) and HiN'J'
J# (511) 7j111! 'l/7Jn1(1-
+4(.

めたPIN接合悟造を持ち、町に訂しくはPバリ層(3
p)はシランS1)+46L]%に対し4[1〜のメタ
ンCHa+ニドーピングガスとして03%ジボラン13
2 kI 6を含む雰囲気中でのグロー1j9′山、C
二より形成されたJf晶v1シリコンカーバイド(a−
8ixc+−X)から1戊り、工型吊)(53)):1
.S′5−H4Jfス8o〜99.99%に窒素化合物
であるアンモニノ’NH320〜001%並びにB 2
1(61q6〜10pp’FIを添加した混合ガス雰囲
気中で形成された非晶aシリコンナイトワイド(8,−
8:3−xN 1−x )から成り、そして、tl Q
V層(3rlはS 1− H4ガヌにホスフィンPH3
を1q′)ドーピングし1形成された非晶質シリコン(
a−33−)から構成されている。この柿楓二SiトI
4を主成分とする雰囲気中でのグロー族r((、により
形成六れた上記P型層(3p)、I型IN (31)及
びN型1c1(3n)の各膜厚は例えば100/C,5
0noス及び500A’に設定されている。
He has a PIN connection Gozo, and the town has a P Bali layer (3
p) is silane S1) + 46L]% to 4[1 ~ methane CHa + 03% diborane 13 as di-doping gas
Glow 1j9′ mountain in an atmosphere containing 2 kI 6, C
Jf crystal v1 silicon carbide (a-
8ixc + -
.. S'5-H4Jf S80~99.99%, ammonino'NH which is a nitrogen compound 320~001% and B2
Amorphous silicon night wide (8,-
8:3-xN 1-x ), and tl Q
V layer (3rl is phosphine PH3 in S1-H4 Ganu)
amorphous silicon (1q′) doped to form 1
a-33-). This persimmon Kaedeji Sito I
The thickness of each of the above P-type layer (3p), I-type IN (31) and N-type 1c1 (3n) formed by glow group r(() in an atmosphere mainly composed of C,5
It is set to 0nos and 500A'.

第3図は」二速の如き非晶ηシリコンナイトライド(a
  S iX N 1X ) ylxら成る■型層(3
1)のフェルミレベルE/の移動をジボランB2)(6
ガス/+f ljl:比、即ちポ【コンBの含有獣につ
いて測定した結果である。この測定に供せられた工型層
(W 1. )は97%のS t [1aガスに3%の
N Hsガスを添加した混合ガスにB z Hbガスの
流用比を可変し°r3成されたものである。同図から明
らかす如<、フェルE L/ペルEfはボロンBの含有
はが増大するに従って、所謂ミツドギャップEOに接近
し、′’;5 ;’4; tiの含イ1によってN型の
性質を持つように1よる工型層(31)はP型不純物で
ある上記Bの添加により真性型に補償される。そしてこ
の実施例に於いで7エルミレベルT’:/トミット′ギ
ャップEOどが一致し理論的に真性とTるのはIl/J
40 U p pnsテア);:)。
Figure 3 shows a two-speed amorphous η silicon nitride (a
■-type layer (3
1) The movement of Fermi level E/ is diborane B2) (6
This is the gas/+f ljl ratio, that is, the result measured for the gas containing Pocon B. The mold layer (W 1.) used for this measurement was 97% S t [1a gas with 3% NHs gas added to it by varying the flow ratio of B z Hb gas and °r3 formation. It is what was done. As is clear from the figure, as the boron B content increases, the fer EL/pel Ef approaches the so-called mid gap EO, and due to the ti content 1, the N-type By adding B, which is a P-type impurity, the type layer (31) of 1 is compensated to be an intrinsic type. In this example, the 7 Hermi levels T':/Tommit' gap EO, etc. coincide, and theoretically it is true T that is Il/J
40 U p pns tear);:).

一方、第4図は第6図と同じ仕様を持・つa −810
,97N 0.05の1型1じり(3j−)−二於ける
光導電率のp 11と暗導電率のflをB z H6ガ
スの流用比につい゛〔測定した粘県である6周知のよう
に光電3力装置に於いCは光導/!!率のphと暗i!
J−叱率のdとの差が大きいことが肝要であり、断る点
についてのみ云えばボロンBの工型層(3j、)への小
ノ」は好ましくなく、上記工型層(3j)が理論的に真
性となる400ppmでは(7−plとのdとの差は縮
小下る傾向にあるために、この堺市率の差をも考慮゛「
るとBの含有1段は些程縮小しない灼10o p pm
が望ましい。
On the other hand, Figure 4 has the same specifications as Figure 6.
, 97N 0.05 of 1 type 1 jiri (3j-) - 2 photoconductivity p 11 and dark conductivity fl with respect to the diversion ratio of B z H6 gas. In the photoelectric three-power device, C is light guide/! ! Rate of ph and dark i!
It is important that the difference between the J-rate and d is large, and speaking only about the point of refusal, it is undesirable to add boron B to the mold layer (3j), and the above mold layer (3j) is At 400 ppm, which is theoretically true, the difference between d and 7-pl tends to decrease, so this difference in Sakai city rate is also taken into account.
Then, the content of B will not shrink to a certain extent at 10o p pm.
is desirable.

四ニ、第5図はa−8′Lo、p?N o、os)1型
層(!l1)1:於けるBの含有壜をパラメータどした
規格化光導電率のphの経時変化を照射強度500mW
//!jのAM−1光を照射した時について測定したも
のである。測定に供せられた試料1alはBを1oOp
p’Fj添加したものであり、試料1blのそれは10
ppFFjであり、試料+01はBを含まない所謂ノン
ドープ層である。この様にBを添加すると規格化光導電
率ty−p hの経時変化、即ち光電変換効率の劣化は
抑圧される傾向にあり、Bの添加用は上記導電率の差、
■型層(51−)の真性補償等を考慮すると約1001
11”以上が適当である。
4D, Figure 5 is a-8'Lo, p? No, os) type 1 layer (!l1) 1: Changes in pH of normalized photoconductivity with time using B-containing bottle as a parameter at irradiation intensity of 500 mW
//! Measurements were taken when AM-1 light of j was irradiated. The sample 1al used for measurement has 1oOp of B.
p'Fj was added, and that of sample 1bl was 10
ppFFj, and sample +01 is a so-called non-doped layer that does not contain B. When B is added in this way, the change in normalized photoconductivity ty-ph over time, that is, the deterioration of photoelectric conversion efficiency, tends to be suppressed.
■Approximately 1001 considering the intrinsic compensation of the type layer (51-)
11" or more is appropriate.

従って、l述の卯き工型層(3i)に3%の窒素Nを添
加した場合、斯る工型層(33−)に添加されるボロン
Bの1(tはfJlooppm乃至400ppmが好適
である。
Therefore, when 3% nitrogen N is added to the hollow mold layer (3i) mentioned above, 1 (t) of boron B added to the mold layer (33-) is preferably fJlooppm to 400 ppm. be.

また、より好適な実施例に於ては上記窒素Nとボロ/B
の工型層(3i)への含有1を光入射側を最大とし序々
(二減じる構成となしても良い。
In a more preferred embodiment, the nitrogen N and boro/B
The content of 1 in the mold layer (3i) may be maximized on the light incident side and gradually decrease by 2.

げ) 応用例 第6図はボロン含有非晶質シリコンナイトライド(a−
8>、xN 1−x )(7)I型層(31)を有する
PIN接合型の第1の発電領域(31)を光入射側に配
置し、断る第1の発電領域(3唱)に光学的禁止帯幅E
optが順次小さくなる第2の発電領域(32)及び第
3の発電領域(35)を積層せしめた積層型光電ルカ装
置である。この端層型光電゛屯力装置の好適な実施例に
於いては、第1の発電領域(31)の工型層(51)は
3%の窒素N並びにIQQppmのボロンを含有TるE
Optl、 8 (eV ) (Da −310,97
N O,O&カラ成り、第2の発11領ift、(31
のそれはE o p t、 1゜7(eV)のノンドー
プのa=sj−から成り、そし”C第3の発°屯領域(
35)のそれはスでSn310%含有するF、Opt、
I、3(eV)の非晶質?/リコ/スズ(a −810
,98n o、t ) カラtlff成F ;hている
う即ち、半導体発電現象に於いて、発電に寄与下る入射
光波長は発′峨領域の主として工型層の光学的禁出!4
F幅に依存する。第7図はホウ用例に於ける第1、第2
.第3の発電領域(51)。
Application example Figure 6 shows boron-containing amorphous silicon nitride (a-
8>, xN 1-x ) (7) A PIN junction type first power generation region (31) having an I-type layer (31) is arranged on the light incidence side, and optical band gap E
This is a stacked photovoltaic device in which a second power generation region (32) and a third power generation region (35) having successively smaller opts are stacked. In a preferred embodiment of this end-layer photovoltaic device, the mold layer (51) of the first power generation region (31) is a T-E containing 3% nitrogen N and IQQppm boron.
Optl, 8 (eV) (Da -310,97
N O, O & Kara, 2nd departure 11 areas ift, (31
It consists of an undoped a = sj- with E o p t, 1°7 (eV), and the third emissive region (
35) is F containing 310% Sn in S, Opt,
I, 3 (eV) amorphous? / Rico / Tin (a-810
, 98n o, t ) Color tlff formation F ;h In other words, in the semiconductor power generation phenomenon, the wavelength of incident light that contributes to power generation is mainly optically prohibited by the mold layer in the emission region! 4
Depends on F width. Figure 7 shows the first and second cases in the example
.. Third power generation area (51).

(32)、(3g)の夫々の光吸収特性t51 、 +
61 。
(32), (3g) light absorption characteristics t51, +
61.

(7)を夫、々示し°Cいる、 各発電領域(31)、(32′)、133)がもし一つ
の光学的禁止帯幅しか持っておらず、斯る発i!@J!
1li(311,(32)、 (35)に太陽光などが
入射したとすると、その光学的禁止帯幅に応じた一部の
波長の光しか発79. を二寄与せず、それより短い波
長の入射光エネルギは素子内で熱となって消散し、又長
い波長の入射)Y;エネルギは素子内で吸収されること
なく散逸するつ これ菖二対し、水密ID例では第7図41ら明らかな如
く、装置全体として見れば複数の光学的禁11:、帯幅
が存在し、しかも光入射側からIllへそれが小さくな
る配置であるので、入射光エネルギは、その短波長側の
ものが装置の比較的浅い領域で有効に発電(二寄与する
と共に、長波長側のものが装置の浅い領域で吸収される
ことな(装置の比較的深い領域にまで進んでそこで有効
に発電に寄与する結束、装置全体として大きな光電変換
効率が得られる。
(7) is shown in °C. If each power generation region (31), (32'), 133) has only one optical bandgap width, then such an emission i! @J!
1li (311, (32), (35)), if sunlight etc. is incident, only light of a part of the wavelength corresponding to the optical forbidden width will emit light, and light of a shorter wavelength will contribute to the emission. The incident light energy becomes heat and dissipates within the element, and the incident light energy of long wavelengths is dissipated without being absorbed within the element. As is clear, when looking at the device as a whole, there are multiple optical bandwidths, and since the arrangement is such that the bandwidth decreases from the light incident side to Ill, the incident light energy is from the short wavelength side. rays effectively contribute to power generation in a relatively shallow region of the device, and the long wavelength side is absorbed in a shallow region of the device (proceeds to a relatively deep region of the device and effectively contributes to power generation there). By bundling it together, a large photoelectric conversion efficiency can be obtained as a whole of the device.

(へ)効 果 本発明光起電力装置は以1−の説明から明らかな如(%
発電に寄F4Tる非晶質シリコン系の半導体層は窒素と
ボロンを同時に含んだ層を有しているので、半導体層の
分光感度波長を膜質を悪化・14ニジめることな(短波
長側への移行を可能11らしめるとaに、長時1〕1光
照射による光電変換効率の劣化を防止することができ、
今まで研究開発の第1の目標とされていた光電変換動ぶ
を違った観点から実質的に土性せしめることができる。
(f) Effect The photovoltaic device of the present invention is as clear from the explanation in 1- below.
The amorphous silicon-based semiconductor layer used in F4T for power generation has a layer containing nitrogen and boron at the same time, so the spectral sensitivity wavelength of the semiconductor layer can be adjusted without deteriorating the film quality (on the short wavelength side). By making the transition to 11 possible, it is possible to prevent deterioration of photoelectric conversion efficiency due to long-term 1]1 light irradiation,
Photoelectric conversion, which has been the primary goal of research and development up until now, can be made to work from a different perspective.

更に、断る半導体1を光入射側に配置し、該半導体層を
第1の発電領域とし、この第1のP電領域に光学的禁止
帯幅幅が小さくなる第2の発電領域を重畳せ(−めたタ
ンデム構造、及び匿(二元学的禁止帯幅が小さい第30
発″【1領誠を積層せしめた端層型に適用すれば、装置
全体として人さな光電変換効率が得られ、低変喚効率を
眸消せしめることがT:き、此の種装置(二於いC(鎮
めて有益で、ちる。
Furthermore, the semiconductor layer 1 to be rejected is arranged on the light incident side, the semiconductor layer is made a first power generation region, and a second power generation region having a small optical bandgap width is superimposed on this first P power region ( - the tandem structure with a small (dualistic forbidden band width)
If this type of device is applied to an end-layer type with laminated layers, a photoelectric conversion efficiency similar to that of the entire device can be obtained, and the low conversion efficiency can be eliminated. 2C (Calm down, useful, Chiru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質シリコンナイトライアトの窒素含有!匙
に対するフェ!レミレベルの移動を示す特性来第2因は
本発明装置の1桁面図、第3図は非1〜?I質シリコン
ナイトフ・fドの82 l bガス1.lt ’1比(
B含冶i最)L二対するフェルミレベルの移動を示す゛
特性図、第4図は非晶′賓シリコンナイトライドのB2
H6ガス流1比(B含有電]に対−する導礒率の変化ン
に示T特1生図、・85閃は現洛化光稈遍率のに1寺変
化を示゛[特性図、・第6図はX発明装置の;、こ;用
例を示す(111向図、$7図はその分光感度特性図、
を夫々示しCいる。 (【1・・・基板、  +31・・・半導体層。 第1図 第2図 B21−16 q”ス乳t Et。 第4図 B2H6m’ス1に−+ r乙 手  続  補  正  書(自発) 昭和57年10月 7 日 光起電力装置 6、補正をする者 特許出願人 住所 守口市京阪本通2丁目18番地 名称(188)三洋電機株式会社 代表者 井 植   薫 4、代理人 住所 守口型京阪本通2了目18番地 5、補正の対象 明細(JF 6、 補正の内容 明ρi N?’全文を別紙のjllJり摺)正します。
Figure 1 shows the nitrogen content of amorphous silicon nitrite! Fe against the spoon! The second reason is the characteristic that shows the movement of the Remi level. 82 lb gas 1. lt '1 ratio (
Figure 4 is a characteristic diagram showing the movement of the Fermi level with respect to B2 and L2.
The change in conductivity with respect to the H6 gas flow ratio (B-containing electric current) is shown in the T characteristic diagram, and the 85 flash shows a one degree change in the current light flux distribution.[Characteristic diagram ,・Figure 6 shows an example of the use of the X invention device (111 direction figure, $7 figure is its spectral sensitivity characteristic diagram,
C shows respectively. ([1...substrate, +31...semiconductor layer. ) October 7, 1982 Solar electromotive force device 6, Person making amendments Patent applicant Address: 2-18 Keihan Hondori, Moriguchi City Name (188) Sanyo Electric Co., Ltd. Representative: Kaoru Iue 4, Agent address: Moriguchi type Keihan Hondori 2nd Ryome 18-5, details to be amended (JF 6, contents of amendment ρi N?' Full text is corrected on the attached sheet).

Claims (1)

【特許請求の範囲】 (【)  発電(二寄与する非晶質シリコン系の半導体
層を備えた光起電力装置に於いて、上記半導体層は窒素
とボロンを同時に含んだ層を有していることを特徴とし
た光起電力装置。
[Claims] ([) In a photovoltaic device including an amorphous silicon-based semiconductor layer that contributes to power generation, the semiconductor layer has a layer containing nitrogen and boron at the same time. A photovoltaic device characterized by:
JP57169335A 1982-09-27 1982-09-27 Photovoltaic device Granted JPS5957407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169335A JPS5957407A (en) 1982-09-27 1982-09-27 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169335A JPS5957407A (en) 1982-09-27 1982-09-27 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPS5957407A true JPS5957407A (en) 1984-04-03
JPH0460353B2 JPH0460353B2 (en) 1992-09-25

Family

ID=15884641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169335A Granted JPS5957407A (en) 1982-09-27 1982-09-27 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS5957407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617661A (en) * 1984-06-21 1986-01-14 Fuji Xerox Co Ltd Photoelectric conversion element and color draft reading element utilizing said element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464981A (en) * 1977-10-12 1979-05-25 Energy Conversion Devices Inc High temperature amorphous semiconductor member and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464981A (en) * 1977-10-12 1979-05-25 Energy Conversion Devices Inc High temperature amorphous semiconductor member and method of producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617661A (en) * 1984-06-21 1986-01-14 Fuji Xerox Co Ltd Photoelectric conversion element and color draft reading element utilizing said element

Also Published As

Publication number Publication date
JPH0460353B2 (en) 1992-09-25

Similar Documents

Publication Publication Date Title
JPS6091679A (en) Photoelectric device
US4728370A (en) Amorphous photovoltaic elements
US5942049A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
Ten Kate et al. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function
US4591892A (en) Semiconductor photoelectric conversion device
US5705828A (en) Photovoltaic device
Koch et al. Low-temperature deposition of amorphous silicon solar cells
Fang et al. An amorphous SiC/Si heterojunction pin diode for low-noise and high-sensitivity UV detector
JPS59972A (en) Compensating amorphous solar battery associated with insulating layer
JPS59971A (en) Compensating amorphous silicon solar battery
JPH06104464A (en) Strengthening of short-circuit current using wide-band gap n-layer in pin amorphous silicon photoelectric cell
US4704624A (en) Semiconductor photoelectric conversion device with partly crystallized intrinsic layer
JPS5957407A (en) Photovoltaic device
US5060041A (en) Amorphous silicon photosensor
JPS6377167A (en) Laminated photovoltaic device
JPS6334632B2 (en)
JP4187328B2 (en) Photovoltaic element manufacturing method
JP3245962B2 (en) Manufacturing method of thin film solar cell
JPS63120476A (en) Photovolatic device
JP2713799B2 (en) Thin film solar cell
JPS59202673A (en) Superposed photodetector
JP2004140010A (en) Tandem solar cell
JPS61224368A (en) Semiconductor device
Konagai et al. Flexible bifacial amorphous Si quintuple‐and sextuple‐junction solar cells for Internet of Things devices
Madan Opportunities for high-efficiency amorphous-silicon thin-film solar cells