JPS5952831A - Beam annealing method - Google Patents
Beam annealing methodInfo
- Publication number
- JPS5952831A JPS5952831A JP16346982A JP16346982A JPS5952831A JP S5952831 A JPS5952831 A JP S5952831A JP 16346982 A JP16346982 A JP 16346982A JP 16346982 A JP16346982 A JP 16346982A JP S5952831 A JPS5952831 A JP S5952831A
- Authority
- JP
- Japan
- Prior art keywords
- beams
- intensity distribution
- substrate
- annealing
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 発明の技術分野
光線、例えばレーザ光を用い基板上に形成された絶縁膜
上の多結晶シリコン層を単結晶化する光線アニールに係
り、特に高速処理に有利なアニール処理に関する。Detailed Description of the Invention (a) Technical Field of the Invention This invention relates to light annealing for monocrystallizing a polycrystalline silicon layer on an insulating film formed on a substrate using a light beam, such as a laser beam, and is particularly advantageous for high-speed processing. Regarding the annealing process.
(bl 技術の背景
将来の三次元集積回路の基礎として非単結晶質絶縁膜に
単結晶を成長させる所謂5OI(Sil 1conon
In5ulation)技術が注目されており、電気
特性番こ優れた多結晶シリコン(Poly−Cryst
alSilicon:ポリシリコン)を単結晶化して能
動素子を形成させる方法が実用化されている。(bl Technology background) The so-called 5OI (Sil 1 conon
Polycrystalline silicon (poly-crystalline silicon), which has excellent electrical properties, is attracting attention.
A method of forming an active element by single crystallizing alSilicon (polysilicon) has been put into practical use.
主として水素還元法又は熱分解法による気相成長法によ
って得られる多結晶シリコン(以下ポリシリコンと呼称
)は小さな単結晶が不規則に配列されているためアニー
ルにより規則性の単結晶に置換するが連続発振モードの
アルゴンイオンレーザ光を用いたスキャニング方式が一
般的に用いられている。Polycrystalline silicon (hereinafter referred to as polysilicon), which is mainly obtained by vapor phase growth using hydrogen reduction or thermal decomposition, consists of small single crystals arranged irregularly, so they can be replaced with regular single crystals by annealing. A scanning method using continuous wave mode argon ion laser light is generally used.
(C) 従来技術と問題点
ポリシリコンの単結晶化にはC’1NAr+レーザ光の
スキャニングが最も適しているがレーザパワーが最高で
も20W程度でビーム寸法も10oμψにしぼる必要が
あり従って処理能力が低い。(C) Conventional technology and problems Scanning with C'1NAr+ laser light is most suitable for single crystallization of polysilicon, but the maximum laser power is about 20W and the beam size needs to be reduced to 10oμψ, so the processing capacity is low. low.
一方、微細加工技術の進展に伴い集積度が増加するに従
いポリシリコン領域も増大する傾向にありアニール処理
の高速化が要請される。このためレーザ装置の大型化は
高価となるだけでなくパワー密度が高くなりポリシリコ
ン層を破壊し、熱工ネルギーにより基板にダメージを与
えることになる。均一なレーザアニールを行うためには
少くとも空間的なモードは単一モード(強度分布がガウ
ス型)かそれに近いモードであることが必要で更にこの
ような単一モードを光学系を通して平坦な強度分布に変
換する必要がある。On the other hand, as the degree of integration increases with the progress of microfabrication technology, the polysilicon area also tends to increase, necessitating a faster annealing process. For this reason, increasing the size of the laser device not only increases the cost but also increases the power density, which destroys the polysilicon layer and damages the substrate due to thermal energy. In order to perform uniform laser annealing, at least the spatial mode must be a single mode (with a Gaussian intensity distribution) or a mode close to it. It is necessary to convert it to a distribution.
(d) 発明の目的
本発明は上記の点に鑑み、複数のレーザビームを同時に
集積回路基板上に重ねて照射し高速化を削り、且つ任意
の形状及び強度分布が得られる多光線アニールの提供を
目的とする。(d) Purpose of the Invention In view of the above points, the present invention provides multi-beam annealing that simultaneously irradiates a plurality of laser beams onto an integrated circuit board in a superimposed manner to reduce speed and obtain an arbitrary shape and intensity distribution. With the goal.
(e)発明の構成
上記目的を達成するため本発明は集積回路基板上に形成
された絶縁膜上の非常結晶半導体層に光線を照射して単
結晶化する光線アニールにおいて、複数の光線発生手段
から出射する複数の光線を放物面をなす全反射ミラーを
介して前記基板上にオーバラップさせ円弧状に照射する
ことによって達せられる。(e) Structure of the Invention In order to achieve the above object, the present invention provides a plurality of light beam generating means in light annealing in which a non-crystalline semiconductor layer on an insulating film formed on an integrated circuit board is irradiated with a light beam to form a single crystal. This is achieved by irradiating a plurality of light beams emitted from the substrate through a total reflection mirror having a parabolic surface in an overlapping arc shape onto the substrate.
(f+ 発明の実施例 以下本発明の実施例を図面により詳述する。(f+ Example of invention Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は集積回路基板上に形成したポリシリコン層を示
す断面図である。基板]上にCVD法によりCVI)
−S i O2膜又は高温加熱法により5102膜を形
成し、その絶縁膜2上にポリシリコン膜3を水素還元法
又は熱分解法による気相成長方法によって成膜させてポ
リシリコン領域を形成する。FIG. 1 is a cross-sectional view showing a polysilicon layer formed on an integrated circuit substrate. CVI by CVD method on the substrate]
- A 5102 film is formed by a SiO2 film or a high temperature heating method, and a polysilicon film 3 is formed on the insulating film 2 by a hydrogen reduction method or a vapor phase growth method using a thermal decomposition method to form a polysilicon region. .
このポリシリコン領域を単結晶化するアニール処理を行
うものである。An annealing process is performed to make this polysilicon region into a single crystal.
第2図は本発明の光線アニールを用いた一実施例を示す
構成図である。FIG. 2 is a block diagram showing an embodiment using light beam annealing of the present invention.
実施例では出力20W、ビーム寸法201+IIIIψ
のC−WAγル−ザ4を10個整列性を持って等間隔に
配設し、レーザビーム5の放射進行方向に全反射型の放
物面ミラー6を設置する。In the example, the output is 20W, and the beam size is 201+IIIψ.
Ten C-WAγ lasers 4 are arranged at equal intervals with good alignment, and a total reflection type parabolic mirror 6 is installed in the radiation traveling direction of the laser beam 5.
レーザ4からのレーザビーム5は放物面ミラー6にAづ
つオーバラップするよう照射しその反射光7を図のよう
にポリシリコン膜3上に焦点合せをし、ビーム寸法はX
方向7aに10μ、Y方向ノ
アbに2III+11をなす円弧状のイl−ジを作り凸
方向に基板lを5””seeで走査するととlこよって
凹部後方に単結晶幅14が成長した。The laser beam 5 from the laser 4 irradiates the parabolic mirror 6 so as to overlap by A, and the reflected light 7 is focused on the polysilicon film 3 as shown in the figure, and the beam size is X.
When an arcuate image of 10μ in the direction 7a and 2III+11 in the Y-direction nozzle b was created and the substrate 1 was scanned in the convex direction at 5''see, a single crystal width 14 was grown behind the concave portion.
レーザビームの強度分布8は図に示すように円弧に沿っ
て置屋となる。このように構成される多光線アニールに
おいて多数個のエネルギー線を同時に放射し反射鏡によ
りオーバラップさせることによりビーム型状及び強度分
布は任意に求められる利点がある。The intensity distribution 8 of the laser beam is distributed along an arc as shown in the figure. In multi-beam annealing configured in this way, there is an advantage that the beam shape and intensity distribution can be determined arbitrarily by emitting a large number of energy rays simultaneously and overlapping them with a reflecting mirror.
即ちレーザの出力ビーム寸法及び反射鏡形状をアニール
試料に適する条件で選択組合せすることにより従来に比
して高速で良質の単結晶化が可能となる。That is, by selectively combining the output beam size of the laser and the shape of the reflecting mirror under conditions suitable for the annealed sample, it becomes possible to produce a single crystal of high quality at a higher speed than in the past.
(g) 発明の効果
以上詳細に説明したように本発明の多光線アニールによ
り従来に比して処理能力は向上する高速性が得られ、し
かも任意のビーム形状、強度分布が得られ良質の単結晶
化が可能となる等優れた効果がある。(g) Effects of the Invention As explained in detail above, the multi-beam annealing of the present invention improves processing capacity and high speed compared to the conventional method, and also provides high-quality single beams with arbitrary beam shapes and intensity distributions. It has excellent effects such as enabling crystallization.
第1図は集積回路基板上に形成したポリシリコン層を示
す断面図、第2図は本発明の多光線アニールを用いた一
実施例を示す構成図である。図中1・・・集積回路基板
、2 絶縁膜、3・・ポリシリコン膜、4.、、、、
CWAγル−ザ、5 ・レーザビーム、6・−・放物
面ミラー、7 反射光、8・・・・・強度分布。FIG. 1 is a cross-sectional view showing a polysilicon layer formed on an integrated circuit substrate, and FIG. 2 is a configuration diagram showing an embodiment using multi-beam annealing of the present invention. In the figure, 1... integrated circuit board, 2 insulating film, 3... polysilicon film, 4. ,,,,
CWAγ laser, 5 - Laser beam, 6 - Parabolic mirror, 7 Reflected light, 8 - Intensity distribution.
Claims (1)
層に光線を照射して単結晶化する光線アニールにおいて
、複数の光線発生手段から出射する複数の光線を放物面
をなす全反射ミラーを介して前記基板上にオーバラップ
させ円弧状に照射することを特徴とする光線アニール方
法。In light beam annealing, in which a non-single crystal semiconductor layer on an insulating film formed on an integrated circuit board is irradiated with a light beam to form a single crystal, a plurality of light beams emitted from a plurality of light beam generating means are totally reflected in a parabolic surface. A light annealing method characterized by irradiating the substrate in an overlapping arc shape through a mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16346982A JPS5952831A (en) | 1982-09-20 | 1982-09-20 | Beam annealing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16346982A JPS5952831A (en) | 1982-09-20 | 1982-09-20 | Beam annealing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5952831A true JPS5952831A (en) | 1984-03-27 |
JPH0352214B2 JPH0352214B2 (en) | 1991-08-09 |
Family
ID=15774460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16346982A Granted JPS5952831A (en) | 1982-09-20 | 1982-09-20 | Beam annealing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5952831A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04282869A (en) * | 1991-03-11 | 1992-10-07 | G T C:Kk | Manufacturing method of thin film semiconductor device and device for executing this |
US7892952B2 (en) * | 2001-10-30 | 2011-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment |
WO2021145176A1 (en) * | 2020-01-14 | 2021-07-22 | 株式会社ブイ・テクノロジー | Laser annealing device and laser annealing method |
-
1982
- 1982-09-20 JP JP16346982A patent/JPS5952831A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04282869A (en) * | 1991-03-11 | 1992-10-07 | G T C:Kk | Manufacturing method of thin film semiconductor device and device for executing this |
US7892952B2 (en) * | 2001-10-30 | 2011-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment |
WO2021145176A1 (en) * | 2020-01-14 | 2021-07-22 | 株式会社ブイ・テクノロジー | Laser annealing device and laser annealing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0352214B2 (en) | 1991-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6437284B1 (en) | Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same | |
US6717105B1 (en) | Laser annealing optical system and laser annealing apparatus using the same | |
KR101017848B1 (en) | Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device | |
JP4748836B2 (en) | Laser irradiation device | |
JP3033120B2 (en) | Manufacturing method of semiconductor thin film | |
JP4086932B2 (en) | Laser irradiation apparatus and laser processing method | |
US4589951A (en) | Method for annealing by a high energy beam to form a single-crystal film | |
US4707217A (en) | Single crystal thin films | |
US4719183A (en) | Forming single crystal silicon on insulator by irradiating a laser beam having dual peak energy distribution onto polysilicon on a dielectric substrate having steps | |
US7097709B2 (en) | Laser annealing apparatus | |
JPH05315278A (en) | Method and device for optical annealing | |
JPS5952831A (en) | Beam annealing method | |
JP2002141300A (en) | Laser annealing device | |
JP3201395B2 (en) | Semiconductor thin film manufacturing method | |
JPH08203822A (en) | Thin film semiconductor material forming apparatus | |
JPH03289128A (en) | Manufacture of semiconductor thin film crystal layer | |
JP3537424B2 (en) | Laser beam uniform irradiation optical system | |
JP3286537B2 (en) | Laser beam synthesis method | |
JPH0652712B2 (en) | Semiconductor device | |
JPH0793261B2 (en) | Single crystal thin film forming equipment | |
JPH0325920A (en) | Forming method of single crystal thin-film | |
JP3201382B2 (en) | Semiconductor thin film manufacturing method | |
JP2005101333A (en) | Process and equipment for laser annealing semiconductor film | |
JP2003289052A (en) | Crystallizing method of semiconductor and laser irradiation device used for the same | |
JPH0353771B2 (en) |