JPS5950542A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS5950542A JPS5950542A JP16166082A JP16166082A JPS5950542A JP S5950542 A JPS5950542 A JP S5950542A JP 16166082 A JP16166082 A JP 16166082A JP 16166082 A JP16166082 A JP 16166082A JP S5950542 A JPS5950542 A JP S5950542A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- oxidation
- oxide film
- nitride film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76202—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
- H01L21/76213—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
- H01L21/76216—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は半導体装置の製造方法に関し、詳しくは素子分
離技術の改良に係る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in element isolation technology.
従来、半導体装置の素子分離技術の一つとして選択酸化
法が知られている。この方法を第1図(a)〜(C)を
参照して説明する。まず、例えばP型シリコン基板1表
面に熱酸化膜2及び1制酸化性膜、例えばシリコン窒化
膜を順次形成する。A selective oxidation method is conventionally known as one of element isolation techniques for semiconductor devices. This method will be explained with reference to FIGS. 1(a) to (C). First, a thermal oxide film 2 and an antioxidizing film, such as a silicon nitride film, are sequentially formed on the surface of a P-type silicon substrate 1, for example.
次に、素子形成領域予定部上にIg+示しないホトレジ
ストパターンを形成した後、このホトレジストパターン
をマスクとして前記シリコン屋化膜をエツチング除去し
て、シリコン窒化膜パターン3を形成する。つづいて、
前記ボトレジストパターンヲマスクとしてフィールド反
転時1E用のP型不純物、例えばボロンをイオン注入し
てボロンイオン注入層4を形成した後、前記ホトレジス
トパターンを除去する(第11zu (a)図示)。次
いで、前記シリコン窒化膜パターンを耐酸化性マスクと
して熱酸化処理を施し、フィールド酸化膜5を形成する
とともに、前記ボロンイオン注入層4のボロンを眠気的
に活性とじてフィールド酸化膜5下にP型フィールド反
転防止領域6を形成する(第1図(b)図示)。次いで
、前記シリコン窒化膜パターン3及び熱酸化膜2を順次
エツチング除去して前記基板1を露出させ、フィールド
酸化膜6によシ分離された島状の素子形成領域を形成す
る(第1図(C)図示)。Next, a photoresist pattern not shown as Ig+ is formed on the planned element formation region, and then the silicon nitride film is etched away using this photoresist pattern as a mask to form a silicon nitride film pattern 3. Continuing,
After the bottom resist pattern is used as a mask, a P-type impurity for field inversion 1E, such as boron, is ion-implanted to form a boron ion-implanted layer 4, and then the photoresist pattern is removed (as shown in FIG. 11(a)). Next, a thermal oxidation process is performed using the silicon nitride film pattern as an oxidation-resistant mask to form a field oxide film 5, and at the same time, the boron in the boron ion implantation layer 4 is drowsily activated to form P below the field oxide film 5. A mold field inversion prevention region 6 is formed (as shown in FIG. 1(b)). Next, the silicon nitride film pattern 3 and the thermal oxide film 2 are sequentially etched away to expose the substrate 1, and island-shaped element formation regions separated by the field oxide film 6 are formed (see FIG. 1). C) As shown).
なお、この工程゛でシリコン窒化膜パターン3及び熱酸
化膜2を順次エツチング除去した後、再度熱酸化処理を
施して露出した基板1表面に熱酸化膜(いわゆる前酸化
膜)を形成した枠、との熱噛化膜をエツチング除去する
こともある。In addition, in this step, after the silicon nitride film pattern 3 and the thermal oxide film 2 are sequentially etched away, a thermal oxidation treatment is performed again to form a thermal oxide film (so-called pre-oxide film) on the exposed surface of the substrate 1. The thermally chewed film may be removed by etching.
以下、通常の工程に従い、素子形成領域に例えばMOS
)ランジスタやメモリを形成する。Thereafter, according to the usual process, for example, a MOS is placed in the element formation area.
) form transistors and memory.
上述した従来の選択酸化法には以下のような問題点があ
る。The conventional selective oxidation method described above has the following problems.
(1,1第1図(b)図示のフィールド酸化膜6を形成
する際、シリコン窒化膜パターン3下の基板1も一部酸
化されるため、素子形成領域の面積がシリコン”4化膜
パターン3で覆われていた領域の面積よりも実質的に減
少する。このことは、例えばM○Sダイナミックメモリ
のセル部に関して言えばキャパシタ面イλの減少、っ−
gキャパシタ容量の減少を招く。(1, 1 When forming the field oxide film 6 shown in FIG. 1(b), the substrate 1 under the silicon nitride film pattern 3 is also partially oxidized, so the area of the element formation region is This is substantially smaller than the area of the region covered by 3. This means that, for example, in the cell part of an M○S dynamic memory, the capacitor surface area λ is reduced.
This results in a decrease in g capacitor capacity.
(2)同様に第1図(b)図示の工程でフィールド階化
膜6を形成する際、第1図(a)図示の工程で形成され
たボロンイオン注入層4のボロンが素子形成領域に寸で
拡散してP+括グリフイールド反転防止領域6形成され
るため、いわゆるナロウチャネル効果がと(1著となり
、後に形成される素子の特性を悪化させる。(2) Similarly, when forming the field leveling film 6 in the step shown in FIG. 1(b), boron in the boron ion implantation layer 4 formed in the step shown in FIG. 1(a) is deposited in the element formation region. Since the P+ group field inversion prevention region 6 is formed by diffusion in a small area, a so-called narrow channel effect occurs, which deteriorates the characteristics of devices to be formed later.
(3)フィールド酸化膜6は基板1を直接に酸化して形
成するため、第1図(C)に示す如くフィールド酸化膜
6上面と素子形成領域向とが同一平面になく、段差が生
じる。この結果、その後の朱子堰造工桿でホトレジスト
を塗布すると段差の上下でホトレジストの膜厚がge々
るため、露光・11によって形成されるホトレジストパ
ターン幅が段差の上下で異なり、パターニングイ)1度
の低下を招く。(3) Since the field oxide film 6 is formed by directly oxidizing the substrate 1, the upper surface of the field oxide film 6 and the direction toward the element formation region are not on the same plane as shown in FIG. 1(C), resulting in a step difference. As a result, when photoresist is applied in the subsequent construction of the Shushi-dam construction bridge, the thickness of the photoresist varies above and below the step, so the width of the photoresist pattern formed by exposure 11 differs above and below the step. leading to a decrease in the degree of
本発明は素子形成領域の面積の減少分を補償し、フィー
ルド反転防止領域の不純物拡散の影響をなくシ、かつフ
ィールド酸化膜上面と素子形成領域面とが略同一平面と
なるように形成して、高性能、高集積度の半導体装置を
製造し得る方法を提供しようとするものである。The present invention compensates for the decrease in the area of the element formation region, eliminates the influence of impurity diffusion in the field inversion prevention region, and forms the upper surface of the field oxide film and the surface of the element formation region substantially on the same plane. The present invention aims to provide a method for manufacturing high-performance, highly integrated semiconductor devices.
本発明の半導体装置の製造方法は、従来の選択酸化法に
より形成されたフィールド酸化膜で四重れた島状の半導
体基板領域(従来の素子形成領域)上に、選択エピタキ
シャル成長により単結晶半導体層を堆積して素子形成領
域とするものである。こうした方法によシ、従来の選択
酸化法における問題点を解消することができる。The method for manufacturing a semiconductor device of the present invention is to form a single crystal semiconductor layer by selective epitaxial growth on an island-shaped semiconductor substrate region (conventional element formation region) quadrupled with field oxide films formed by a conventional selective oxidation method. is deposited to form an element forming region. This method can solve the problems of conventional selective oxidation methods.
以下、本発明方法をMO8型半導体装置の製造に適用し
た一実施例を第2図(a)〜(e)を参照して説明する
。An embodiment in which the method of the present invention is applied to manufacturing an MO8 type semiconductor device will be described below with reference to FIGS. 2(a) to 2(e).
まず、面指数(100)のP型シリコン基板11をドラ
イ酸素雰囲気中で熱駿化処理し、19゜さ900^の熱
酸化膜12を形成した。次に、例えばL PCVD (
Low Pressure Chemica]、 Va
porDeposition ) 法により耐酸化性
膜として厚さ2500大のシリコン窒化膜13を堆積し
た。First, a P-type silicon substrate 11 having a surface index of (100) was thermally annealed in a dry oxygen atmosphere to form a thermal oxide film 12 having a width of 19 degrees and a height of 900 degrees. Next, for example, L PCVD (
Low Pressure Chemica], Va
A silicon nitride film 13 having a thickness of 2500 mm was deposited as an oxidation-resistant film by the porDeposition method.
つづいて、素子形成領域予定部上にホトレジストパター
ンI4を形成した(第2図(a)図示)。Subsequently, a photoresist pattern I4 was formed on the planned element formation area (as shown in FIG. 2(a)).
次いで、ホトレジストパターンz4をマスクとして前記
シリコン窒化膜13を8択的にエツチング除去して、シ
リコン窒化膜パターン13′を形成した。つづいて、前
記ホトレジストパターン14をマスクとして、フィール
ド反転防ローのためにボロンを加速エネルギー80 k
ev 、 ドーズ11 X 10”/偏1の条件で、
前記熱酸化膜12を通して前記基板11にイオン注入し
、ボロンイオン注入層15を形成した後、前記ホトレジ
ストパターンI4を除去した(第21’J (b)図示
)。Next, using the photoresist pattern z4 as a mask, the silicon nitride film 13 was selectively etched away to form a silicon nitride film pattern 13'. Next, using the photoresist pattern 14 as a mask, boron was accelerated with an energy of 80 k to prevent field inversion.
ev, under the condition of dose 11 x 10”/bias 1,
Ions were implanted into the substrate 11 through the thermal oxide film 12 to form a boron ion implantation layer 15, and then the photoresist pattern I4 was removed (as shown in Figure 21'J (b)).
次いで、前記シリコン窒化膜パターン1.y′を耐酸化
性マスクとして1000 ’Cのウェット酸素昇囲気中
で熱酸化処理を施し、フィールド酸化膜16を形成する
とともに、前記ボロンイオン注入層15のボロンを電気
的に活性としてフィールド酸化膜16下KP+型フイー
ルド反転防止領域17を形成した(第2図(C)図示)
。Next, the silicon nitride film pattern 1. A field oxide film 16 is formed by performing thermal oxidation treatment in a wet oxygen atmosphere at 1000'C using y' as an oxidation-resistant mask, and at the same time, boron in the boron ion implantation layer 15 is electrically activated to form a field oxide film. 16, a KP+ type field inversion prevention region 17 was formed (as shown in FIG. 2(C)).
.
次いで、前記シリコン窒化JIIE パターン13′及
び熱酸化膜12を順次エツチング除去して前記基板11
を露出させた。つづいて、ドライ酸素雰囲気中で熱酸化
処理を施し、露出した基板11表面に図示しない熱酸化
膜(いわゆる前酔化膜)を形成した後、この熱酸化膜を
除去した(第2図(d)図示)。Next, the silicon nitride JIIE pattern 13' and the thermal oxide film 12 are sequentially etched away to form the substrate 11.
exposed. Subsequently, thermal oxidation treatment was performed in a dry oxygen atmosphere to form a thermal oxidation film (not shown) on the exposed surface of the substrate 11 (so-called pre-oxidation film), and this thermal oxidation film was removed (Fig. 2(d) ).
次いで、前記フィールド酸化膜16から露出しだ島状の
基板11部分上に選択エピタキシャル成長によりフィー
ルド酸化膜16の上面と同じ高さになるように素子形成
領域となるP型巣結晶シリコン窒化8を堆積した(第2
図(e)図示)。以下、通常の製造工種に従い、前記P
型巣結晶シリコン層18に素子を形成し、UOS型半導
体装置を製造した。Next, on the island-shaped substrate 11 portion exposed from the field oxide film 16, P-type nest crystal silicon nitride 8, which will become the element formation region, is deposited by selective epitaxial growth so as to be at the same height as the upper surface of the field oxide film 16. I did it (second
Figure (e) shown). Hereinafter, according to the usual manufacturing process, the above P
A device was formed on the mold cavity crystalline silicon layer 18, and a UOS type semiconductor device was manufactured.
しかして上述した方法によれば、以下のような効果を得
ることができる。すなわち、従来の選択酸化法では素子
形成領域の面積がシリコン窒化膜パターンの面積より小
さくなったのに対し、本発明方法では第2図(d)図示
の工程でフィールド酸化膜16から露出した基板11部
分(従来の素子形成領域)上に、第2図(e)に示す如
くP型巣結晶シリコン層18を堆積するので、素子形成
領域の面積とシリコン窒化膜パターン13′の面積をほ
ぼ同一にすることができる。しだがって、従来の素子形
成領域の面積の減少分を補償することができ、例えばI
J O’Sダイナミックメモリセルにおけるキャパシタ
容器の減少を防止することができる。寸だ、第2図(e
)に示す如くP 型フィールド反転防止領域17のしみ
出し領域が素子形成領域となるP型巣結晶シリコン層1
8の下方に位置するようになるため、いわゆるナロウチ
ャネル効果によってif OS )ランジスタの特性が
悪化するのを防止することができる。更に、第2図(e
)に示す如くフィールド酸化膜I6上面と24m(単結
晶シリコ7118面とが略同一平面に形成され、両者の
間に段差がなくなるだめ、ホトレジストのバターニング
精度が向上して以下の素子製造1僅において、し11え
ばIJ OS )ランジスタのゲート電極あるいはコン
タクトホール等の寸法精度を向上することができ、捷だ
金属配線の段切れを防止することができる。According to the method described above, the following effects can be obtained. That is, in the conventional selective oxidation method, the area of the element formation region was smaller than the area of the silicon nitride film pattern, whereas in the method of the present invention, the area of the device formation region was smaller than the area of the silicon nitride film pattern, whereas in the process shown in FIG. As shown in FIG. 2(e), a P-type nested crystalline silicon layer 18 is deposited on portion 11 (conventional element forming area), so that the area of the element forming area and the area of the silicon nitride film pattern 13' are approximately the same. It can be done. Therefore, it is possible to compensate for the reduction in area of the conventional element formation region, for example, I
It is possible to prevent the capacitor container from decreasing in the JO'S dynamic memory cell. Figure 2 (e
), the seepage region of the P-type field inversion prevention region 17 becomes the device formation region in the P-type nested crystalline silicon layer 1.
8, it is possible to prevent the characteristics of the if OS transistor from deteriorating due to the so-called narrow channel effect. Furthermore, Figure 2 (e
), the upper surface of field oxide film I6 and 24 m (single crystal silicon 7118 surface) are formed on approximately the same plane, and there is no difference in level between them, which improves the patterning accuracy of the photoresist and facilitates the following device manufacturing process. For example, the dimensional accuracy of the gate electrode or contact hole of a transistor (for example, IJOS) can be improved, and breakage of the twisted metal wiring can be prevented.
なお、上記実施例ではP型巣結晶シリコン層 418
をフィールド酸化膜16上面と同じ高さとなるように形
成したが、両者の段差による悪影響が生じない範囲なら
ば、P型巣結晶シリコン1冑18の膜厚を薄くまたは厚
く形成してもよい。Note that in the above embodiment, the P-type nest crystal silicon layer 418
Although it is formed to have the same height as the upper surface of the field oxide film 16, the P-type nested crystalline silicon layer 18 may be formed thinner or thicker as long as the difference in level between the two does not cause any adverse effects.
また、上記実姉例では耐酸化性膜としてシリコン窒化膜
を用いたが、A/20.膜1.WO,膜等を用いてもよ
い。Further, in the above-mentioned sister example, a silicon nitride film was used as the oxidation-resistant film, but A/20. Membrane 1. WO, membrane, etc. may also be used.
更に、上記実施例ではP型シリコン基板を用いてUOS
型半導体装置を製造したが、N型シリコン爪板を用いて
もよいし、バイポーラ型半導体装を次の製造にも適用で
きることは勿論である。Furthermore, in the above embodiment, a P-type silicon substrate is used to create a UOS.
Although a type semiconductor device has been manufactured, it goes without saying that an N type silicon nail plate may be used, and a bipolar type semiconductor device can also be applied to the next manufacturing process.
本発明によれば、素子形成領域の面積の減少分を補償し
、フィールド反転防止領域の不純物拡散の影響をなくシ
、かつフィールド酸化膜上面と素子形成領域面とが略同
一平面となるように形成して、高性能、高集積度の半導
体装置を製造し得る方法を提供できるものである。According to the present invention, the reduction in area of the element formation region is compensated for, the influence of impurity diffusion in the field inversion prevention region is eliminated, and the top surface of the field oxide film and the surface of the element formation region are made substantially on the same plane. Accordingly, it is possible to provide a method for manufacturing a high-performance, highly integrated semiconductor device.
第1図(a)〜(C)は従来の選択酸化法VCよる半魯
体装置の製造方法をその工(間順に示す断面図、第2図
(a)〜(e)は本発明の実姉例Vこおける半導体装置
の製造方法をその工程順に示す1jji而図である。
11・・・P型シリコン基板、12・・・熱酸化膜、1
3・・・シリコン窒化膜、13′・・・シリコン窒化膜
パターン、14・・・ホトレジストパターン、ノ5・・
・ボロンイオン注入G116・・・フィールド酸化膜、
17・・・:P 型フィールド反転防止領域、18・・
・P型巣結晶シリコン順。
第1図
第2図FIGS. 1(a) to (C) are cross-sectional views showing a method for manufacturing a semi-solid device using a conventional selective oxidation method (VC), and FIGS. 1 is a diagram illustrating the manufacturing method of a semiconductor device in Example V in the order of its steps. 11... P-type silicon substrate, 12... Thermal oxide film, 1
3... Silicon nitride film, 13'... Silicon nitride film pattern, 14... Photoresist pattern, No. 5...
・Boron ion implantation G116...field oxide film,
17...: P type field inversion prevention area, 18...
・P-type nest crystal silicon order. Figure 1 Figure 2
Claims (1)
素子形成領域予定部上に対応する前記絶縁膜上に耐酸化
性膜パターンを形成する工程と、該耐酸化性膜パターン
が被覆されている領域以外の領域前記基板と同導電型の
不純物をイオン注入する工程と、前記耐酸化性膜パター
ンをマスクとして、熱酸化処理を施し、フィールド酸化
膜を形成する工程と、前記耐酸化性膜パターン及び絶縁
膜を順次除去して、前記基板の一部を露出させる工程と
、露出した基板上に選択エピタキシャル成長によシ単結
晶半導体層を堆積する工程とを具備したことを特徴とす
る半導体装置の製造方法。forming an insulating film on the surface of a semiconductor substrate of one conductivity type;
A step of forming an oxidation-resistant film pattern on the insulating film corresponding to the planned element formation region, and ionizing impurities of the same conductivity type as the substrate in areas other than the region covered with the oxidation-resistant film pattern. A step of implanting a field oxide film by performing thermal oxidation using the oxidation-resistant film pattern as a mask, and a step of sequentially removing the oxidation-resistant film pattern and the insulating film to form a part of the substrate. 1. A method for manufacturing a semiconductor device, comprising the steps of: exposing a substrate; and depositing a single crystal semiconductor layer on the exposed substrate by selective epitaxial growth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16166082A JPS5950542A (en) | 1982-09-17 | 1982-09-17 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16166082A JPS5950542A (en) | 1982-09-17 | 1982-09-17 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5950542A true JPS5950542A (en) | 1984-03-23 |
Family
ID=15739405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16166082A Pending JPS5950542A (en) | 1982-09-17 | 1982-09-17 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5950542A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS639526A (en) * | 1986-06-30 | 1988-01-16 | Tonen Sekiyukagaku Kk | Manufacture of bumper for motorcar |
JPH02309665A (en) * | 1989-05-25 | 1990-12-25 | Agency Of Ind Science & Technol | Semiconductor device and manufacture thereof |
-
1982
- 1982-09-17 JP JP16166082A patent/JPS5950542A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS639526A (en) * | 1986-06-30 | 1988-01-16 | Tonen Sekiyukagaku Kk | Manufacture of bumper for motorcar |
JPH02309665A (en) * | 1989-05-25 | 1990-12-25 | Agency Of Ind Science & Technol | Semiconductor device and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0235461B2 (en) | ||
JPH06163532A (en) | Method for isolation of semiconductor element | |
US4755863A (en) | Semiconductor device having a semiconductor substrate with a high impurity concentration | |
JPH0712058B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3018993B2 (en) | Method for manufacturing semiconductor device | |
JPS5840852A (en) | Complementary metal oxide semiconductor device and its manufacture | |
JPS5950542A (en) | Manufacture of semiconductor device | |
JPS63207177A (en) | Manufacture of semiconductor device | |
JPH06177351A (en) | Manufacture of semiconductor device | |
JPH03227024A (en) | Manufacture of semiconductor device | |
JPS6159675B2 (en) | ||
KR940001894B1 (en) | Method of fabricating a semiconductor device | |
JPS6150371A (en) | Semiconductor memory device and manufacture thereof | |
JPH0481327B2 (en) | ||
KR940001813B1 (en) | Isolation method and device of semiconductor | |
JP2511852B2 (en) | Method for manufacturing semiconductor device | |
JP2708878B2 (en) | Method for manufacturing semiconductor device | |
JPH0479336A (en) | Production of semiconductor device | |
JP2517380B2 (en) | Method for manufacturing semiconductor integrated circuit | |
KR940002774B1 (en) | Manufacturing method for load resistor of sram cell | |
JPS6117144B2 (en) | ||
JPS5851534A (en) | Manufacture of semiconductor device | |
JPH0468578A (en) | Manufacture of semiconductor device | |
JPS5931230B2 (en) | Method for manufacturing MOS type semiconductor integrated circuit | |
JPS62206870A (en) | Forming method for channel capacity |