[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5840852A - Complementary metal oxide semiconductor device and its manufacture - Google Patents

Complementary metal oxide semiconductor device and its manufacture

Info

Publication number
JPS5840852A
JPS5840852A JP56138833A JP13883381A JPS5840852A JP S5840852 A JPS5840852 A JP S5840852A JP 56138833 A JP56138833 A JP 56138833A JP 13883381 A JP13883381 A JP 13883381A JP S5840852 A JPS5840852 A JP S5840852A
Authority
JP
Japan
Prior art keywords
substrate
layer
type
region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56138833A
Other languages
Japanese (ja)
Other versions
JPH0324069B2 (en
Inventor
Satoru Maeda
哲 前田
Hiroshi Iwai
洋 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56138833A priority Critical patent/JPS5840852A/en
Priority to US06/307,877 priority patent/US4560421A/en
Publication of JPS5840852A publication Critical patent/JPS5840852A/en
Publication of JPH0324069B2 publication Critical patent/JPH0324069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76294Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using selective deposition of single crystal silicon, i.e. SEG techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent latch-up, and to fine the device by positioning an insulating layer at one side of an adjacent p layer or n layer isolated by the insulating layer and one part or all of the interface of a substrate while forming a p<+> layer under an isolation layer. CONSTITUTION:A resist mask 103 is shaped, the p<+> layers 104 are formed through ion implantation, Al 105 is stacked, and the isolation layers 106 are shaped through etching of SiO2 102 by masks 1052. The surface of the substrate is coated selectively with SiO2 108, poly Si 109 is stacked, the p layer 110 is molded by diffusion from the substrate through the irradiation of laser beams, and Si3N4 111 is deposited. The p layer 110 is etched through reactive ion etching while using Si3N4 111' remaining in a concave section as a mask, and the n layer 113 is shaped through the selective implantation of ions. When the CMOS device is manufactured according to a predetermined method, the complementary transistor is insulated by the films 106, a parasitic transistor is not formed, the device is not latched up, the surface of the element is flat, the degree of integration can be increased, and characteristics are also excellent.

Description

【発明の詳細な説明】 本発明は相補型MO8半導体装置及びその製造方法の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a complementary MO8 semiconductor device and a method for manufacturing the same.

周知の如く、相補型MO8半導体装置(以下CMO8と
略す)は同一基板上にpチャンネルTrとnチャンネル
Trを形成したものである。特に、最近の0MO8は高
密度、高集積化に伴ない微細化技術の確立が要望されて
いる。
As is well known, a complementary MO8 semiconductor device (hereinafter abbreviated as CMO8) has a p-channel Tr and an n-channel Tr formed on the same substrate. In particular, with the recent trend toward higher density and higher integration of OMO8, there is a demand for the establishment of miniaturization technology.

ところで、従来の0MO8は以下に示す方法により製造
されている。
By the way, conventional OMO8 is manufactured by the method shown below.

まず、例えばn型(100)面のシリコン基板1上に熱
酸化膜2を成長させ、更に写真蝕刻法によりウェル予定
部が除去されたレジストパターン3を形成した後、これ
をマスクとして?ロンを例えば100 keV 、 )
’ −、e量8.5X1012crIL−2の条件でイ
オン注入して基板It/Cd?ロンイオン注入層4を形
成する(第1図(−)図示)。つづいて、レジストパタ
ーン3を除去し、イオン注入層4を例えば1200℃、
30時間熱拡散してp−ウェル領域5を形成し、更に熱
酸化膜2をエツチング除去した後、再度熱酸化膜6゜シ
リコン窒化膜7を順次形成する(第1図(b)図示)0
ひきつづき、シリコン窒化膜のフィールド部をフォトエ
ツチング技術により選択エラチンクシてシリコン窒化膜
パター77h〜7e’5−形成する(第1図(0図示)
First, a thermal oxide film 2 is grown on a silicon substrate 1 of, for example, an n-type (100) plane, and a resist pattern 3 is formed by photolithography from which a planned well area is removed.This is then used as a mask. For example, 100 keV, )
'-, the substrate It/Cd after ion implantation under the conditions of e amount 8.5X1012crIL-2? A ion-implanted layer 4 is formed (as shown in FIG. 1 (-)). Subsequently, the resist pattern 3 is removed, and the ion implantation layer 4 is heated at 1200° C., for example.
After thermally diffusing for 30 hours to form a p-well region 5 and removing the thermal oxide film 2 by etching, a thermal oxide film 6 and a silicon nitride film 7 are again formed in sequence (as shown in FIG. 1(b)).
Subsequently, the field portion of the silicon nitride film is selectively etched using photoetching technology to form silicon nitride film patterns 77h to 7e'5- (as shown in Figure 1 (0)).
.

次いで、写真蝕刻法によりp−ウェル領域5以外を覆う
レジストノ母ターン8を形成し、該レジストノJ?メー
78及びシリコン窒化膜パターン7bをマスクとして例
えばapロンを加速電圧40 keV 、ドーズ量8x
lOan  の条件でイオン注入した後、熱拡散を行な
ってフィールド反転防止用のp+層9を形成する(第1
図(d)図示)。
Next, a resist mother turn 8 covering areas other than the p-well region 5 is formed by photolithography, and the resist J? For example, an apron is accelerated at a voltage of 40 keV and a dose of 8x using the matrix 78 and the silicon nitride film pattern 7b as a mask.
After ion implantation under the condition of lOan, thermal diffusion is performed to form a p+ layer 9 for preventing field reversal (first
Figure (d) (illustrated).

つづいて、レジストパターン8を除去し、再度写真軸側
法によりp−フェル領域5を覆うレノストパターン10
を形成し、該レジストノ臂メーン10及びシリコン窒化
[1)4ター77t 、7cをマスクとして例えば+1
.′リンを加速電圧1OO)caV + ドーズ量5×
10− の条件でイオン注入した後、熱拡散を行なって
フィールド反転防止用のn+層11を形成する(第1図
(、)図示)。
Subsequently, the resist pattern 8 is removed, and a renost pattern 10 covering the p-fer region 5 is again used by the photographic axis side method.
For example, +1 is formed using the resist arm main 10 and the silicon nitride [1) terres 77t and 7c as a mask.
.. 'Accelerate phosphorus at voltage 1OO)caV + dose 5×
After ion implantation under the conditions of 10-, thermal diffusion is performed to form an n+ layer 11 for preventing field reversal (as shown in FIG. 1(a)).

ひきつづき、レジストノリ−ン1oを除去し、シリコン
窒化膜パターン7a〜7cを耐酸化性マスクとして高温
クエット雰囲気中で選択酸化を行ないフィールド酸化膜
12を形成した(第5− 1図(f)図示)。
Subsequently, the resist layer 1o was removed, and selective oxidation was performed in a high-temperature Couette atmosphere using the silicon nitride film patterns 7a to 7c as oxidation-resistant masks to form a field oxide film 12 (as shown in FIG. 5-1(f)). ).

次いで、フィールド酸化膜12で分離された島状のn型
シリコン基板1領域及びp−ウェル領域5に熱酸化膜を
成長させ、更に多結晶シリコン膜を堆積し、この多結晶
シリコン層にリン拡散を行なう◎つづいて、多結晶シリ
コン層をパターニングしてダート電極’31+132を
形成し、これをマスクとして熱酸化膜をエツチングして
f−)酸化膜141714.を形成した後、島状の基板
I領域に?ロンを、島状のp−ウェル領域5に砒素を、
夫々イオン注入してp+型のソース、ドレイン領域15
1*161 、n+型のソース、ドレイン領域15..
1B、を形成する(第1図(g)図示)0その後、常法
に従って全面にcv’o−5to□膜17を堆積し、こ
れにコンタクトホール1111〜184を開孔した後、
A/膜の蒸着、ノ4ターニングによりAI配線19〜2
2を形成して0MO8を製造する(第1図(h)図示)
Next, a thermal oxide film is grown on the island-shaped n-type silicon substrate 1 region and the p-well region 5 separated by the field oxide film 12, a polycrystalline silicon film is further deposited, and phosphorus is diffused into this polycrystalline silicon layer. ◎Next, the polycrystalline silicon layer is patterned to form dirt electrodes '31+132, and using this as a mask, the thermal oxide film is etched to f-) Oxide film 141714. After forming ?, on the island-shaped substrate I region? Arsenic is added to the island-shaped p-well region 5,
P+ type source and drain regions 15 are formed by ion implantation, respectively.
1*161, n+ type source and drain regions 15. ..
1B (as shown in FIG. 1(g)). After that, a CV'o-5to□ film 17 is deposited on the entire surface according to a conventional method, and contact holes 1111 to 184 are opened therein.
A/AI wiring 19-2 by film deposition and turning
2 to produce 0MO8 (as shown in FIG. 1(h))
.

しかしながら、上述した従来法にあっては次のような欠
点を有する。即ち、まず、p+型のソロ − −ス領域Z51 (又はドレイン領域161 )とn型
基板1とp−ウェル領域5とによる寄生pnpトランノ
スタやn+型のソースWItjl152(又はドレイン
領域16雪 )とp−ウェル領域5とn型基板Iとによ
る寄生npn )ランソスタが発生することによってラ
ッチアップ現象が起きる0ラツチアツプ現象は基板l及
びシェル領域5の抵抗と少数キャリアの到達確率により
決まる。到達確率はnチャンネル、pチャンネルの素子
領域間の距離で決まることから、微細化すればラッチア
ップ現象が起こり易くなり、素子特性の低下を招く。ま
た、第1図(b)に示す如く、p−ウェル領域5は基板
Iの深さ方向に伸びると共に、横方向にも伸び(例えば
基板方向へ10μm伸びると横方向へも7〜8ILm伸
びる)、微細化の障害、集積度の低下を招く。更に、第
1図(a) 、 (e)に示す如くnチャンネルとpチ
ャンネルのフィールド反転防止用のイオン注入を行なう
ため、写真蝕刻工程の回数等が増え、生産性の向上の障
害となる。
However, the conventional method described above has the following drawbacks. That is, first, a parasitic pnp transnoster formed by the p+ type solo region Z51 (or drain region 161), the n type substrate 1, and the p− well region 5, and the parasitic pnp transistor formed by the p+ type source region Z51 (or drain region 161) and the p - Parasitic npn due to the well region 5 and the n-type substrate I) The latch-up phenomenon occurs due to the occurrence of a run star. The zero latch-up phenomenon is determined by the resistance of the substrate I and the shell region 5 and the arrival probability of minority carriers. Since the probability of arrival is determined by the distance between the n-channel and p-channel device regions, miniaturization makes it easier for latch-up to occur, leading to deterioration in device characteristics. Further, as shown in FIG. 1(b), the p-well region 5 extends not only in the depth direction of the substrate I but also in the lateral direction (for example, if it extends 10 μm in the direction of the substrate, it also extends 7 to 8 ILm in the lateral direction). , resulting in an obstacle to miniaturization and a decrease in the degree of integration. Furthermore, as shown in FIGS. 1(a) and 1(e), since ion implantation is performed to prevent field reversal of the n-channel and p-channel, the number of photo-etching steps, etc. increases, which becomes an obstacle to improving productivity.

本発明は上記欠点を解消するためになされたもので、う
、チアツブ現象の防止と素子の微細化がなされた高性能
、高集積度の相補型MO8半導体装置、並びにかかる半
導体装置を簡単な工程で製造し得る方法を提供しようと
するものであるO 以下、本発明のCMO8を第2図(a)〜(j)に示す
製造方法を併記して説明する。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and includes: (1) a high-performance, highly integrated complementary MO8 semiconductor device that prevents the chirp phenomenon and miniaturizes the elements; Hereinafter, CMO8 of the present invention will be explained along with the manufacturing method shown in FIGS. 2(a) to (j).

〔1〕  まず、面指数(100)のp型シリコン基板
101を1000℃のウェット酸素雰囲気中で熱酸化処
理して厚さ1μmの熱酸化膜(絶縁膜)102を成長さ
せた0つづいて、全面に7オトレソスト膜を塗布し、写
真蝕刻法により素子領域予定部を覆ったレジストパター
ン(マスク材)z03a、zO3bを形成した。ひきつ
づき、レジストパターン103a。
[1] First, a p-type silicon substrate 101 with a surface index (100) was subjected to thermal oxidation treatment in a wet oxygen atmosphere at 1000° C. to grow a thermal oxide film (insulating film) 102 with a thickness of 1 μm.0Continued, A 7 Otresost film was applied to the entire surface, and resist patterns (mask materials) z03a and zO3b were formed by photolithography to cover the intended device area. Subsequently, the resist pattern 103a.

103bをマスクとして反転防止用不純物であるピロン
を例えばダブルチャージで加速電圧210 keV 、
ドーズ量1×10 cm の条件で熱酸化膜102を通
して基板101に選択的にイオン注入し、熱処理してp
+型反転防止層104を形成した(第2図(−)図示)
Using 103b as a mask, pyrone, which is an impurity for preventing inversion, is double charged at an acceleration voltage of 210 keV,
Ions are selectively implanted into the substrate 101 through the thermal oxide film 102 at a dose of 1 x 10 cm, and then heat treated to form a p
A + type inversion prevention layer 104 was formed (as shown in FIG. 2 (-)).
.

〔11〕  次いで、全面に例えば厚さ2ooo1のA
l被膜を真空蒸着した。この時、第2図(b)に示す如
くレジストパターン1031L、103bと熱酸化膜1
02との段差により同パターン103a、’103b上
のAl被膜1051 と、熱酸化膜102上のAl被膜
1052とが不連続化して分離された0つづいて、レジ
ストパターン103&、103bを除去してその上のA
l被膜1057.をリフトオフし、素子分離領域予定部
の熱酸化膜102上部分にAA被膜l0IHを残存させ
た(第2図(C)図示)Oひきつづき、残存Al被膜1
052をマスクとして例えは反応性イオンエツチングに
より熱酸化膜102を選択エツチングして素子分離領域
106を形成した。その後、素子分離領域106上の残
存A/被被膜052を除去した(第2図(d)図示)。
[11] Then, for example, coat A with a thickness of 2001 on the entire surface.
1 coating was vacuum deposited. At this time, as shown in FIG. 2(b), the resist patterns 1031L, 103b and the thermal oxide film 1
The Al film 1051 on the same patterns 103a and '103b and the Al film 1052 on the thermal oxide film 102 are discontinuous and separated due to the step difference from the resist pattern 103&, 103b. A above
l coating 1057. was lifted off to leave the AA film 10IH on the upper part of the thermal oxide film 102 in the intended element isolation region (as shown in FIG. 2(C)).
052 as a mask, the thermal oxide film 102 was selectively etched, for example by reactive ion etching, to form the element isolation region 106. Thereafter, the remaining A/coating 052 on the element isolation region 106 was removed (as shown in FIG. 2(d)).

この時、素子分離領域106で分離された二つの隣り合
う島状の基9− 板領域107.,1072が形成された。
At this time, two adjacent island-shaped substrate regions 107 . , 1072 were formed.

CIll )  次いで、熱酸化処理して露出する基板
領域1071 .107.に例えば厚さ100OXの酸
化層を成長させた後、一方の基板領域1071上の亀化
層を除去した後、他力の基板領域l072に薄い酸化層
Iθ8を残存させた。つづいて、全面に素子分離領域1
06と同厚さの非単結晶シリコン層、例えは多結晶シリ
コン層109を堆積した。ひきつづき、多結晶シリコン
lii 7 o 9全面にエネルギービーム、例えばレ
ーザビームを照射した。この時、第2図(f)に示す如
くp型シリコン基板1θノと直接接触する多結晶シリコ
ン〜仙から該基板101を結晶核として単結晶化して全
体がp型巣結晶シリコン層110となった。
CIll) Next, the exposed substrate region 1071 is subjected to thermal oxidation treatment. 107. For example, after growing an oxide layer with a thickness of 100 OX, and removing the turtle layer on one substrate region 1071, a thin oxide layer Iθ8 was left in the free substrate region 1072. Next, an element isolation region 1 is formed on the entire surface.
A non-monocrystalline silicon layer, for example a polycrystalline silicon layer 109, having the same thickness as 06 was deposited. Subsequently, the entire surface of the polycrystalline silicon lii 7 o 9 was irradiated with an energy beam, such as a laser beam. At this time, as shown in FIG. 2(f), the polycrystalline silicon in direct contact with the p-type silicon substrate 1θ is single-crystalized using the substrate 101 as a crystal nucleus, and the entire layer becomes a p-type nested crystalline silicon layer 110. Ta.

[iv]  次いで、単結晶シリコン層110上の全面
にプラズマ窒化膜111を堆積した(第2図0)図示)
0つづいて、反応性イオンエツチングでグラズマ金化膜
111を処理した。この時、第2図(h)に示す如く、
単結晶シリコン10− 層110の凹部に堆積されたプラズマ窒化膜部分は他の
平坦な同シリコン層110上のプラズマ窒化膜部分に比
べてエツチングレートが遅くなり、同単結晶シリコン層
110の凹部のみにプラズマ窒化膜111′が残存した
[iv] Next, a plasma nitride film 111 was deposited on the entire surface of the single crystal silicon layer 110 (as shown in FIG. 20).
0Continuing, the glazma gold film 111 was treated by reactive ion etching. At this time, as shown in Figure 2 (h),
The etching rate of the plasma nitride film portion deposited in the recessed portion of the single crystal silicon layer 10-layer 110 is slower than that of the plasma nitride film portion deposited on the other flat silicon layer 110. A plasma nitride film 111' remained.

ひきつづき、残存プラズマ窒化膜zzfをマスクとして
単結晶シリコン層を選択エツチングし、素子分離領域1
06で分離された島状の基板領域101K 、107.
のみにp型シリコン層を残存させた後、下部に酸化層1
08の存在しないp型単結晶シリコン層に図示しないレ
ジス) ノ4ターンをマスクとして例えばリンを加速電
圧200 k@V 、ドーズ量5刈011cm ”の条
件でイオン注入し、例えば1100℃で熱処理してp型
単結晶シリコン層からなるp型素子領域112及び基板
101との界面に酸化層108が存在し、n型に変換さ
れた単結晶シリコン領域からなるn型素子領域(n−ウ
ェル領域)113を形成した(第2図(1)図示)。
Subsequently, the single crystal silicon layer is selectively etched using the remaining plasma nitride film zzf as a mask to form element isolation region 1.
06, island-shaped substrate regions 101K, 107.
After leaving the p-type silicon layer only on the top, an oxide layer 1 is placed on the bottom.
For example, phosphorus is ion-implanted into the p-type single-crystal silicon layer where 08 does not exist, using the resist (not shown) turn as a mask, at an acceleration voltage of 200 k@V and a dose of 5 cm, and then heat-treated at, for example, 1100°C. An oxide layer 108 exists at the interface between a p-type element region 112 made of a p-type single crystal silicon layer and the substrate 101, and an n-type element region (n-well region) made of a single crystal silicon region converted to an n-type. 113 (as shown in FIG. 2 (1)).

〔v〕  次いで、p型、n型の素子領域IZ2゜11
3を熱酸化して厚さ400Xの酸化膜を成長させ、更に
全面に燐ドープ多結晶シリコン膜を堆積し、これをパタ
ーニングして各素子領域112,113上にダート電極
1141゜1142を選択的に形成した後、これらダー
ト電極1141.1142をマスクとして酸化膜をエツ
チングしてr−ト酸化膜1151+1152を形成した
。つづいて、p型素子領域112に砒素を、n型素子領
域113にメロンを、夫々イオン注入し、熱処理してi
型のソース、ドレイン領域1161+1171 yp+
型のソース、ドレイン領域116..117゜を形成し
た。その後、全面にCvD−8lO□膜11Bを堆積し
、コンタクトホール1191〜1194を開孔した後、
i膜の蒸着、パターニングによりAJ配線120〜12
3を形成して0MO8を製造した(第2図(J)図示)
0しかして、本発明の0MO8は第2図(j)に示す如
くp型シリコン基板101上に素子分離領域106を設
け、かつこの素子分離領域106に分離された島状の基
板領域1071.101゜に夫々単結晶シリコン層から
なるp型素子領域(nチャンネルTr領域)Iz2+n
型素子領域(pチャンネルT、領域)113を設けると
共に、基板101とn型素子領域113の界面全体に薄
い酸化層108を介在させた構造になっている。このた
め、nチャンネルTrとpチャンネルT、は薄い酸化層
108で絶縁されるので、寄生トランジスタが形成され
ず、これによるラッチアップ現象のない良好な素子特性
を有する0MO8を得ることができる。また、素子分離
領域106とp型、n型の素子領域112.113との
・表面が同一レベルとなり、平坦化できる。
[v] Next, p-type and n-type element regions IZ2゜11
3 is thermally oxidized to grow an oxide film with a thickness of 400×, a phosphorus-doped polycrystalline silicon film is further deposited on the entire surface, and this is patterned to selectively form dirt electrodes 1141 and 1142 on each element region 112 and 113. After forming these dirt electrodes 1141 and 1142 as a mask, the oxide film was etched to form r-to oxide films 1151+1152. Subsequently, arsenic and melon ions are implanted into the p-type element region 112 and the n-type element region 113, respectively, and heat-treated.
Type source and drain regions 1161+1171 yp+
Type source and drain regions 116. .. 117° was formed. After that, after depositing CvD-8lO□ film 11B on the entire surface and opening contact holes 1191 to 1194,
AJ wiring 120 to 12 by vapor deposition and patterning of i film
3 was formed to produce 0MO8 (as shown in Figure 2 (J)).
0 As shown in FIG. 2(j), the 0MO8 of the present invention has an element isolation region 106 provided on a p-type silicon substrate 101, and an island-shaped substrate region 1071.101 separated by this element isolation region 106. p-type element region (n-channel Tr region) Iz2+n each consisting of a single crystal silicon layer
It has a structure in which a type element region (p-channel T, region) 113 is provided and a thin oxide layer 108 is interposed over the entire interface between the substrate 101 and the n-type element region 113. Therefore, since the n-channel Tr and the p-channel T are insulated by the thin oxide layer 108, no parasitic transistor is formed, and it is possible to obtain an 0MO8 having good device characteristics without the latch-up phenomenon caused by this. Further, the surfaces of the element isolation region 106 and the p-type and n-type element regions 112 and 113 are at the same level, and can be flattened.

更に、ウェル領域となるn型素子領域113は素子分離
領域106間の幅で決まり、横方向への拡散は阻止され
る。したがって、上記ラッチアップ現象の防止、素子領
域の平坦化、及びウェル領域の横方向拡散の阻止により
高密度、高集積度の0MO8を得ることができる。
Further, the n-type element region 113, which becomes a well region, is determined by the width between the element isolation regions 106, and lateral diffusion is prevented. Therefore, by preventing the latch-up phenomenon, flattening the device region, and preventing lateral diffusion in the well region, it is possible to obtain a high-density, high-integration 0MO8.

13− また、素子分離領域10B下にp+型反転防止層104
を設けることによって、基板101とひなかったp型巣
結晶シリコンからなるp型素子分離領域112に形成さ
れたnチャンネルTr間の電気的リークによる誤動作を
防止できる。
13- Also, a p+ type inversion prevention layer 104 is provided under the element isolation region 10B.
By providing this, it is possible to prevent malfunctions due to electrical leakage between the substrate 101 and the n-channel transistor formed in the p-type element isolation region 112 made of p-type nested crystalline silicon.

一方、本発明方法によれば第2図(1)に示す如く素子
分離領域10Bで分離された島状の基板領域に該素子分
離領域表面と略同レベルのp型。
On the other hand, according to the method of the present invention, as shown in FIG. 2(1), the island-shaped substrate region separated by the element isolation region 10B has a p-type layer at approximately the same level as the surface of the element isolation region.

n型の単結晶シリコンからなる素子領域112゜113
を形成できる。このため、前記〔v〕工程において、酸
化膜成長、燐ドーグ多結晶シリコン膜の堆積後、レジス
ト膜塗布、写真蝕刻に際して、素子分離領域106の端
部でレソスト残りが生じるものを回避でき、これによっ
て寸法精度が良好なレジストパターンの形成が可能とな
り、ひいては高精度のダート電極1141rZ142を
形成できる。しかも、同[V]工程においてAA?配線
を形成する際、素子分離領域106端部で各Aノ配線1
20〜123が断切れするのを防止できる。
Element region 112° 113 made of n-type single crystal silicon
can be formed. Therefore, in the step [v], after the oxide film growth, the deposition of the phosphorous doped polycrystalline silicon film, the resist film coating, and the photolithography, it is possible to avoid the formation of resist residue at the end of the element isolation region 106. This makes it possible to form a resist pattern with good dimensional accuracy, which in turn makes it possible to form highly accurate dart electrodes 1141rZ142. Moreover, in the same [V] process, AA? When forming the wiring, each A wiring 1 is formed at the end of the element isolation region 106.
20 to 123 can be prevented from being cut off.

14− また、nチャンネルTrの素子領域112と基板101
の界面に酸化層108を形成することによってフィール
ド反転防止層の形成を一工程(この場合、n+型反転防
止層の形成工程)省略でき、極めて簡単かつ量産的に0
MO8を製造できる。
14- Also, the element region 112 of the n-channel Tr and the substrate 101
By forming the oxide layer 108 at the interface of
MO8 can be produced.

更に、素子分離領域106の形成工程において、選択酸
化法のようなバーズビークの発生はないため、素子分離
領域106の微細化、ひいては素子領域112,113
の寸法縮小を抑制でき、高集積度の0MO8を製造でき
る。しかも、素子領域112,113にホワイトリボン
が生成されるのを防止できるため、素子特性の優れた0
MO8を得ることができる。
Furthermore, in the process of forming the element isolation region 106, bird's beaks do not occur as in the selective oxidation method, so that the element isolation region 106 can be miniaturized and the element regions 112, 113 can be made smaller.
It is possible to suppress the size reduction of , and to manufacture a highly integrated 0MO8. Moreover, since it is possible to prevent white ribbons from being generated in the element regions 112 and 113, the
MO8 can be obtained.

その他、上記実施例の如く熱酸化膜102上の素子領域
予定部にレジストパタ−ン103*。
In addition, as in the above embodiment, a resist pattern 103* is formed on the thermal oxide film 102 in the intended element area.

103bを形成し、これをマスクとして?ロンのイオン
注入を行なってp+型反転防止層104を形成した後、
AI被被膜蒸着、レジストパターンIθ3*、103b
の除去によるAJ被被膜リフトオフ、残存AA’被膜1
052をマスクとした熱酸化膜102のエツチングによ
る素子分離領域106を形成することによって、素子分
離領域106と反転防止層104とをセルファラインに
でき、該反転防止層104から素子領域に形成されるソ
ース、ドレイン領域へのイオンの滲み出しを防止できる
Form 103b and use this as a mask? After forming the p+ type anti-inversion layer 104 by performing ion implantation of ions,
AI film deposition, resist pattern Iθ3*, 103b
AJ coating lift-off due to removal of AA' coating, residual AA' coating 1
By forming the element isolation region 106 by etching the thermal oxide film 102 using 052 as a mask, the element isolation region 106 and the anti-inversion layer 104 can be made into a self-line, and the element isolation region 106 can be formed from the anti-inversion layer 104 into the element region. Ions can be prevented from leaking into the source and drain regions.

なお、上記実施例では絶縁膜として熱酸化膜を用いたが
、これに限らずCVD法により堆積された5in2[[
、81、N4膜e AA’205膜等を用いてもよい。
In the above embodiment, a thermal oxide film was used as the insulating film, but the invention is not limited to this.
, 81, N4 film, AA'205 film, etc. may be used.

また、非単結晶シリコン層として多結晶シリコンに代え
て非晶質シリコンを用いてもよいO 上記実施例では、エネルギービームとしてレーデビーム
を用いたが、電子ビーム、イオンビーム等を用いてもよ
い〇 上記実施例ではp型単結晶シリコン層をn型に変える手
段としてイオン注入法を採用したが、これに限らずP2
O膜やA、5GPAを拡散源とする方法、燐拡散方法等
を採用してもよい。
Also, amorphous silicon may be used instead of polycrystalline silicon as the non-monocrystalline silicon layer. In the above embodiment, a Radhe beam was used as the energy beam, but an electron beam, ion beam, etc. may also be used. In the above embodiment, ion implantation was used as a means to change the p-type single crystal silicon layer to n-type, but the method is not limited to this.
A method using an O film, A, or 5GPA as a diffusion source, a phosphorus diffusion method, or the like may be adopted.

上記実施例ではp型基板に素子分離領域を設け、非単結
晶シリコン層を被覆し エネルギービームの照射により
p型単結晶シリコン層にし、選択エツチングして素子分
離領域間にp型単結晶シリコン層を残し、酸化層の存在
するp型単結晶シリコン層をn型(n−ウェル領域)に
変換したが、これに限定されない。例えば、酸化層の存
在しないp型単結晶シリコン層をn型に変えてもよい。
In the above embodiment, an element isolation region is provided on a p-type substrate, a non-single-crystal silicon layer is coated, a p-type single-crystal silicon layer is formed by irradiation with an energy beam, and a p-type single-crystal silicon layer is formed between the element isolation regions by selective etching. Although the p-type single-crystal silicon layer in which the oxide layer exists was converted into an n-type (n-well region), the present invention is not limited thereto. For example, a p-type single crystal silicon layer without an oxide layer may be changed to an n-type layer.

また、n型半導体基板を用いて前記とは逆に一方のn型
単結晶シリコン層をp型(p−ウェル領域)に変換して
もよい。
Alternatively, one n-type single crystal silicon layer may be converted to a p-type (p-well region) using an n-type semiconductor substrate, contrary to the above.

上記実施例では少なくとも隣り合う二つの領域に形成し
た素子領域のうちの一方の素子領域と基板の界面全体に
酸化層を介在させたが、該界面の一部に酸化層等の薄い
絶縁層を介在させてもよい。このように部分的に介在さ
せる場合、隣り合う他方の素子領域側に近い界面部分に
絶と素子の微細化がなされた高性能、高集積度の17− 相補型MO8半導体装置、並びにかかる半導体装置を簡
単な工程で製造し得る方法を提供できるものである。
In the above embodiment, an oxide layer was interposed on the entire interface between at least one of the element regions formed in two adjacent regions and the substrate, but a thin insulating layer such as an oxide layer was provided on a part of the interface. It is also possible to intervene. When partially interposed in this way, a high-performance, highly integrated 17-complementary MO8 semiconductor device in which elements are absolutely miniaturized at the interface near the other adjacent element region side, and such a semiconductor device. It is possible to provide a method for manufacturing by a simple process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(h)は従来の0MO8の製造を示す工
程断面図、第2図(=)〜(j)は本発明の実施例にお
ける0MO8の製造を示す工程断面図である。 101・・・p型シリコン基板、102・・・熱酸化膜
(絶縁膜)、103a、703b−・・レジストパター
ン、104・・・p+型反転防止層、106・・・素子
分離領域、108・・・酸化層、112・・・p型巣結
晶シリコンからなる素子領域、I J 、9・・・n型
単結晶シリコンからなる素子領域、114、。 1142・・・ダート電極、1161.1162  ・
・ソース領域、117..117□・・・ドレイン領域
、I2θ〜123・・・kl配線。 出願人代理人  弁理士 鈴 江 武 彦18− Φ                     に01
           二
FIGS. 1(a) to (h) are process cross-sectional views showing the conventional manufacturing of 0MO8, and FIGS. 2(=) to (j) are process cross-sectional views showing the manufacturing of 0MO8 in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 101... P-type silicon substrate, 102... Thermal oxide film (insulating film), 103a, 703b-... Resist pattern, 104... P+ type inversion prevention layer, 106... Element isolation region, 108... ...Oxide layer, 112...Element region made of p-type nested crystal silicon, IJ, 9...Element region made of n-type single crystal silicon, 114. 1142...Dart electrode, 1161.1162 ・
- Source area, 117. .. 117□...Drain region, I2θ~123...kl wiring. Applicant's agent Patent attorney Takehiko Suzue 18-Φ ni01
two

Claims (1)

【特許請求の範囲】 1、 第1導電型の半導体基板と、この基板上に設けら
れた絶縁材料からなる素子分離領域と、この素子分離領
域により分離された複数の島状基板領域のうちの少なく
とも隣り合う二つの領域に夫々設けられた第1導電型、
第2導電型の単結晶シリコン層からなる素子領域とを具
備し、前記半導体基板と第1導電型の素子領域或いは前
記基板と第2導電型の素子領域のいずれか一方の界面の
一部もしくは全部に絶縁層を介在させると共に、前記素
子分離領域下の基板表面に第1導電型の高濃度不純物層
を設けたことを特徴とする相補型MO8半導体装置0 2、第1導電型、第2導電型の単結晶シリコン層からな
る素子領域の表面が素子分離領域の表面とほぼ同レベル
であることを特徴とする特許請求の範囲第1項記載の相
補型MO8半導体装置0 3、半導体基板がp型をなし、このp型の基板とn型の
単結晶シリコン層からなる素子領域の界面の一部もしく
は全部に絶縁層を介在させたことを特徴とする特許請求
の範囲第1項記載の相補型MO8+−導体装置。 4、第1導電型の半導体基板上に素子分離領域となる絶
縁膜を形成する工程と、前記基板の素子分離領域予定部
に第1導電型の不純物を前記絶縁膜を通してイオン注入
して給1導電型の高濃度不純物層を形成する工程と、前
記絶縁膜を選択的にエツチング除去して基板表面の高濃
度不純物層上に素子分離領域を形成する工程と、この素
子分離領域により分離された複数の島状基板領域のうち
の少なくとも隣り合う二つの領域の一方に前記素子分離
領域より充分薄い絶縁層を一部もしくは全体的に形成す
る工程と、全面に非単結晶シリコン層を堆積した彼、エ
ネルギービームを非単結晶シリコン層に照射して単結晶
化する工程と、素子分離領域付近の単結晶シリコン層を
エツチング除去した後、絶縁層が設けられた島状基板領
域及びこれと隣接する他の領域に残存した単結晶シリコ
ン層のいずれか一方に第2導電型の不純物をドーピング
して少なくとも隣り合う二つの島状基板領域に第1導電
型、第2導電型の素子領域を形成する工程とを具備した
ことを特徴とする相補型MO8半導体装置の製造方法。 5、半導体基板がp型をなし、素子分離領域で分離され
た複数の島状基板領域のうちの少なくとも隣り合う二つ
の領域のn型素子領域となる一方に前記素子分離領域よ
り充分薄い絶縁層を一部もしくは全体的に形成したこと
を特徴とする特許請求の範囲第4項記載の相補fi M
O8半導体装置の製造方法。
[Claims] 1. A semiconductor substrate of a first conductivity type, an element isolation region made of an insulating material provided on this substrate, and one of a plurality of island-shaped substrate regions separated by this element isolation region. a first conductivity type provided in at least two adjacent regions, respectively;
an element region made of a single crystal silicon layer of a second conductivity type, and a part of the interface between the semiconductor substrate and the element region of the first conductivity type, or between the substrate and the element region of the second conductivity type; Complementary MO8 semiconductor device 02, first conductivity type, second conductivity type, characterized in that an insulating layer is interposed throughout the entire structure, and a first conductivity type high concentration impurity layer is provided on the substrate surface under the element isolation region. Complementary MO8 semiconductor device 03 according to claim 1, characterized in that the surface of the element region made of a conductive type single crystal silicon layer is approximately at the same level as the surface of the element isolation region, the semiconductor substrate is Claim 1, characterized in that the device is p-type, and an insulating layer is interposed in part or all of the interface between the p-type substrate and the n-type single crystal silicon layer. Complementary MO8+- conductor device. 4. Forming an insulating film to serve as an element isolation region on a semiconductor substrate of a first conductivity type, and ion-implanting impurities of a first conductivity type through the insulating film into a portion of the substrate where an element isolation region is to be formed. a step of forming a conductive type high concentration impurity layer; a step of selectively etching away the insulating film to form an element isolation region on the high concentration impurity layer on the surface of the substrate; A step of partially or entirely forming an insulating layer sufficiently thinner than the element isolation region on at least one of two adjacent regions of a plurality of island-shaped substrate regions, and a step of depositing a non-single crystal silicon layer on the entire surface. , a step of irradiating the non-single crystal silicon layer with an energy beam to form a single crystal, and etching and removing the single crystal silicon layer near the element isolation region, and then forming an island-like substrate region provided with an insulating layer and adjacent thereto. doping one of the single crystal silicon layers remaining in the other regions with impurities of the second conductivity type to form device regions of the first conductivity type and the second conductivity type in at least two adjacent island-shaped substrate regions; 1. A method for manufacturing a complementary MO8 semiconductor device, comprising the steps of: 5. The semiconductor substrate is p-type, and at least two adjacent regions of the plurality of island-like substrate regions separated by the device isolation region are provided with an insulating layer that is sufficiently thinner than the device isolation region to become the n-type device region. Complementary fi M according to claim 4, characterized in that it is partially or entirely formed by
A method for manufacturing an O8 semiconductor device.
JP56138833A 1980-10-02 1981-09-03 Complementary metal oxide semiconductor device and its manufacture Granted JPS5840852A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56138833A JPS5840852A (en) 1981-09-03 1981-09-03 Complementary metal oxide semiconductor device and its manufacture
US06/307,877 US4560421A (en) 1980-10-02 1981-10-02 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56138833A JPS5840852A (en) 1981-09-03 1981-09-03 Complementary metal oxide semiconductor device and its manufacture

Publications (2)

Publication Number Publication Date
JPS5840852A true JPS5840852A (en) 1983-03-09
JPH0324069B2 JPH0324069B2 (en) 1991-04-02

Family

ID=15231280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56138833A Granted JPS5840852A (en) 1980-10-02 1981-09-03 Complementary metal oxide semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS5840852A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961119A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Manufacture of semiconductor device
JPS6030169A (en) * 1983-07-29 1985-02-15 Toshiba Corp Complementary mos semiconductor device and manufacture thereof
JPS6070757A (en) * 1983-09-28 1985-04-22 Hitachi Ltd Semiconductor integrated circuit
JPS6074664A (en) * 1983-09-30 1985-04-26 Toshiba Corp Manufacture of complementary type mos semiconductor device
JPS6089957A (en) * 1983-10-24 1985-05-20 Nippon Telegr & Teleph Corp <Ntt> Complementary semiconductor device
JPH04231668A (en) * 1990-06-26 1992-08-20 Mercedes Benz Ag Evaporator in suction path of cylinder head for internal combustion engine
JPH04231669A (en) * 1990-06-26 1992-08-20 Mercedes Benz Ag Cylinder head for internal combustion engine
US5851856A (en) * 1993-12-03 1998-12-22 Yamaha Corporation Manufacture of application-specific IC

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961119A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Manufacture of semiconductor device
JPS6030169A (en) * 1983-07-29 1985-02-15 Toshiba Corp Complementary mos semiconductor device and manufacture thereof
JPS6070757A (en) * 1983-09-28 1985-04-22 Hitachi Ltd Semiconductor integrated circuit
JPH0527267B2 (en) * 1983-09-28 1993-04-20 Hitachi Ltd
JPS6074664A (en) * 1983-09-30 1985-04-26 Toshiba Corp Manufacture of complementary type mos semiconductor device
JPH0527265B2 (en) * 1983-09-30 1993-04-20 Tokyo Shibaura Electric Co
JPS6089957A (en) * 1983-10-24 1985-05-20 Nippon Telegr & Teleph Corp <Ntt> Complementary semiconductor device
JPH0530074B2 (en) * 1983-10-24 1993-05-07 Nippon Telegraph & Telephone
JPH04231668A (en) * 1990-06-26 1992-08-20 Mercedes Benz Ag Evaporator in suction path of cylinder head for internal combustion engine
JPH04231669A (en) * 1990-06-26 1992-08-20 Mercedes Benz Ag Cylinder head for internal combustion engine
US5851856A (en) * 1993-12-03 1998-12-22 Yamaha Corporation Manufacture of application-specific IC

Also Published As

Publication number Publication date
JPH0324069B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JP2575378B2 (en) Method for manufacturing semiconductor device
JPH0355984B2 (en)
US4560421A (en) Semiconductor device and method of manufacturing the same
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
JPS5840852A (en) Complementary metal oxide semiconductor device and its manufacture
EP0398032B1 (en) Method for manufacturing a semiconductor integrated circuit comprising an isolating region
EP0126292B1 (en) Semiconductor device having an element isolation layer and method of manufacturing the same
JPH0324068B2 (en)
KR19980070802A (en) Method for manufacturing semiconductor device without delamination between silicide layer and insulating layer
JPS6021560A (en) Complementary type mos semiconductor device and manufacture thereof
JP3002964B2 (en) Manufacturing method of bipolar semiconductor device
JPS6150371A (en) Semiconductor memory device and manufacture thereof
JPH0481336B2 (en)
JPS6030168A (en) Complementary mos semiconductor device and manufacture thereof
JPH03136348A (en) Manufacture of non-volatile memory element
JPS5950542A (en) Manufacture of semiconductor device
JPS6217867B2 (en)
JPH0527265B2 (en)
JPS6395664A (en) Semiconductor device and manufacture thereof
JPS58132962A (en) Semiconductor device
JPS59195840A (en) Manufacture of semiconductor device
JPS628029B2 (en)
JPH07245313A (en) Manufacture of bipolar transistor
JPS63228662A (en) Manufacture of complementary type mos semiconductor device
JPH043432A (en) Manufacture of semiconductor device