[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5943913B2 - AC/DC converter operation control method - Google Patents

AC/DC converter operation control method

Info

Publication number
JPS5943913B2
JPS5943913B2 JP52090299A JP9029977A JPS5943913B2 JP S5943913 B2 JPS5943913 B2 JP S5943913B2 JP 52090299 A JP52090299 A JP 52090299A JP 9029977 A JP9029977 A JP 9029977A JP S5943913 B2 JPS5943913 B2 JP S5943913B2
Authority
JP
Japan
Prior art keywords
converter
voltage
circuit
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52090299A
Other languages
Japanese (ja)
Other versions
JPS5425428A (en
Inventor
博雄 小西
篤美 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52090299A priority Critical patent/JPS5943913B2/en
Publication of JPS5425428A publication Critical patent/JPS5425428A/en
Publication of JPS5943913B2 publication Critical patent/JPS5943913B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 本発明は交直変換器の運転制御方法に係ク、特に、変換
器のダンピング回路の損失を許容値の範囲内に保つに好
適な運転制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an operation control method for an AC/DC converter, and more particularly to an operation control method suitable for keeping loss in a damping circuit of a converter within an allowable range.

交直変換装置は、一般にを51両可能な無効電力負荷を
考えることができ、、連系される交流系の電圧無効、電
力制御に直流系を協力させることができる。第1図は直
流系を発電機の無効電力制御に応用した例を示した図で
ある。図において、GI、G2は発電機、Liは負荷、
DCLは直流リアクトル、DLは直流線路、CONI、
C0N2はそれぞれ交流を直流及び直流を交流に変換す
る交直変換器、TRは変換器用変圧器、ACPTは交流
電圧変換器、ACCTは交流電流変成器、PDは検出さ
れた交流系統の交流電圧と交流電流から前記変換器CO
NIに流れ込む電力を検出する電力検出器、Ppは図示
しない運転指令所からの信号であり直流系で送電される
電力を設定するための電力指令値、SUM、はこの電力
指令値Ppと前記電力検出器PDの出力を図示の極性で
加算する加算器、PAはこの加算器SUMIの出力を増
幅する電力備差増幅器で、前記電力指令値Pp、電力検
出値Pf、加算器SUMI、及び電力偏差増幅器PAで
定電力制御回路PRを構成する。
The AC/DC converter can generally handle 51 reactive power loads, and can make the DC system cooperate with the voltage reactive and power control of the connected AC system. FIG. 1 is a diagram showing an example of applying a DC system to reactive power control of a generator. In the figure, GI and G2 are generators, Li is load,
DCL is DC reactor, DL is DC line, CONI,
C0N2 is an AC/DC converter that converts alternating current to direct current and direct current to alternating current, TR is a converter transformer, ACPT is an alternating current voltage converter, ACCT is an alternating current transformer, and PD is the detected alternating current voltage of the alternating current system and alternating current. Current to said converter CO
A power detector that detects the power flowing into the NI, Pp is a signal from an operation command center (not shown), and a power command value for setting the power transmitted in the DC system, SUM, is the power command value Pp and the above-mentioned power. An adder PA adds the output of the detector PD with the polarity shown, and PA is a power differential amplifier that amplifies the output of the adder SUMI, and the power command value Pp, detected power value Pf, adder SUMI, and power deviation The amplifier PA constitutes a constant power control circuit PR.

DCCTは直流電流変成器、SUM2はこの直流電流変
成器DCCTの出力と前記電力偏差増幅器PAの出力を
図示の極性で加算する加算器、CAはこの加算器SUM
2の出力を増幅する電流偏差増幅器で、前記電力偏差増
幅器PAの出力、直流電流の検出値11、加算器SUM
2及び電流偏差増幅器CAで定電流制御回路ACRを構
成する。APIはこの定電流制御回路の出力の大きさに
応じて、前記変換器C0N、のサイリスタのゲートパル
スを出力する自動パルス移相器、PFDは先とは別の交
流系統の交流電圧及び交流電流の検出信号から、該系統
の力率を検出し、力率に相当した電圧を出力する力率検
出器、PFpは図示しない運転指令所からの信号で力率
設定値、SUM3はこの力率設定値PFpと前記力率検
出器PFDの出力を図示の極性で加算する加算器、PF
Aはこの加算器SUM3の出力を増幅する力率偏差増幅
器、AP2は上記APIと同様な自動パルス移相器であ
る。一般に発電機が大容量のケーブルや超高圧送電系統
に接続されると、軽負荷時の発電機の進相運転が問題と
なる。
DCCT is a direct current transformer, SUM2 is an adder that adds the output of this direct current transformer DCCT and the output of the power deviation amplifier PA with the polarity shown, and CA is this adder SUM.
A current deviation amplifier that amplifies the output of the power deviation amplifier PA, a detection value 11 of the DC current, and an adder SUM.
2 and the current deviation amplifier CA constitute a constant current control circuit ACR. API is an automatic pulse phase shifter that outputs a gate pulse of the thyristor of the converter C0N according to the magnitude of the output of this constant current control circuit, and PFD is an AC voltage and an AC current of a different AC system. A power factor detector that detects the power factor of the system from the detection signal and outputs a voltage corresponding to the power factor, PFp is a signal from an operation command center (not shown) and is a power factor setting value, and SUM3 is this power factor setting. an adder that adds the value PFp and the output of the power factor detector PFD with the polarity shown; PF;
A is a power factor deviation amplifier that amplifies the output of this adder SUM3, and AP2 is an automatic pulse phase shifter similar to the above API. Generally, when a generator is connected to a large-capacity cable or an ultra-high voltage power transmission system, phase-advanced operation of the generator during light loads becomes a problem.

しかし、第1図に示すように直流系を連系することによ
り、変換器(逆変換器)は発電機からみると遅相の無効
電力をとる負荷であるから、この逆変換器の所要無効電
力を制御すれば発電機の進相運転の防止ができる。今、
発電機の有効及び無効電力をP,,Q8,変換器のそれ
らをPl,Ql,負荷のそれらをPt,Qt一Qcとす
れば、交流系ではPg−Pt−Pi,Qg二Qi+Qt
−QOの関係が成9立つ。ここで、有効電力Ptが一定
で、遅相の無効電力負荷Qtが減少したとすると、発電
機は進相運転せざるを得なくなる。このとき、発雷機の
力率を検出して、逆変換器の制御角βを大きくして、そ
の所要無効電力Q1を大きくすることによジ発電機の進
相運転は防止できる。この直流連系による交流系統の無
効電力制御は速応性があり、自由度が高い利点がある。
しかし、発電機の進相運転防止のため大きな遅相無効電
力が必要となると、変換器の制御角が大きくなク、この
ため第2図に示すダンピング回路DACの損失が大きく
なる。第3図は変換器の転流リアクタンスX,をパラメ
ータにして、制御角を横軸にダンピング回路の損失を描
いた図で、このことを表わしている。このダンピング回
路の損失が大きくなるということは、変換器の効率が悪
くなるばかジでなく、このダンピング回路の損失にみあ
つた容緻の抵抗Rd,コンデンサーC4が必要とな9、
バルブ内でダンピング回路の空間的に占める割合が増し
て装置が大きくなD好ましくない。本発明の目的は上述
した従来技術の欠点を除き、ダンピング回路の損失を許
容値に抑えた状態で安定な運転の行なえる交直変換器z
運転匍脚方法を提供するにある。
However, by interconnecting the DC system as shown in Figure 1, the converter (inverse converter) is a load that takes delayed reactive power from the generator's perspective, so the required reactive power of this inverse converter is By controlling the electric power, it is possible to prevent the generator from operating in phase advance mode. now,
If the active and reactive powers of the generator are P,, Q8, those of the converter are Pl, Ql, and those of the load are Pt, Qt-Qc, then in the AC system, Pg-Pt-Pi, Qg2Qi+Qt
-QO relationship is established. Here, if the active power Pt is constant and the lagging reactive power load Qt is reduced, the generator has no choice but to perform phase-advancing operation. At this time, phase advance operation of the generator can be prevented by detecting the power factor of the lightning generator, increasing the control angle β of the inverter, and increasing the required reactive power Q1. This reactive power control of an AC system using DC interconnection has the advantage of quick response and a high degree of freedom.
However, if large phase-lag reactive power is required to prevent phase-advancing operation of the generator, the control angle of the converter becomes large, which increases the loss of the damping circuit DAC shown in FIG. 2. FIG. 3 is a diagram depicting the loss of the damping circuit with the control angle as the horizontal axis, using the commutation reactance X of the converter as a parameter, and represents this. An increase in the loss of this damping circuit does not necessarily mean that the efficiency of the converter deteriorates, but also that a resistor Rd and capacitor C4 of a size that matches the loss of this damping circuit are required9.
This is undesirable because the damping circuit occupies more space within the valve, making the device larger. An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an AC/DC converter that can operate stably while suppressing the loss of the damping circuit to an allowable value.
It is to provide a driving method.

本発明の要点を第4図と第5図を使つて説明する。The main points of the present invention will be explained using FIGS. 4 and 5.

第4図はダンピング回路の損失を交流電圧1p.u.,
直流電流1p.U.,制御角40圧のときを許容最大値
(ダンピング回路の容縫設計値)とし、交流電圧が変化
したとき許容できる制御角の最大値を例にとつて描いた
図である。第5図は同様に直流電流を変化したときの図
である。図によ、交流電圧及び直流電流の変化に対して
ダンピング回路の損失を許容値の範囲内に保つための制
御角は直線的に変わつてお)、この値以下の制御角で変
換器を運転すれば、ダンピング回路の損失を許容値内に
保つことができる。このため、交流電圧と直流電流の変
化に応じて第4図及び第5図の特性をもつリミツタ一を
制御回路に設け、常時のダンピング回路の損失が許容値
を越えないようにした。
Figure 4 shows the loss of the damping circuit at an AC voltage of 1p. u. ,
DC current 1p. U. , is a diagram illustrating an example of the maximum allowable control angle when the control angle is 40 pressure (the design value of the damping circuit) and when the AC voltage changes. FIG. 5 is a diagram when the direct current is similarly changed. As shown in the figure, the control angle to keep the loss of the damping circuit within the allowable range varies linearly with changes in AC voltage and DC current (), and the converter is operated at a control angle below this value. Then, the loss of the damping circuit can be kept within the allowable value. For this reason, a limiter having the characteristics shown in FIGS. 4 and 5 is provided in the control circuit in response to changes in alternating current voltage and direct current to prevent the loss of the damping circuit from exceeding an allowable value at all times.

このリミツタは変換器が順変換器運転のときと、逆変換
器運転のときでFhI脚角(電圧値)が異なつてくるの
で、順変換器運転時と逆変換器運転時の二つのリミツタ
を設けスイツチで切り替えるようにした。
Since the FhI leg angle (voltage value) of this limiter differs when the converter is operating as a forward converter and when operating as a reverse converter, two limiters are used when the converter is operating as a forward converter and when operating as a reverse converter. It can now be changed using a setup switch.

また、起動時、停止時等ではこの許容範囲を越えて運転
を行なう必要があるので、起動・停止時等はスイツチに
ゆジ、制限をはずすようにした。また転流失敗等の事故
時にも安定に運転が行えるようにするため、直流電圧の
大きさに応じて、短時間この許容範囲を越えて運転でき
るようにした。本発明の一実施例を第6図に示す。
In addition, since it is necessary to operate beyond this allowable range when starting or stopping, etc., a switch is set to remove the limit when starting or stopping. In addition, in order to ensure stable operation even in the event of an accident such as commutation failure, we have made it possible to operate beyond this allowable range for a short period of time depending on the magnitude of the DC voltage. An embodiment of the present invention is shown in FIG.

前図と同じ記号のものは同じ動作をするものを示すので
、新しい記号のもののみについて説明すると、GRは前
記直流電圧変成器DCCTの出力と前記交流電圧変成器
ACPTの出力とから、変換器が逆変換器運転のとき安
定に転流動作が行なえるような制御角を指定するための
定余裕角制御回路、0Rは変換器に必要な無効電力が図
示しない運転指令所からの信号によジ設定された値Q,
となるように制御するための無効電力制御回路、PRは
定電力制御回路、図示しない運転指令所からの信号ΔI
dは変換器CONlが逆変換器運転のときのみスイツチ
SWによジ前記加算器SUM2に図示の極性で加算を行
ない、前記定電流制御回路の増幅器を飽和させる働きを
する電流マージン指令.VSは前記定電流匍脚回路と定
余裕角制御回路GRと無効電力制御回路QRのうち、前
記変換器CON,Q運転に最も適した出力電圧を選択す
る電圧選択回路、FGlおよびFG2は前記交流電圧検
出値と前記直流電圧検出値からダンピング回路の損失が
許容値となる最大の11jI脚角に相当する出圧を出力
する関数発生器である(ただしFGlは前記変換器CO
Nlが順次変換器運転時に、またFG2は逆変換器運転
時に使用)。この具体的な回路を第7図に、またこの回
路の動作を第8図に示ず。第7図においてR1〜Rl3
は固定抵抗、VRl〜VR3は可変抵抗、0P1〜0P
3は演算増幅器である。この回路の動作を第8図を参照
に説明すると、演算増幅器0P1は直流電流のある規準
値からの偏差に比例(比例係数Ki)した電圧を出力し
(人力信号のリツプルを除くために遅れをもたせてもよ
い)、演算増幅器0P2は交流電圧のある規準値からの
偏差に比例(比例係数K8)した電圧を出力し(入力信
号のリツプルを除くために遅れをもたせてもよい)、演
算増幅器0P3はこれら演算増幅器0P1と0P2の出
力及びバイアス電圧(交流電圧の規準値と直流電流の規
準値により定まるダンピング回路の損失が許容値となる
匍脚角αを与える電圧Vα)を加算するためのものであ
る。この回路により、任意の交流電圧値及び直流電流値
における許容制御角が決定される。
Items with the same symbols as in the previous figure indicate items that operate in the same way, so only those with new symbols will be explained. 0R is a constant margin angle control circuit for specifying a control angle that allows stable commutation operation when the converter is in reverse operation. The set value Q,
A reactive power control circuit for controlling so that PR is a constant power control circuit, and a signal ΔI from an operation command center (not shown)
d is a current margin command which functions to saturate the amplifier of the constant current control circuit by using the switch SW to add to the adder SUM2 with the polarity shown in the figure only when the converter CONl is in reverse converter operation. VS is a voltage selection circuit that selects the most suitable output voltage for the converter CON, Q operation from among the constant current swing leg circuit, constant margin angle control circuit GR, and reactive power control circuit QR, and FGl and FG2 are the voltage selection circuits for selecting the output voltage most suitable for the operation of the converters CON and Q; It is a function generator that outputs an output pressure corresponding to the maximum 11jI leg angle at which the loss of the damping circuit is an allowable value from the voltage detection value and the DC voltage detection value (FGl is the converter CO
Nl is used during sequential converter operation, and FG2 is used during reverse converter operation). This specific circuit is shown in FIG. 7, and the operation of this circuit is not shown in FIG. In FIG. 7, R1 to Rl3
is a fixed resistance, VRl to VR3 are variable resistances, 0P1 to 0P
3 is an operational amplifier. To explain the operation of this circuit with reference to Fig. 8, the operational amplifier 0P1 outputs a voltage proportional to the deviation of the DC current from a certain reference value (proportionality coefficient Ki). The operational amplifier 0P2 outputs a voltage proportional to the deviation of the AC voltage from a certain reference value (proportionality coefficient K8) (the operational amplifier 0P2 may have a delay to remove ripples in the input signal), 0P3 is used to add the outputs of these operational amplifiers 0P1 and 0P2 and the bias voltage (voltage Vα that provides the arm angle α at which the loss of the damping circuit determined by the standard value of AC voltage and standard value of DC current is an allowable value). It is something. This circuit determines the allowable control angle at any AC voltage value and DC current value.

また第6図におけるスイツチSWl,SW2は、スイツ
チ駆動回路DSの指令により前記変換器CONlが順変
換器運転を行なつているときSWlを閉じ、逆変換器運
転を行なつているときSW2を閉じ、変換器の起動時及
び停止時は閉となる動作をする。D,及至D4はダイオ
ード、INは符号反転器であ9、Dl,D2は両者の入
力電圧のうち高い方を出力し、D3,D4は両者の入力
電圧のうち低い方を出力する。このダイオードの働きに
よ勺制御角は許容範囲に抑えられる。従つて、ダンピン
グ回路の損失が許容値以内に抑えられた状態で運転が行
なえる。なお、図では一変換所のみの制御回路のプロツ
ク図を示したが、同様の制御回路が他端にも備えられて
おV1一端が順変換器動作をするときは他端が逆変換器
の動作を従来のごとく行なう。このように本発明によれ
ば、変換器のダンピング回路の損失の許容値内で運転が
行なえるので、効率のよい運転ができ、経済的なバルブ
構造が可能となる。
In addition, switches SWl and SW2 in FIG. 6 close SWl when the converter CONl is performing a forward converter operation and close SW2 when the converter CONl is performing an inverse converter operation according to a command from the switch drive circuit DS. , it closes when the converter starts and stops. D, to D4 are diodes, IN is a sign inverter 9, Dl and D2 output the higher one of both input voltages, and D3 and D4 output the lower one of both input voltages. Due to the action of this diode, the control angle can be suppressed within an allowable range. Therefore, operation can be performed while the loss of the damping circuit is suppressed within the permissible value. Although the figure shows a block diagram of the control circuit for only one converter station, a similar control circuit is provided at the other end, so that when one end of V1 operates as a forward converter, the other end operates as an inverse converter. Perform the operation as usual. As described above, according to the present invention, since operation can be performed within the allowable loss of the damping circuit of the converter, efficient operation can be achieved and an economical valve structure can be achieved.

本発明の他の実施例を第9図に示す。Another embodiment of the invention is shown in FIG.

本実施例は、変換器Q無効電力を前図が開ループで制御
したのに対し、閉ループで制御した場合である。前図と
同じ符号のものは同じ動作をするので、新しいものにつ
いてのみ説明すると、QDは前記交流電圧の検出値と交
流電流の検出値とから変換器が出す無効電力を検出する
ための無効電力検出回路、SUM4はこの無効電力検出
回路QDの出力と、無効電力の設定値Qp(図示しない
運転指令所からの信号)を図示の極性で加算する加算器
、QAはこの加算器の出力を増幅する無効電力偏差増幅
ノ器である。
In this embodiment, the converter Q reactive power is controlled in a closed loop, whereas the previous figure controlled it in an open loop. Components with the same symbols as in the previous figure operate in the same way, so we will only explain the new ones. A detection circuit, SUM4, is an adder that adds the output of this reactive power detection circuit QD and a reactive power set value Qp (signal from an operation command center, not shown) with the polarity shown, and QA amplifies the output of this adder. This is a reactive power deviation amplifier.

この回路によシ前図同様、ダンピング回路の損失の許容
値内で変換器が出す無効電力を設足された値に制御する
ことができる。
With this circuit, as in the previous figure, the reactive power output by the converter can be controlled to a set value within the allowable loss of the damping circuit.

しかし、第6図も第9図も同様であるが、これらの実施
例では制御角の上限の値を制限しているため、転流失敗
等の直流系の事故が生じた場合、事故を抑制するための
制御が十分に行なえない欠点がある。
However, as shown in Figures 6 and 9, since the upper limit of the control angle is limited in these embodiments, if a DC system accident such as commutation failure occurs, the accident can be suppressed. The disadvantage is that sufficient control is not possible.

この対策を施した実施例を第10図に示す。前図と比較
して前記関数発生器FGl,FG2の人力信号として直
流電圧の検出値Vdfを余分に使用する点が、異なる。
前図と異なる部分のみ説明すると、DCPTは直流電圧
を検出するための直流電圧変換器..FG,,FG2は
前記第6図の関数発生器の入力信号として余分に直流電
圧検出値Dfを用い、常時は該信号による出力を殺して
おき、異常時にのみ生きるようにし、短時間に限つて許
容値の範囲を越えて運転が行なえるようにしたものであ
る。この回路の具体的な構成としては第7図の演算増幅
器0P3に並列に直流電圧検出値による補正回路を付加
すること等によジ簡単に実現できる。この一実施例を第
11図に示す。第12図は直流電圧検出値による補正回
路を含んだ本発明の他の実施例を示したものである。
An example in which this measure is taken is shown in FIG. The difference from the previous figure is that the detected value Vdf of the DC voltage is additionally used as the human input signal of the function generators FGl and FG2.
To explain only the parts that are different from the previous figure, DCPT is a DC voltage converter for detecting DC voltage. .. FG,, FG2 use the extra DC voltage detection value Df as an input signal of the function generator shown in FIG. This allows operation beyond the permissible range. The specific configuration of this circuit can be easily realized by adding a correction circuit based on a DC voltage detection value in parallel to the operational amplifier 0P3 shown in FIG. An example of this is shown in FIG. FIG. 12 shows another embodiment of the present invention including a correction circuit based on a detected DC voltage value.

この図では制御角のリミツタが電圧選択回路VSの部分
にまとめて設けられている。この回路によつても前図と
同様にダンピング回路の損失を許容値の範囲に保つた状
態で安定な運転が行なえる。
In this figure, the control angle limiters are collectively provided in the voltage selection circuit VS. This circuit also allows stable operation while keeping the loss of the damping circuit within the allowable range, as in the previous figure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無効電力制御運転を行なう直流系のプロ
ツク線図、第2図はダンピング回路を表わした図、第3
図は制御角に対するダンピング回路の損失を示ず図、第
4図および第5図は交流電圧および直流電流を変化した
ときのダンピング回路の損失を許容値に抑えるための制
御角を示す図、第6図は本発明の一実施例を示す図、第
7図は第4図、第5図の特性を実現するための具体的な
回路例、第8図は第7図の回路の動作説明図、第9図及
至第12図は本発明の他の実施例を示す図である。 GR・・・・・・定余裕角制御回路、QR・・・・・・
無効電力制御回路、PR・・・・一・電力制御回路、V
S・・・・・・電圧選沢回路、N・・・・・・符号反転
器、SWl,SW2・・・・・・スイッチ、DS・・・
・・・スイツチ駆動回路、D,及至D4・・・・・・ダ
イオード、FG,,FG2・・・・・・関数発生器、Δ
Id・・・・・・電流マージン指令、Qp、・・・・・
・無効電力設定値、E2t・・・・・・交流電圧検出値
、Idf・・・・・・直流電流検出値。
Figure 1 is a block diagram of a DC system that performs conventional reactive power control operation, Figure 2 is a diagram showing a damping circuit, and Figure 3 is a block diagram of a DC system that performs conventional reactive power control operation.
The figure does not show the loss of the damping circuit with respect to the control angle. Figures 4 and 5 show the control angle for suppressing the loss of the damping circuit to an allowable value when changing the AC voltage and DC current. 6 is a diagram showing an embodiment of the present invention, FIG. 7 is a specific example of a circuit for realizing the characteristics shown in FIGS. 4 and 5, and FIG. 8 is an explanatory diagram of the operation of the circuit shown in FIG. 7. , FIGS. 9 to 12 are diagrams showing other embodiments of the present invention. GR: Constant margin angle control circuit, QR:
Reactive power control circuit, PR...--Power control circuit, V
S...Voltage selection circuit, N...Sign inverter, SWl, SW2...Switch, DS...
...Switch drive circuit, D, to D4...Diode, FG,, FG2...Function generator, Δ
Id...Current margin command, Qp,...
- Reactive power setting value, E2t...AC voltage detection value, Idf...DC current detection value.

Claims (1)

【特許請求の範囲】 1 サイリスタ等により構成される交直変換器の運転制
御方法において、制御角リミッタを設け、該制御角リミ
ッタのリミット値を、交直変換器のダンピング回路の損
失を許容範囲として、交流電圧と直流電流の大きさに基
づいて変えるようにしたことを特徴とする交直変換器の
運転制御方法。 2 特許請求の範囲第1項記載の運転制御方法において
、該制御角リミッタによる制御角の制限は、交直変換器
の起動及び停止時はその制限を解除することを特徴とす
る交直変換器の運転制御方法。
[Claims] 1. In a method for controlling the operation of an AC/DC converter configured with a thyristor or the like, a control angle limiter is provided, and the limit value of the control angle limiter is set to a permissible range of loss in a damping circuit of the AC/DC converter, A method for controlling the operation of an AC/DC converter, characterized in that the AC voltage and the DC current are changed based on the magnitude of the AC voltage and the DC current. 2. In the operation control method according to claim 1, the control angle limiter is configured to release the restriction on the control angle when the AC/DC converter is started or stopped. Control method.
JP52090299A 1977-07-29 1977-07-29 AC/DC converter operation control method Expired JPS5943913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52090299A JPS5943913B2 (en) 1977-07-29 1977-07-29 AC/DC converter operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52090299A JPS5943913B2 (en) 1977-07-29 1977-07-29 AC/DC converter operation control method

Publications (2)

Publication Number Publication Date
JPS5425428A JPS5425428A (en) 1979-02-26
JPS5943913B2 true JPS5943913B2 (en) 1984-10-25

Family

ID=13994650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52090299A Expired JPS5943913B2 (en) 1977-07-29 1977-07-29 AC/DC converter operation control method

Country Status (1)

Country Link
JP (1) JPS5943913B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200806U (en) * 1987-06-08 1988-12-23
JPH0423203Y2 (en) * 1985-04-25 1992-05-29

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172505U (en) * 1982-05-12 1983-11-18 興和地下建設株式会社 Pavement roadbed diagnostic vehicle
US5801762A (en) * 1995-07-17 1998-09-01 Olympus America, Inc. Digitally measuring scopes using a high resolution encoder
US5573492A (en) * 1994-12-28 1996-11-12 Olympus America Inc. Digitally measuring scopes using a high resolution encoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423203Y2 (en) * 1985-04-25 1992-05-29
JPS63200806U (en) * 1987-06-08 1988-12-23

Also Published As

Publication number Publication date
JPS5425428A (en) 1979-02-26

Similar Documents

Publication Publication Date Title
JP3265398B2 (en) DC power transmission device control device
US5491624A (en) AC to DC power conversion system
KR20080015454A (en) Variable-frequency drive with regeneration capability
JPS6040254B2 (en) Reactive power control device
EP0165020A2 (en) Power converter for AC load
FR2812476A1 (en) ALTERNATIVE-CONTINUOUS CONVERTER
JPH0740761B2 (en) AC electric vehicle control device
JPS5943913B2 (en) AC/DC converter operation control method
US4933828A (en) Control system for voltage-source pulse width modulation step-up rectifier
JPH11262187A (en) Controller of power storage system
JPH07336892A (en) Method and equipment for controlling self-excited dc transmission facility
JPH0327734A (en) Control circuit for uninterruptible power supply
JP3057332B2 (en) Instantaneous interruption power switching method and instantaneous interruption uninterruptible power supply
JP4470618B2 (en) Control device and method for power converter
JP2580746B2 (en) Control method of suburban power compensator
JPS6223539B2 (en)
JPS5961475A (en) Power converter
JP2914127B2 (en) Control circuit of pulse width modulation power converter
JP2771948B2 (en) Power converter control device
SU1037404A1 (en) Method of controlling output phase voltages of three-phase frequency converter
JPH02303390A (en) Pwm controller for ac motor
JPS6148724B2 (en)
JPS5824923A (en) Switching regulator
JPS592577A (en) Stopping method for power converter
JPS62251815A (en) Inverter control device for optical power generation