[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59232246A - Ni-cr alloy having excellent resistance to stress corrosion cracking - Google Patents

Ni-cr alloy having excellent resistance to stress corrosion cracking

Info

Publication number
JPS59232246A
JPS59232246A JP10409583A JP10409583A JPS59232246A JP S59232246 A JPS59232246 A JP S59232246A JP 10409583 A JP10409583 A JP 10409583A JP 10409583 A JP10409583 A JP 10409583A JP S59232246 A JPS59232246 A JP S59232246A
Authority
JP
Japan
Prior art keywords
alloy
stress corrosion
corrosion cracking
resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10409583A
Other languages
Japanese (ja)
Other versions
JPH0153341B2 (en
Inventor
Takao Minami
孝男 南
Hiroo Nagano
長野 博夫
Kazuo Yamanaka
和夫 山中
Yasutaka Okada
康孝 岡田
Hiroshi Usuda
薄田 寛
Yoshiro Onimura
鬼村 吉郎
Toshio Yonezawa
利夫 米澤
Shinya Sasakuri
笹栗 信也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10409583A priority Critical patent/JPS59232246A/en
Priority to DE19833382737 priority patent/DE3382737T2/en
Priority to DE8383730106T priority patent/DE3382433D1/en
Priority to EP19890103551 priority patent/EP0329192B1/en
Priority to EP83730106A priority patent/EP0109350B1/en
Publication of JPS59232246A publication Critical patent/JPS59232246A/en
Priority to US06/878,398 priority patent/US4715909A/en
Publication of JPH0153341B2 publication Critical patent/JPH0153341B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To provide an Ni-Cr alloy having excellent resistance to stress corrosion cracking by annealing an alloy consisting of a specific ratio of C, Si, Mn, P, S, Ni, Cr, Al, Ti, Nb, Mo, W, V and Fe at a specific temp. CONSTITUTION:An alloy consisting, by weight %, <=0.04% C, <=1.0% Si, <=1.0% Mn, <=0.030% P, <=0.02% S, 40-70% Ni, 25-35% Cr, 0.1-0.5% Al, 0.2-1.0% Ti, 10-125 Nb/C (where 0.2-5.0/ Nb), 0.5-5.0% total of 1 or >=2 kinds among Mo, W and V and the balance substantially Fe is annealed at 900-975 deg.C. An unsolutionized carbide is thus precipitated in the grains and the surface film is strengthened, by which the Ni-base high Cr alloy having considerably improved resistance to stress corrosion cracking is obtd.

Description

【発明の詳細な説明】 本発明は、耐応力腐食割れ性(以下、耐SCC性とも称
する)に優れたNi基高Cr合金、特に粒内に未固溶炭
化物を析出させるとともに表面皮膜の強化を図って耐応
力腐食割れ性を著しく改善したNi基高Cr合金に関す
る。
Detailed Description of the Invention The present invention provides a Ni-based high Cr alloy with excellent stress corrosion cracking resistance (hereinafter also referred to as SCC resistance), in particular, a Ni-based high Cr alloy that precipitates undissolved carbides in the grains and strengthens the surface film. This invention relates to a Ni-based high-Cr alloy that has significantly improved stress corrosion cracking resistance.

CI−イオンを含む応力腐食割れ環境下で使用される、
例えば原子力あるいは化学プラン1〜等のデユープ、容
器さらにはそれらの付属部品には、耐応力腐食割れ性に
すぐれているといわれているニソゲル基合金が多く使用
されている。しかしながら、従来一般に使用されている
30%Cr−60%Ni系合金にあっても使用環境によ
っては応力腐食割れの発生はさけられないことが報告さ
れている。
Used in stress corrosion cracking environments containing CI-ions,
For example, Nisogel-based alloys, which are said to have excellent stress corrosion cracking resistance, are often used in duplexes, containers, and their accessory parts for nuclear power or chemical plans 1 to 1. However, it has been reported that stress corrosion cracking cannot be avoided depending on the usage environment even with the conventionally used 30% Cr-60% Ni alloy.

ここに、本発明の目的とするところは、原子力あるいは
化学プラント等のチューブ、容器およびイ」属部品に厚
板、丸棒あるいはパイプの形態で使用される耐食性、特
に耐応力腐食割れ性にずくれた合金を提供することであ
る。
The object of the present invention is to improve the corrosion resistance, especially the stress corrosion cracking resistance, of tubes, containers, and metal parts used in nuclear or chemical plants in the form of thick plates, round bars, or pipes. The goal is to provide the alloys that were given to us.

そこで、本発明者らは上述のような30%Cr−60%
Ni基合金がC含有量に応じて980〜1150℃とい
う比較的高温度で最終焼鈍され、未固溶炭化物の存在し
ない状態で使用されているごとに着目し、合金組織中の
炭化物の形態と耐食性との関連を追求したところ、むし
ろ粒内であれば炭化物は積極的に析出させたほうが耐応
力腐食割れ性の向上に有効であることの知見を得た。ま
た、CI−イオンを含む高温水環境下では孔食を起点と
して応力腐食割れが生じると報告されているため、耐孔
食性の改善に有効な元素として知られているMOlWお
よび■を添加し2て皮膜の強化を図ったところ、前述の
炭化物の析出効果と相俟って、得られた合金の耐食性、
つまり耐応力腐食割れ性が著しく改善されることを見い
出して、本発明を完成したものである。
Therefore, the present inventors made the above-mentioned 30%Cr-60%
Focusing on the fact that Ni-based alloys are finally annealed at a relatively high temperature of 980 to 1150°C depending on the C content and are used in the absence of undissolved carbides, we investigated the morphology of carbides in the alloy structure. When we investigated the relationship with corrosion resistance, we found that actively precipitating carbides within grains is more effective in improving stress corrosion cracking resistance. In addition, it has been reported that stress corrosion cracking occurs starting from pitting corrosion in a high-temperature water environment containing CI- ions. When we tried to strengthen the film by using the above-mentioned method, the corrosion resistance of the obtained alloy was improved due to the carbide precipitation effect mentioned above.
In other words, the present invention was completed by discovering that the stress corrosion cracking resistance was significantly improved.

ここに、本発明の要旨とするところは、重量%で、C:
 0.04%以下、  Si : 1.0%以下、Mn
 : 1.0%以下、  P : 0.030%以下、
s:o、o2%以下、  Ni : 40〜70%、C
r:25〜35%、      八l  : 0.1 
〜0.5  %、Ti : 0.2〜1.0%、 Nb/C:10〜125(ただしNb : 0.2〜5
.0%)MO%Wおよび■の1種または2種以上を合計
0.5〜5.0%、 残部実質的にFe よりなり、900〜975℃で焼鈍して得られる、耐応
力腐食割れ性に優れたNi−Cr合金である。
Here, the gist of the present invention is that in weight %, C:
0.04% or less, Si: 1.0% or less, Mn
: 1.0% or less, P: 0.030% or less,
s: o, o2% or less, Ni: 40-70%, C
r: 25-35%, 8l: 0.1
~0.5%, Ti: 0.2~1.0%, Nb/C: 10~125 (however, Nb: 0.2~5
.. Stress corrosion cracking resistance obtained by annealing at 900-975°C, consisting of a total of 0.5-5.0% of one or more of MO%W and It is a Ni-Cr alloy with excellent properties.

かくして、本発明によれば、従来問題とされていたNi
基高Cr合金の耐応力腐食割れ性が著しく改善されるの
であり、そのような予想外の効果は、C含有量を0.0
4%以下に制限するとともに、900℃ないし975℃
という比較的低温度で最終焼鈍を行った場合、Ni:4
0%以上のNi基合金ではT tよりもNbのほうがC
固定効果が大きいため、粒界に析出するC’r炭化物が
少なくなること、同時にMo、WおよびVの少なくとも
1種を添加して皮膜強化を図ったことによる相乗的効果
の結果と考えられる。
Thus, according to the present invention, Ni
The stress corrosion cracking resistance of base-heavy Cr alloys is significantly improved, and such an unexpected effect was demonstrated when the C content was reduced to 0.0.
Limit to 4% or less, and 900℃ to 975℃
When final annealing is performed at a relatively low temperature of
In Ni-based alloys containing 0% or more, Nb has a higher C than Tt.
This is thought to be the result of a synergistic effect resulting from the large fixing effect, which reduces the amount of C'r carbide precipitated at the grain boundaries, and at the same time, the addition of at least one of Mo, W, and V to strengthen the film.

本発明において合金組成および焼鈍温度を前述のように
限定した理由は次の通りである。
The reason why the alloy composition and annealing temperature are limited as described above in the present invention is as follows.

C: Cは耐SCC性に有害な元素であるので、その含有量は
0,04%以下に制限する。
C: Since C is an element harmful to SCC resistance, its content is limited to 0.04% or less.

Si、MnXAl : これらの元素はいずれも脱酸元素であり、それぞれ溶製
条件に応じて適宜量だけ添加されるが、St、M n 
、、A Iがそれぞれ1.0%、1.0%および0.5
%の上限を越えると、合金の清浄度を劣化させる。なお
、AIは0.1%未満では効果がない。
Si, MnXAl: All of these elements are deoxidizing elements, and are added in appropriate amounts depending on the melting conditions.
, , A I is 1.0%, 1.0% and 0.5 respectively
Exceeding the upper limit of % will degrade the cleanliness of the alloy. Note that AI has no effect if it is less than 0.1%.

Ni: Niは耐食性向上に有効な元素であって、特に耐酸性お
よびC1−イオン含有高温水中における耐SCC性を向
上させる。このためにはNiは40%以上必要であり、
また上限はCr % M o 、W、■等の合金元素の
添加割合を考慮して、70%以下とする。
Ni: Ni is an effective element for improving corrosion resistance, and particularly improves acid resistance and SCC resistance in high-temperature water containing C1- ions. For this purpose, Ni needs to be at least 40%,
Further, the upper limit is set to 70% or less, taking into consideration the addition ratio of alloying elements such as Cr%Mo, W, and ■.

Cr : Crは耐食性向上に必須の元素であるが、25%未満で
は耐SCC性の向上の効果が少ない。一方、35%を越
えると、熱間加工性が著しく劣化する。
Cr: Cr is an essential element for improving corrosion resistance, but if it is less than 25%, the effect of improving SCC resistance is small. On the other hand, when it exceeds 35%, hot workability deteriorates significantly.

したがって、本発明ではCrは25〜35%に制限する
。− P : Pは合金中に不純物として存在するものであって、0.
030%を越えると耐酸性および熱間加工性に有害であ
る。
Therefore, in the present invention, Cr is limited to 25 to 35%. - P: P exists as an impurity in the alloy, and has a content of 0.
If it exceeds 0.30%, it is harmful to acid resistance and hot workability.

S: Sも同様に不純物の1種であって、0.02%を越えて
存在すると、Pと同様に耐酸性および熱間加工性に有害
である。
S: Similarly, S is a type of impurity, and if present in an amount exceeding 0.02%, it is harmful to acid resistance and hot workability like P.

Ti: P、Sを上記の値以下に制御しても顕著な効果が得られ
ないため、本発明においてはTiを0.05%以上添加
することによって、所定の熱間加工性を確保させる。一
方、1.0%以上を越えると、その効果が飽和するため
、その上限を1.0%とする。
Ti: Even if P and S are controlled to below the above values, no significant effect can be obtained. Therefore, in the present invention, by adding 0.05% or more of Ti, a predetermined hot workability is ensured. On the other hand, if the content exceeds 1.0%, the effect will be saturated, so the upper limit is set at 1.0%.

Nb : Ni基合金(40%Ni以上)でばTiよりもNbの方
が炭素の固定効果が大である。従って、Nb量としては
0.2%以上〜5.0%以下でNb/Cで10〜125
倍になる。0.2%以下では炭素を固定する効果が小さ
いため、鋭敏化を生じて、SCC<応力腐食割れ)を発
生する。一方、5%を越えて含有しても、その効果(炭
素固定効果)が飽和するうえ、熱間加工性を著しく劣化
させるため、上限を5.0%とする。
Nb: In Ni-based alloys (40% Ni or more), Nb has a greater carbon fixing effect than Ti. Therefore, the Nb content is 0.2% to 5.0% and Nb/C is 10 to 125%.
Double. If it is less than 0.2%, the effect of fixing carbon is small, resulting in sensitization and SCC (stress corrosion cracking). On the other hand, if the content exceeds 5%, the effect (carbon fixation effect) is saturated and hot workability is significantly deteriorated, so the upper limit is set at 5.0%.

MOlW、V: これらの元素は、耐孔食性向上に有効な元素であり、特
に、CI−イオンを含む高温水中におりる耐孔食性を向
上させる。これらの元素の少なくとも1種の合計含有量
が0.5%未満では、表面の不動態皮膜が強化されない
ため、孔食を発生し、これにより耐応力腐食割れ性が劣
化する。一方、これらの元素の少なくとも1種を合計で
5.0%を越えて含有するとその耐孔食性の向上という
効果が飽和するうえ、熱間加工性を著しく劣化させる。
MOLW, V: These elements are effective for improving pitting corrosion resistance, and particularly improve pitting corrosion resistance in high-temperature water containing CI- ions. If the total content of at least one of these elements is less than 0.5%, the passive film on the surface is not strengthened, causing pitting corrosion, which deteriorates stress corrosion cracking resistance. On the other hand, if the total content of at least one of these elements exceeds 5.0%, the effect of improving pitting corrosion resistance is saturated, and hot workability is significantly deteriorated.

次に、本発明にあっては、900〜975°Cの温度で
焼鈍処理を行うが、この焼鈍温度が900℃未満では再
結晶が行われないため、強度が高く、また耐食性も十分
でない。一方、975℃を越えると合金中の炭素は焼鈍
特に完全に固溶してしまうため炭化物は粒内に存在し・
なくなる。したがって、975℃を越えた温度で焼鈍を
行うと、例えば600℃×5時間の鋭敏化処理を施す場
合、粒界に炭化物がすべて析出するために耐粒界腐食性
を劣化させる。よって、本発明においては最終焼鈍は9
00〜975℃の温度で行う。
Next, in the present invention, annealing is performed at a temperature of 900 to 975°C, but if the annealing temperature is less than 900°C, recrystallization will not occur, so the strength will not be high and the corrosion resistance will not be sufficient. On the other hand, if the temperature exceeds 975°C, the carbon in the alloy will be completely dissolved during annealing, so carbides will exist within the grains.
It disappears. Therefore, when annealing is performed at a temperature exceeding 975° C., for example, when a sensitization treatment is performed at 600° C. for 5 hours, all the carbides precipitate at the grain boundaries, which deteriorates the intergranular corrosion resistance. Therefore, in the present invention, the final annealing is 9
It is carried out at a temperature of 00-975°C.

次に、実施例によって本発明をさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

災嵐皿 第1表に示す化学成分から成る組成の合金を17kg真
空炉で溶製し、通常の条件下での鍛造、熱間圧延および
熱処理を加えた後、30%冷間加工し、引き続いて、各
種温度での焼鈍を施した。さらに、実際の使用下での寿
命を予想した条件にもとすいて設定された600℃×5
時間の熱処理により鋭敏化処理を行った後、厚さ3龍×
幅10雌×長さ40龍の粒界腐食試験片および厚さ2鶴
×幅10+wx長さ75 +n+aの応力腐食割れ試験
片を採取した。これらの粒界腐食試験片および応力腐食
割れ試験片はエメリー紙320番で研磨後、以下に述べ
る実験に使用した。
A 17 kg alloy having the chemical composition shown in Table 1 was melted in a vacuum furnace, forged under normal conditions, hot rolled and heat treated, then cold worked by 30%, and then Then, annealing was performed at various temperatures. In addition, the temperature was set at 600℃
After sensitization treatment by time heat treatment, thickness 3×
A test piece for intergranular corrosion with a width of 10 mm x a length of 40 mm and a stress corrosion cracking test piece with a thickness of 2 mm x width of 10 + w x length of 75 + n + a were collected. These intergranular corrosion test pieces and stress corrosion crack test pieces were polished with No. 320 emery paper and used in the experiments described below.

まず、応力腐食割れ試験片は研磨後2枚重ね合わせて、
U型に曲げたダブルU−ベント試験片としてこれをオー
トクレーブ(高温高圧容器)を用いて、330℃で10
00ppm CI−(NaC1として)の溶液中に15
00時間浸漬した。試験終了後、内側試験片の割れの深
さを顕微鏡で測定した。
First, two stress corrosion cracking test pieces were polished and stacked together.
A double U-bent test piece bent into a U shape was heated at 330℃ for 10 minutes using an autoclave (high temperature and high pressure container).
15 in a solution of 00 ppm CI- (as NaCl)
It was soaked for 00 hours. After the test was completed, the depth of the crack in the inner specimen was measured using a microscope.

一方、粒界腐食試験片は60%HNO3+0.1%HF
の沸騰溶液中に4時間浸漬し、そのときの腐食減量を測
定した。
On the other hand, the intergranular corrosion test piece was 60% HNO3 + 0.1% HF.
It was immersed in a boiling solution for 4 hours, and the corrosion weight loss at that time was measured.

第1図は25%Cr−55%Ni系合金にMo、Wおよ
び■をそれぞれ約0.6%添加し、さらにNb/Cを種
々変化させた合金の粒界腐食試験結果をグラフにまとめ
て示したものである。この場合、供試合金は950℃で
30分間加熱して焼鈍処理を行い、水冷後、600℃で
5時間加熱して鋭敏化処理してから空冷した。Nb/C
が10未満の合金では耐粒界腐食性は卵重に悪いが、1
0以上になると急激に耐粒界腐食性が良くなることが分
がる。このことは、Nbが十分な量だけ添加されていな
いと、鋭敏化処理した場合にCr炭化物が粒界に析出す
ることにより、粒界近傍にCr欠乏層を生じるために、
耐食性が劣化するものと考えられる。従って、炭素を固
定するためには十分な量のNb、つまり大きなNb/C
比が必要であり、その値は10倍以上が必要である。
Figure 1 is a graph summarizing the intergranular corrosion test results for a 25%Cr-55%Ni alloy with approximately 0.6% each of Mo, W, and ■ added, and with various changes in Nb/C. This is what is shown. In this case, the test gold was annealed by heating at 950° C. for 30 minutes, water-cooled, sensitized by heating at 600° C. for 5 hours, and then air-cooled. Nb/C
Alloys with a value of less than 10 have poor intergranular corrosion resistance, but those with a value of 1
It can be seen that when the value becomes 0 or more, the intergranular corrosion resistance improves rapidly. This is because if a sufficient amount of Nb is not added, Cr carbides will precipitate at the grain boundaries during the sensitization treatment, resulting in a Cr-depleted layer near the grain boundaries.
It is thought that corrosion resistance deteriorates. Therefore, in order to fix carbon, a sufficient amount of Nb, that is, a large Nb/C
A ratio of 10 times or more is required.

第2図はNb/Cが12〜20であって、Cr:25%
とするとともにMo、Wおよび■をそれぞれ0.6%添
加し、さらにNi含有量を18〜759A−の範囲で変
化させた合金のSCC(応力腐食割れ)試験結果を示し
たものである。この場合、供試材は950°Cで30分
間加熱して焼鈍処理を行い、水冷したものであった。
In Figure 2, Nb/C is 12 to 20 and Cr: 25%.
This figure shows the SCC (stress corrosion cracking) test results of alloys in which 0.6% each of Mo, W, and ■ were added, and the Ni content was varied in the range of 18 to 759A. In this case, the sample material was annealed by heating at 950° C. for 30 minutes, and then water-cooled.

Nb/Cが10以上でかつ、M(+、V、、Wをそれぞ
れ0.6%含有している25%Cr合金でもNi量が4
0%未満であれば、応力腐食割れが生じることが分かっ
た。従って、Ni含有量が40%以上になれば、SCC
感受性が高いことが明らかとなった。
Even in a 25% Cr alloy with Nb/C of 10 or more and containing 0.6% each of M(+, V, and W), the Ni content is 4.
It was found that stress corrosion cracking occurs if the content is less than 0%. Therefore, if the Ni content exceeds 40%, SCC
It was revealed that the sensitivity was high.

第3図は、1000ppm CI−イオンを含み高温高
圧溶液中で、Nb/Cが12以上、Ni 40%以上の
Cr−V−W合金の孔食発生の有無をグラフにまとめた
ものである。この場合、供試材は950℃で30分間加
熱して焼鈍処理を行った後、水冷したものである。図中
、丸印は■を添加した場合、三角印はWを添加した場合
をそれぞれ示す。Nb/Cが12以上であっても、Cr
含有量が25%未満であればVおよびWの量を、それぞ
れ0.6%以上含有する場合にあっても孔食が発生ずる
。また、Cr25%以上でもVおよびWの量が0.5%
未満では同じく孔食を発生ずる。従って、孔食を発生し
ない領域としては、25%C’r以上でかつ、■または
Wの値が0.5%、好ましくは0.6%であることが必
要であることが明らかとなった。このことから、孔食の
発生を防止するためには25%Crのみの不働態皮膜で
は不十分であって、■およびWの少なくとも1種を合B
1量で0.5%以上加えることが、不働態皮膜の強化と
C1−イオンからの攻撃を防止する働きがあるものと考
えられる。よって、耐孔食性を向上させるためにはCr
、Vおよび/またはWを添加することにより相乗的作用
が得られることが分かる。
FIG. 3 is a graph summarizing the occurrence of pitting corrosion in a Cr-V-W alloy with Nb/C of 12 or more and Ni of 40% or more in a high-temperature, high-pressure solution containing 1000 ppm CI- ions. In this case, the sample material was annealed by heating at 950° C. for 30 minutes and then cooled with water. In the figure, circles indicate the case where ■ is added, and triangle marks indicate the case where W is added. Even if Nb/C is 12 or more, Cr
If the content is less than 25%, pitting corrosion will occur even if the V and W contents are each 0.6% or more. In addition, even if Cr is 25% or more, the amount of V and W is 0.5%.
If it is less than that, pitting corrosion will occur as well. Therefore, it has become clear that for a region where pitting corrosion does not occur, it is necessary to have a C'r of 25% or more and a value of ■ or W of 0.5%, preferably 0.6%. . From this, it can be seen that a passive film of only 25% Cr is insufficient to prevent the occurrence of pitting corrosion, and that at least one of
It is thought that adding 0.5% or more of 1 amount has the effect of strengthening the passive film and preventing attack from C1- ions. Therefore, in order to improve pitting corrosion resistance, Cr
, V and/or W can provide a synergistic effect.

かかる相乗的作用をさらにMoまたはMO+W+■を添
加した場合の耐孔食性について第3図の場合と同様にし
てまとめたデータを第4図に表にまとめて示す。この場
合の供試材は950℃で30分間加熱して焼鈍処理を行
ってから水冷したものである。
FIG. 4 shows data compiled in the same manner as in FIG. 3 regarding the pitting corrosion resistance when Mo or MO+W+■ is further added to reflect such a synergistic effect. The sample material in this case was annealed by heating at 950° C. for 30 minutes and then water-cooled.

図中、丸印はMoを添加した場合を、菱形印はM。In the figure, circles indicate the case where Mo is added, and diamond marks indicate M.

+W+Vを添加した場合をそれぞれ示す。The cases in which +W+V are added are shown.

図示のグラフからは、耐孔食性を向上させるためには、
Cr含有量が25%以上必要で、かつ、M。
From the graph shown, it is clear that in order to improve pitting corrosion resistance,
Cr content is required to be 25% or more, and M.

またはMo+V+Wが合計で0.5%以上、好ましくは
0.6%以上必要であることが分かる。
Alternatively, it can be seen that the total amount of Mo+V+W is 0.5% or more, preferably 0.6% or more.

第5図は、焼鈍温度の応力腐食割れに及ぼす影響につい
て示すグラフである。この場合、第1表に示す合金番号
1および12の供試材を用い、焼鈍温度を850〜10
50°Cの範囲内で種々変化させて焼鈍を行った後、6
00°Cに5時間加熱して鋭敏化処理を行ってから空冷
した。このようにして得た各供試材について応力腐食割
れ試験を行い、割れ深さを測定した。図示のデータから
も明らかなように、900〜975℃で焼鈍したものは
耐応力腐食割れ性に優れている。この理由は、NbCが
析出して固溶炭素を固定するためと考えられる。
FIG. 5 is a graph showing the influence of annealing temperature on stress corrosion cracking. In this case, using the test materials of alloy numbers 1 and 12 shown in Table 1, the annealing temperature was set to 850 to 10.
After annealing at various temperatures within the range of 50°C,
The sample was sensitized by heating to 00°C for 5 hours and then air cooled. A stress corrosion cracking test was conducted on each sample material thus obtained, and the crack depth was measured. As is clear from the data shown, those annealed at 900 to 975°C have excellent stress corrosion cracking resistance. The reason for this is thought to be that NbC precipitates and fixes the solid solution carbon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は、本発明の実施例の実験結果をそ
れぞれまとめて示すグラフである。 出願人  住友金属工業株式会社 三菱重工業株式会社 代理人  弁理士 広 瀬 章 − 家l閏 Nb1c比 #2巳 Ni佑有壷(y、) L3 図 7、■−含有量(〃う #i回 Mo、 MoヰVす■含有量(γ。少 竿25 凹 頬ン鋺鼻度(0C) 高砂市荒井町新浜二丁目1番1 号三菱重工業株式会社高砂研究 所内 0発 明 者 米澤利夫 高砂市荒井町新浜二丁目1番1 号三菱重工業株式会社高砂研究 所内 0発 明 者 笹栗信也 高砂市荒井町新浜二丁目1番1 号三菱重工業株式会社高砂研究 所内 ■出 願 人 三菱重工業株式会社 東京都千代田区丸の内2丁目5 番1号
1 to 5 are graphs summarizing the experimental results of the embodiments of the present invention. Applicant: Sumitomo Metal Industries, Ltd. Mitsubishi Heavy Industries, Ltd., Agent Patent Attorney: Akira Hirose - House l leap Nb1c ratio #2巳Niyuaritsu (y,) L3 Figure 7, ■-Content (〃#i times Mo , Moive content (γ. Small rod 25 Concave cheeks and nose (0C) Mitsubishi Heavy Industries, Ltd. Takasago Research Institute, 2-1-1 Niihama, Arai-cho, Takasago City 0 Inventor: Toshio Yonezawa Niihama, Arai-cho, Takasago City No. 2-1-1 Mitsubishi Heavy Industries, Ltd., Takasago Research Center 0 Author: Shinya Sasaguri 2-1-1 Niihama, Arai-cho, Takasago City, Mitsubishi Heavy Industries, Ltd. Takasago Research Center ■ Applicant: Mitsubishi Heavy Industries, Ltd. 2, Marunouchi, Chiyoda-ku, Tokyo Chome 5-1

Claims (1)

【特許請求の範囲】 重量%で、 C: 0.04%以下、  Si : 1.0%以下、
Mn : 1.0%以下、  P : 0.030%以
下、S:0.02%以下、  Ni : 40〜70%
、Cr:25〜35%、   Al : 0.1〜0.
5%、Ti : 0.2〜1.0%、 Nb/C:10〜125(ただしNb : 0.2〜5
.0%)Mo、 WおよびVの1種または2種以上を合
計0.5〜5.0%、 残部実質的にFe よりなり、900〜975°Cで焼鈍して得られる、耐
応力腐食割れ性に優れたNi−Cr合金。
[Claims] In weight %, C: 0.04% or less, Si: 1.0% or less,
Mn: 1.0% or less, P: 0.030% or less, S: 0.02% or less, Ni: 40-70%
, Cr: 25-35%, Al: 0.1-0.
5%, Ti: 0.2-1.0%, Nb/C: 10-125 (however, Nb: 0.2-5
.. 0%) Stress corrosion cracking resistant, consisting of one or more of Mo, W and V in a total of 0.5 to 5.0%, the remainder substantially Fe, and obtained by annealing at 900 to 975°C. Ni-Cr alloy with excellent properties.
JP10409583A 1982-11-10 1983-06-13 Ni-cr alloy having excellent resistance to stress corrosion cracking Granted JPS59232246A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10409583A JPS59232246A (en) 1983-06-13 1983-06-13 Ni-cr alloy having excellent resistance to stress corrosion cracking
DE19833382737 DE3382737T2 (en) 1982-11-10 1983-11-09 Nickel-chrome alloy.
DE8383730106T DE3382433D1 (en) 1982-11-10 1983-11-09 NICKEL CHROME ALLOY.
EP19890103551 EP0329192B1 (en) 1982-11-10 1983-11-09 Nickel-chromium alloy
EP83730106A EP0109350B1 (en) 1982-11-10 1983-11-09 Nickel-chromium alloy
US06/878,398 US4715909A (en) 1983-06-13 1986-06-19 Nickel-chromium alloy in stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10409583A JPS59232246A (en) 1983-06-13 1983-06-13 Ni-cr alloy having excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS59232246A true JPS59232246A (en) 1984-12-27
JPH0153341B2 JPH0153341B2 (en) 1989-11-14

Family

ID=14371554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10409583A Granted JPS59232246A (en) 1982-11-10 1983-06-13 Ni-cr alloy having excellent resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS59232246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157653A (en) * 1984-12-28 1986-07-17 Toshiba Corp High strength ni-base alloy having excellent corrosion resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134546A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Corrosion resistant alloy
JPS57203738A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe
JPS57203739A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134546A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Corrosion resistant alloy
JPS57203738A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe
JPS57203739A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157653A (en) * 1984-12-28 1986-07-17 Toshiba Corp High strength ni-base alloy having excellent corrosion resistance

Also Published As

Publication number Publication date
JPH0153341B2 (en) 1989-11-14

Similar Documents

Publication Publication Date Title
JP2818195B2 (en) Nickel-based chromium alloy, resistant to sulfuric acid and oxidation
GB1558936A (en) High strangth ferritic alloy
CA1149646A (en) Austenitic stainless corrosion-resistant alloy
US3342590A (en) Precipitation hardenable stainless steel
US3347663A (en) Precipitation hardenable stainless steel
JP4116134B2 (en) Austenitic stainless steel excellent in high temperature sag resistance and method for producing the same
JPH01275738A (en) Austenite stainless steel
JPS6184348A (en) Ni alloy having superior resistance to intergranular corrosion and stress corrosion cracking and superior hot workability
JPH0711366A (en) Alloy excellent in hot workability and corrosion resistance in high temperature water
JPS5940901B2 (en) Corrosion-resistant austenitic stainless steel
GB2103243A (en) Ni-cr-w alloy having improved high temperature fatigue strength and method of producing the same
JPS59232246A (en) Ni-cr alloy having excellent resistance to stress corrosion cracking
JPH05311345A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH0114991B2 (en)
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JPS59229457A (en) Ni-base high-cr alloy having excellent resistance to stress corrosion cracking
JPS61104054A (en) High-strength and high-toughness welded clad steel pipe for line pipe
JPH07238349A (en) Heat resistant steel
JP2001003149A (en) METHOD FOR HEAT TREATING Co BASE ALLOY
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH05311344A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JPS6013060B2 (en) Ferritic heat-resistant steel
JPH03100148A (en) Heat treatment for high cr-ni-base alloy
JP2004091816A (en) Nickel-based alloy, heat treatment method for nickel-based alloy, and member for nuclear power with the use of nickel-based alloy
JPS59110767A (en) Austenite stainless steel