JPS59223284A - Manufacture of carbon material - Google Patents
Manufacture of carbon materialInfo
- Publication number
- JPS59223284A JPS59223284A JP58095045A JP9504583A JPS59223284A JP S59223284 A JPS59223284 A JP S59223284A JP 58095045 A JP58095045 A JP 58095045A JP 9504583 A JP9504583 A JP 9504583A JP S59223284 A JPS59223284 A JP S59223284A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- carbon material
- composition
- metal
- carbon composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、焼結時の結晶成長を制御した炭素材の製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a carbon material in which crystal growth during sintering is controlled.
在来、炭素材の複合材として多くの提案が出されている
。例えば、各種の炭素材の混合組成物を一定の温度で焼
成し加圧成形し、膜、シート、線、棒、時には粉粒体に
して用いるものが提案されている。これら焼成混合組成
物は一定の温度で焼成処理されて用いられる。また混合
炭素材としては、炭素粉とタールと有機化合物または炭
化物をベースにしたものが多い。これらのものは、全体
的に均一な組成であって均一な結晶であることを標準的
な課題として解決方法を得ている。ところが、炭素材の
使用目的を達成するためには、焼結製品は、その最終焼
成時でも、部分的にグラファイト化を遅延させることま
たはグラファイト化しないようにし、グラファイト化を
した部分の結晶の大きさを変化させまたその結晶粒度を
制御することが必要である。Conventionally, many proposals have been made as composite materials of carbon materials. For example, it has been proposed that a mixed composition of various carbon materials is fired at a constant temperature and pressure-molded to form a film, sheet, wire, rod, or sometimes powder or granule. These fired mixed compositions are used after being fired at a constant temperature. Further, mixed carbon materials are often based on carbon powder, tar, and organic compounds or carbides. These materials have a standard problem of having uniform composition and uniform crystals as a whole, and a solution has been obtained. However, in order to achieve the intended use of carbon materials, even during the final firing of the sintered product, it is necessary to partially delay or prevent graphitization, and to reduce the size of the crystals in the graphitized parts. It is necessary to vary the grain size and control the grain size.
本発明は、前記の目的のために、焼成前の炭素組成物(
以下、A炭素組成物と呼ぶ。)またはグラファイト化温
度以下で行った一次焼成をしたもの(以下、B炭素組成
物と呼ぶ。)の表面に、金属またはグラファイト化温度
が相異する炭素材を被覆した後姉、さらに所要の温度で
焼成をすることKよ多部分的にグラファイト化が異な多
部分的に結晶の大きを制御した炭素組成物(以下、最終
炭素組成物と呼ぶ。)が得られる炭素材の製造方法を提
供するものである。For the above purpose, the present invention provides a carbon composition (
Hereinafter, it will be referred to as A carbon composition. ) or the surface of a material that has been primarily fired at a temperature below the graphitization temperature (hereinafter referred to as B carbon composition) is coated with a metal or a carbon material with a different graphitization temperature, and then further heated at the required temperature. To provide a method for producing a carbon material in which a carbon composition (hereinafter referred to as a final carbon composition) in which the graphitization is different in many parts and the crystal size is controlled in many parts is obtained by firing at K. It is something.
前記の最終炭素組成物を得るために用いる金属は、活性
化金属パラジウム、白金、チタン、または銅その他の金
属を用いる。また、最終炭素組成物を得るために用いる
炭素材は、きわめてグラファイト化(炭化)が困難な樹
脂グラツシカーボン材を利用する。該樹脂は、ポリメタ
クリル酸メチル、ポリエチレン、ポリエステルその他の
樹脂を用いる。このようなグラファイト化困難性を有す
る樹脂から生成するカーボンを用いるために、樹脂量を
混合し含有する量は最小5%以上で最大60チ程度の範
囲で用いる。この利用によシ実用効果はきわめて高いも
のが得られる。The metal used to obtain the final carbon composition may be activated metal palladium, platinum, titanium, copper or other metals. Furthermore, the carbon material used to obtain the final carbon composition is a resinous carbon material that is extremely difficult to graphitize (carbonize). As the resin, polymethyl methacrylate, polyethylene, polyester, or other resin is used. In order to use carbon produced from such a resin that is difficult to graphitize, the amount of resin to be mixed and contained is at least 5% at the minimum and about 60% at the maximum. By using this method, extremely high practical effects can be obtained.
次に、若干の実施例について説明する。Next, some embodiments will be described.
実施例 1゜
石油コークスをA炭素組成物とし、この石油コークスと
タールを混合するとき、石油コークス80俤とタール1
0’lpKポリエチレン・グラツシカーボン(20μ粒
)10%を混合して石油コークスの表面にポリエチレン
゛・グラツシカーボンの被覆層を形成して後に、150
Kf/cj加圧下で1200℃で一次焼成し、次に、2
00 Kf/m加圧下で2100℃の焼成温度で3時間
焼結し最終炭素組成物を形成した。このものは、比重が
1,85、ショア硬度54、曲げ強さ960 Ky/n
d、圧縮強さ1860 Kf/di、引張強さ1100
Kr/csf、固有抵抗1100μΩ口となった。Example 1゜ Petroleum coke is made of A carbon composition, and when this petroleum coke and tar are mixed, 80 yen of petroleum coke and 1 tar are mixed.
After mixing 10% of 0'lpK polyethylene/glassy carbon (20μ grains) to form a coating layer of polyethylene/glassy carbon on the surface of petroleum coke,
Primary firing was performed at 1200°C under Kf/cj pressure, and then 2
The final carbon composition was formed by sintering at a sintering temperature of 2100° C. for 3 hours under a pressure of 0.00 Kf/m. This product has a specific gravity of 1.85, a shore hardness of 54, and a bending strength of 960 Ky/n.
d, compressive strength 1860 Kf/di, tensile strength 1100
Kr/csf, specific resistance was 1100 μΩ.
実施例 2゜
石油コークス92チとタール8チを充分に混合し、これ
を1200℃で一次焼成して棒状のB炭素組成物を生成
した。この形状は、10間直径、長さ100朋で、これ
を基材とし、て用いた。Example 2 92 degrees of petroleum coke and 8 degrees of tar were thoroughly mixed, and this was primarily fired at 1200° C. to produce a rod-shaped B carbon composition. This shape had a diameter of 10 mm and a length of 100 mm, and was used as a base material.
この基材の表面に、活性化パラジウムを約200オング
ストロームの厚さの被覆層として形成する。Activated palladium is deposited on the surface of the substrate as a coating layer approximately 200 angstroms thick.
次に、250Kp/cnの加圧下で2600℃に加熱し
棒状成形体とし最終炭素組成体を形成した。金属の一部
は炭素組成物の内部に分散し拡散し被覆と内層とを十分
に強化密着する。Next, it was heated to 2600° C. under a pressure of 250 Kp/cn to form a rod-shaped molded body to form a final carbon composition. A portion of the metal is dispersed and diffused within the carbon composition, sufficiently reinforcing and adhering the coating and the inner layer.
このものは、比重1.91、曲げ強さ980Kf/cd
l、圧縮強さ2100Kf/ad、弾性係数1560K
p/c!I、固有抵抗1000μΩαであった。This item has a specific gravity of 1.91 and a bending strength of 980 Kf/cd.
l, compressive strength 2100Kf/ad, elastic modulus 1560K
p/c! I, and the specific resistance was 1000 μΩα.
実施例・3゜
実施例2の場合に利用したパラジウムに代えて、金属を
、白金、チタン、銅、鉄、クロム、タングステン、モリ
ブデン、希土類元素を用いたものの場合、はぼ同様に、
良好な強度と固有抵抗値が得られた。Example 3゜In the case where platinum, titanium, copper, iron, chromium, tungsten, molybdenum, and rare earth elements were used as metals instead of palladium used in Example 2, similar to Habo,
Good strength and specific resistance values were obtained.
実施例 4゜
グラツシカーボンを生成する樹脂として、ポリエチレン
、ポリスチレン、ポリエステル、ポリカーボネートを用
いたものの場合は、実施例に示したものと同様に良好な
強度と固有抵抗値が得られた。Example 4 When polyethylene, polystyrene, polyester, or polycarbonate was used as the resin for producing the 4° glassy carbon, good strength and resistivity values were obtained similar to those shown in Examples.
実施例 5゜
前記の実施例20本焼結時に、直交するX、 Y、2三
方向から加圧して焼結した結果は、強度および固有抵抗
値は、前記の実施例2と同様に良好であシ、圧縮強度が
約3200Ky/cj以上のものが得られ九〇
ガお基材に被覆する金属もしくは炭素組成物の量は多く
の実験結果、最小5%程度以上最大60%程度まで利用
することができた。Example 5゜The results of sintering the 20 pieces of Example 2 described above by applying pressure from three orthogonal directions, X, Y, and 2, show that the strength and resistivity values are as good as those of Example 2. As a result of many experiments, the amount of metal or carbon composition coated on the base material to obtain a compressive strength of about 3200 Ky/cj or more is used to be at least about 5% or more and up to about 60%. I was able to do that.
また焼結温度はグラファイト化をし、そのための結晶の
大きさを制御することができる任Jの焼成温度を選んで
焼結する。In addition, the sintering temperature is selected to be suitable for graphitizing and controlling the crystal size.
すでに説明したように、本発明は、グラファイト化の温
度が相異する炭素を用いて基材として、膜、シート、粉
粒、棒、立方体、線、線から成る繊維状物などの形状の
ものにしだ入炭素組成物またはB炭素組成物に、グラフ
ァイト化の温度が相異しまたはグラファイト化の困難な
炭素をもつ樹脂もしくは高炭素有機化合物または金属を
被覆して後に焼結するようにしたから、被覆層のグラフ
ァイト化制御によシ、一部のグラファイト化を遅らせた
り、グラファイト化しない部分をつくったシし、グラフ
ァイトになったときの結晶の大きさを制御することがで
きて、これによシ最終炭素組成物の成形体は、良好な強
度と固有抵抗値が得られ、諸種目的成品の製造に当如実
用的効果が大きいOAs already explained, the present invention uses carbon having different graphitization temperatures as a base material to form a film, a sheet, a powder, a rod, a cube, a wire, a fibrous material consisting of a wire, etc. This is because the Nishida carbon composition or the B carbon composition is coated with a resin or a high carbon organic compound or metal that has carbon that has a different graphitization temperature or is difficult to graphitize, and is then sintered. By controlling the graphitization of the coating layer, it is possible to delay the graphitization of some parts, create parts that do not convert to graphite, and control the size of the crystals when they become graphite. The molded body of the final carbon composition has good strength and resistivity, and has a great practical effect in the production of various purpose products.
Claims (1)
行った一次焼成炭素材の基材表面に、該基材とグラファ
イト化温度が異なる炭素組成物または金属の被覆層を形
成して後、加熱加圧を制御しそ焼結することを特徴とし
た炭素材の製造方法。 2 基材を薄板、粉末、繊維とし、表面に炭素組成物
または金属を被覆して後、所要量混合して焼結すること
を特徴とする特許請求の範囲第1虚に記載する炭素材の
製造方法。[Scope of Claims] 1. A coating layer of a carbon composition or metal having a graphitization temperature different from that of the base material is formed on the surface of a base material of a carbon material before firing or a primary fired carbon material performed at a temperature below the graphitization temperature. 1. A method for producing a carbon material, characterized in that the carbon material is then sintered under controlled heating and pressure. 2. A carbon material as described in the first claim, characterized in that the base material is a thin plate, powder, or fiber, and the surface is coated with a carbon composition or metal, and then the required amount is mixed and sintered. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58095045A JPS59223284A (en) | 1983-05-31 | 1983-05-31 | Manufacture of carbon material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58095045A JPS59223284A (en) | 1983-05-31 | 1983-05-31 | Manufacture of carbon material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59223284A true JPS59223284A (en) | 1984-12-15 |
Family
ID=14127092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58095045A Pending JPS59223284A (en) | 1983-05-31 | 1983-05-31 | Manufacture of carbon material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59223284A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6389490A (en) * | 1986-09-30 | 1988-04-20 | Toshiba Ceramics Co Ltd | Wafer heating jig |
JP2021130580A (en) * | 2020-02-19 | 2021-09-09 | 国立研究開発法人産業技術総合研究所 | Method for producing graphite material having high thermal expansion coefficient and the graphite material |
JP2021130601A (en) * | 2020-02-19 | 2021-09-09 | 国立研究開発法人産業技術総合研究所 | Method for producing molding of graphite material |
-
1983
- 1983-05-31 JP JP58095045A patent/JPS59223284A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6389490A (en) * | 1986-09-30 | 1988-04-20 | Toshiba Ceramics Co Ltd | Wafer heating jig |
JP2021130580A (en) * | 2020-02-19 | 2021-09-09 | 国立研究開発法人産業技術総合研究所 | Method for producing graphite material having high thermal expansion coefficient and the graphite material |
JP2021130601A (en) * | 2020-02-19 | 2021-09-09 | 国立研究開発法人産業技術総合研究所 | Method for producing molding of graphite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5879806A (en) | Method of processing carbon composite material | |
US20050187335A1 (en) | Substantially pure bulk pyrocarbon and methods of preparation | |
JPH0784344B2 (en) | Method for producing carbon fiber reinforced silicon carbide composite ceramics | |
JP2735151B2 (en) | Method for producing fiber-reinforced silicon carbide composite ceramics molded body | |
EP0133684B1 (en) | Substrate for a magnetic disc and method manufacturing same | |
JPS59223284A (en) | Manufacture of carbon material | |
Malik et al. | Effect of AlN addition on the electrical resistivity of pressureless sintered SiC ceramics with B4C and C | |
JP3605133B2 (en) | Carbide material coated with diamond-like carbon film functionally graded to substrate and method for producing the same | |
KR930009960A (en) | Composite materials resistant to friction and methods of manufacturing the same | |
JPH059458A (en) | Wet friction material | |
JPS63239154A (en) | Colored light-permeable polycrystal ceramics product and manufacture | |
Perevislov et al. | Chemical Resistance of Liquid-Phase-Sintered Materials Based on Si 3 N 4–BN | |
DE2629960C3 (en) | Process for the manufacture of products based on hexagonal boron nitride | |
JPS5895648A (en) | Manufacture of one-direction reinforced silicon carbide ceramic body | |
JP2003128475A (en) | Carbonaceous, porous body and its manufacturing method | |
JPS5841467A (en) | Manufacture and material for magnetic head slider | |
JPH01201087A (en) | Production of porous silicon carbide material | |
JPH03215307A (en) | Production of porous sic whisker pellet | |
JPH0678192B2 (en) | Carbon-silicon carbide based composite material and method for producing the same | |
JP3314383B2 (en) | Method for producing carbon fiber / carbon composite material | |
JPH0818886B2 (en) | Method for producing porous silicon carbide material | |
JPS61163180A (en) | High size precision and anti-abrasivity silicon carbide composite body and manufacture | |
JPS6265915A (en) | Carbonaceous sliding material | |
JPS60215573A (en) | Manufacture of silicon carbide-carbon composite material | |
JPH07109564A (en) | Graphite crucible for vapor deposition of metal and its production |