JP2021130601A - Method for producing molding of graphite material - Google Patents
Method for producing molding of graphite material Download PDFInfo
- Publication number
- JP2021130601A JP2021130601A JP2020068229A JP2020068229A JP2021130601A JP 2021130601 A JP2021130601 A JP 2021130601A JP 2020068229 A JP2020068229 A JP 2020068229A JP 2020068229 A JP2020068229 A JP 2020068229A JP 2021130601 A JP2021130601 A JP 2021130601A
- Authority
- JP
- Japan
- Prior art keywords
- stress
- graphite material
- product
- graphite
- molded product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007770 graphite material Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000000465 moulding Methods 0.000 title abstract description 16
- 238000005452 bending Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 5
- 239000004033 plastic Substances 0.000 abstract description 19
- 238000005087 graphitization Methods 0.000 abstract description 13
- 239000012467 final product Substances 0.000 abstract description 6
- 230000000630 rising effect Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 67
- 230000001590 oxidative effect Effects 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 239000002245 particle Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 239000011230 binding agent Substances 0.000 description 14
- 229910002804 graphite Inorganic materials 0.000 description 11
- 239000010439 graphite Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 238000004898 kneading Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000006253 pitch coke Substances 0.000 description 6
- 239000011305 binder pitch Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000571 coke Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002706 hydrostatic effect Effects 0.000 description 4
- 239000011295 pitch Substances 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011300 coal pitch Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000011331 needle coke Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、所定の最終製品により近い黒鉛材料成形品を製造する方法に関するものである。 The present invention relates to a method for producing a graphite material molded article that is closer to a predetermined final product.
黒鉛材料は、非酸化の雰囲気下では高い耐熱性を有し、高温を必要とする治具や装置の一部として広く使用されている。例えば、半導体素材のシリコン結晶の製造、人工サファイヤ、窒化ガリウム、炭化ケイ素の結晶を作るとき、金属アルミニウム、マグネシウムを溶融電解で精錬するときに使用される工業材料として使用されている。
一般に黒鉛材料はコークスなどの骨材とバインダーピッチ等の結合材を混練し、それらをゴム型に充填して圧力をかけるCIP成形や金型から押出す押出成形などにより成形した成形品を、非酸化性雰囲気で800℃〜1200℃まで加熱し(焼成工程)、さらにそれらを非酸化性雰囲気で2400℃〜3000℃まで加熱昇温する(黒鉛化工程)ことにより得ることができる。
Graphite material has high heat resistance in a non-oxidizing atmosphere and is widely used as a part of jigs and devices that require high temperature. For example, it is used as an industrial material used for producing silicon crystals of semiconductor materials, artificial sapphire, gallium nitride, and silicon carbide crystals, and refining metallic aluminum and magnesium by melt electrolysis.
In general, graphite materials are non-molded products formed by kneading aggregates such as coke and binders such as binder pitch, filling them in a rubber mold and applying pressure, or extrusion molding extruding from a mold. It can be obtained by heating to 800 ° C. to 1200 ° C. in an oxidizing atmosphere (calcination step), and further heating and raising the temperature to 2400 ° C. to 3000 ° C. in a non-oxidizing atmosphere (graphing step).
成形品を黒鉛材料にする各工程においては、収縮等の寸法変化があり、成形段階で最終部品の形状に仕上げることは不可能である為、黒鉛化した材料を切削加工により部品化するのが通常である。
その為、黒鉛材料を所定の寸法の治具や装置の部品にするには、サイズの大きなブロックより、切削加工し易いサイズのブロックを切り出し、さらにそれを適切な加工機械にセットし加工する方法がとられる。この際、所定の寸法まで削り込む際には切削粉が発生する為、それらを集塵機などで除去しながら加工機を動かすことになる。ここで、切削代が大きいと加工時間がかかり、且つ切削粉も多くなることから、適切なサイズおよび形状の黒鉛ブロックを選択するのが重要となる。
In each process of converting a molded product into a graphite material, there are dimensional changes such as shrinkage, and it is impossible to finish the shape of the final part at the molding stage. It is normal.
Therefore, in order to make a graphite material into a part of a jig or device with a predetermined size, a method of cutting out a block of a size that is easy to cut from a block of a large size, and setting it in an appropriate processing machine for processing. Is taken. At this time, since cutting powder is generated when cutting to a predetermined size, the processing machine is operated while removing them with a dust collector or the like. Here, if the cutting allowance is large, the processing time is long and the amount of cutting powder is large. Therefore, it is important to select a graphite block having an appropriate size and shape.
黒鉛材料を加工する方法については、金属材料の一般的な加工方法が適用可能であるが、中でも塑性変形については、非特許文献1には2000℃以上で巨視的な塑性変形が可能となっていわゆるクリープ現象がみられることが記載されている、また、非特許文献2には黒鉛材料が高温において塑性変形することが記載されており、試験的に高温加工が行われている旨の記載とクリープひずみの回復についての記載がある。
As a method for processing a graphite material, a general processing method for a metal material can be applied. Among them, regarding plastic deformation, Non-Patent
しかしながら、非特許文献1及び非特許文献2には、黒鉛材料の塑性変形及びクリープに関する記載であり、その永久変形量も小さく、工業的に利用するのは難しい状況であった。
However,
本発明は、黒鉛材料を所定の最終製品にするために必要な適切なサイズ及び形状の黒鉛材料成形品を製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a graphite material molded product having an appropriate size and shape necessary for making a graphite material into a predetermined final product.
このような中、本発明者らは長年にわたり黒鉛材料の特性の発現について鋭意検討をしてきた結果、800℃から1200℃で焼成した炭素材料(以下、焼成品と言う)を2400℃から3000℃まで昇温し黒鉛化するプロセス中に力を負荷すると、黒鉛化後の材料に力をかけた場合に比べて、より大きな塑性変形することを見出し、本発明に至ったものである。
本発明によれば、黒鉛化後の材料を塑性変形することでは得ることのできないより大きな塑性変形によって所定の最終製品により近い黒鉛材料成形品を得ることができる。
Under these circumstances, as a result of diligent studies on the development of the characteristics of graphite materials for many years, the present inventors have obtained carbon materials fired at 800 ° C. to 1200 ° C. (hereinafter referred to as fired products) at 2400 ° C. to 3000 ° C. We have found that when a force is applied during the process of raising the temperature to graphitization, the material undergoes greater plastic deformation than when a force is applied to the graphitized material, leading to the present invention.
According to the present invention, it is possible to obtain a graphite material molded product closer to a predetermined final product by a larger plastic deformation that cannot be obtained by plastically deforming the graphitized material.
一般に黒鉛材料は微小な黒鉛結晶の集合体であり、その結晶粒子の大きさと方向により特性が変化する。これらの結晶の大きさは黒鉛材料の原料及び製造方法に影響される。具体的には骨材としては、人造黒鉛原料として通常使用される骨材、例えばコークス粉、黒鉛粉、天然黒鉛粉、カーボンブラック等を、結合材としてはタール、ピッチ等を用い、これらを粉砕、加熱混合(捏合)、成形、焼成、黒鉛化の各工程を経て黒鉛材料とされる。黒鉛化の工程において、結晶粒子が発達するが、黒鉛化が終了すると炭素六角網面(a軸方向)の大きさと網面の積層(c軸)の大きさが決定され、強固な黒鉛材料となる。結晶粒子の方向については、捏合後の成形方法に影響され、等方静水圧プレスで成形されたものは方向がランダムに配列され、見掛け上等方的な性質となる。一方押出成形されたものは、結晶粒子が大きく、一方向に配列しており、異方性を持った性質となる。 Generally, a graphite material is an aggregate of fine graphite crystals, and its characteristics change depending on the size and direction of the crystal particles. The size of these crystals is affected by the raw material and manufacturing method of the graphite material. Specifically, as the aggregate, aggregates usually used as an artificial graphite raw material, for example, coke powder, graphite powder, natural graphite powder, carbon black, etc. are used, and as the binder, tar, pitch, etc. are used and these are crushed. , Heat mixing (kneading), molding, firing, and graphitization to obtain a graphite material. Crystal particles develop in the process of graphitization, but when graphitization is completed, the size of the carbon hexagonal network (a-axis direction) and the size of the laminated network (c-axis) are determined, and a strong graphite material is obtained. Become. The direction of the crystal particles is influenced by the molding method after kneading, and the directions of those molded by the isotropic hydrostatic press are randomly arranged and have an apparently isotropic property. On the other hand, the extruded product has large crystal particles and is arranged in one direction, and has anisotropy.
本発明者らは、複数の骨材の組織形態、平均粒度、配合量、並びに結合材の配合量を検討し、その黒鉛材料の性状を鋭意検討してきた。その検討の中で、焼成品に力をかけて黒鉛化すると、黒鉛化後の材料に力をかけて変形させた場合に比べて、より大きな塑性変形が生じる領域を発見した。そして、この現象を利用して賦形することにより成形した黒鉛材料を得る方法を発明するに至ったものである。 The present inventors have studied the structure morphology, average particle size, blending amount, and blending amount of a plurality of aggregates, and have diligently studied the properties of the graphite material. In that study, we found a region where greater plastic deformation occurs when the calcined product is graphitized by applying force than when the graphitized material is deformed by force. Then, he has invented a method for obtaining a molded graphite material by shaping using this phenomenon.
すなわち、本発明は、黒鉛材料の前駆体であり、一般的に焼成品といわれる材料を黒鉛化プロセス中に、曲げ応力、せん断応力、圧縮応力、引張応力及びねじり応力からなる群から選択される一種以上の応力を負荷し塑性変形させることで二次成形した黒鉛材料成形品を得るものである。 That is, the present invention is a precursor of a graphite material, and a material generally called a fired product is selected from the group consisting of bending stress, shear stress, compressive stress, tensile stress and torsional stress during the graphitization process. A secondarily molded graphite material molded product is obtained by applying one or more kinds of stress and plastically deforming it.
本発明により得られる黒鉛材料成形品は、通常の成形工程だけでなく、焼成品の二次成形によって、最終加工品に近い形状で得られるため、その後の加工代が小さく、効率よく最終加工品を得ることができる特徴を有する。 Since the graphite material molded product obtained by the present invention can be obtained in a shape close to the final processed product not only by a normal molding process but also by secondary molding of the fired product, the subsequent processing allowance is small and the final processed product is efficiently processed. Has the characteristic that can be obtained.
本発明によれば、黒鉛化後の材料を塑性変形することでは得ることのできないより大きな塑性変形によって所定の最終製品により近い黒鉛材料成形品を得ることができることから、より少ない加工量で、目的の最終加工した黒鉛材料成形品を比較的容易に得ることができる。 According to the present invention, it is possible to obtain a graphite material molded product closer to a predetermined final product by a larger plastic deformation that cannot be obtained by plastically deforming the graphitized material. The final processed graphite material molded product can be obtained relatively easily.
本発明の黒鉛材料成形品の製造方法は、以下の工程により得ることができる。
すなわち、原料となる骨材を所定の粒径に粉砕する工程(粉砕工程)と、骨材と結合材を所定の割合で配合し加熱混合する工程(捏合工程)と、この中間材料(捏合品)を所定の粒径に粉砕し、ゴム型などに充填し成形する工程(成形工程)、得られた成形品を非酸化性雰囲気で加熱し焼成する工程(焼成工程)、焼成した製品を非酸化性雰囲気で2400℃から3000℃まで加熱昇温し黒鉛化する工程(黒鉛化工程)に応力を負荷することにより得ることができる。
The method for producing a graphite molded product of the present invention can be obtained by the following steps.
That is, a step of crushing the aggregate as a raw material to a predetermined particle size (crushing step), a step of mixing the aggregate and the binder in a predetermined ratio and heating and mixing (kneading step), and an intermediate material (knitting product). ) Is crushed to a predetermined particle size, filled in a rubber mold, etc. and molded (molding step), the obtained molded product is heated in a non-oxidizing atmosphere and fired (baking step), and the fired product is not It can be obtained by applying stress to a step of heating and raising the temperature from 2400 ° C. to 3000 ° C. in an oxidizing atmosphere to perform graphitization (graphization step).
本発明で使用する骨材の一つは石油系ピッチ及び石炭系のピッチを原料として得られるピッチコークスを粉砕したものである。ピッチコークスは原料ピッチの特性を調整することによりその組織形態をコントロールすることができる。具体的には、ピッチコークスは黒鉛結晶が発達しやすい流れ組織部分と黒鉛結晶の発達しにくいアモルファス組織部分の混合物であり、原料ピッチの特性を調整することにより、これら組織の割合をコントロールすることが可能である。また、ピッチコークスの他に天然黒鉛粉、人造黒鉛粉などを粉砕したものを使用することもできる。本発明で使用する骨材原料はこれらを1種もしくは2種以上混合して使用するものである。結合材としては炭化歩留まりの高い材料が好ましく、樹脂系並びにピッチ系の結合材を使用することができるが、石炭系ピッチを原料としたバインダーピッチを使用するのが望ましい。 One of the aggregates used in the present invention is crushed pitch coke obtained from petroleum-based pitch and coal-based pitch as raw materials. The structure of pitch coke can be controlled by adjusting the characteristics of the raw material pitch. Specifically, pitch coke is a mixture of a flow structure portion in which graphite crystals are likely to develop and an amorphous structure portion in which graphite crystals are difficult to develop, and the proportion of these structures can be controlled by adjusting the characteristics of the raw material pitch. Is possible. In addition to pitch coke, crushed natural graphite powder, artificial graphite powder, or the like can also be used. The aggregate raw material used in the present invention is one or a mixture of two or more of these. As the binder, a material having a high carbonization yield is preferable, and resin-based and pitch-based binders can be used, but it is desirable to use a binder pitch made from coal-based pitch.
上記で選定した骨材は予め1μm〜300μmの所定の粒径まで粉砕して、結合材と配合し、そののち加熱混合し捏合品を得る。捏合には一般的な混練機を使用することができるが、加熱ができるニーダーが用いることが望ましい。骨材と結合材(バインダー)の配合割合は、好ましくは骨材50〜80重量部に対して結合材50〜20重量部、より好ましくは骨材50〜70重量部に対して結合材50〜30重量部である。
得られた捏合品の成形にはラバーケース等を使用する方法と、押出成形機を使用する方法が適用できる。ラバーケース等を使用する方法は、捏合品を一旦冷却したあと、粉砕機により所定の粒径まで粉砕し、その粉砕した捏合品をゴム型もしくはラバーケースなどの型に充填し密封したのち圧力をかけ成形品を得るものであり、圧力かける方法としては、種々の方法があるが、静水圧プレス機により加圧することが望ましい(CIP成形)。また、粉砕した捏合品を金型に充填し、プレス機により加圧し成形する方法もある(モールド成形)。押出成形機を使用する方法は、捏合品を冷却せずに押出成形機に投入し、ピストンで口金より押出して成形する方法である(押出成形)。
The aggregate selected above is pulverized in advance to a predetermined particle size of 1 μm to 300 μm, mixed with a binder, and then heated and mixed to obtain a kneaded product. A general kneader can be used for kneading, but it is desirable to use a kneader capable of heating. The blending ratio of the aggregate and the binder is preferably 50 to 20 parts by weight with respect to 50 to 80 parts by weight of the aggregate, and more preferably 50 to 50 to 70 parts by weight of the binder with respect to 50 to 70 parts by weight of the aggregate. It is 30 parts by weight.
A method using a rubber case or the like and a method using an extrusion molding machine can be applied to the molding of the obtained kneaded product. The method of using a rubber case or the like is to cool the kneaded product once, crush it to a predetermined particle size with a crusher, fill the crushed kneaded product in a mold such as a rubber mold or a rubber case, seal it, and then apply pressure. A product to be molded is obtained, and there are various methods for applying pressure, but it is desirable to pressurize with a hydrostatic press (CIP molding). There is also a method of filling a mold with a crushed kneaded product and pressurizing it with a press to mold it (mold molding). The method using an extrusion molding machine is a method in which a kneaded product is put into an extrusion molding machine without being cooled and extruded from a mouthpiece with a piston for molding (extrusion molding).
これらにより得られた成形品を非酸化性雰囲気下で800℃から1200℃まで焼成して焼成品とし、さらにこれを非酸化性雰囲気下で2400℃から3000℃まで加熱昇温し黒鉛化プロセス中に力を負荷することで本発明の黒鉛材料を得ることができる。一方、より低い温度において力を負荷した場合、焼成品が破壊したり、破壊しなくても所望の塑性変形を得ることができない。 The molded product obtained by these is calcined from 800 ° C. to 1200 ° C. in a non-oxidizing atmosphere to obtain a calcined product, which is further heated and heated from 2400 ° C. to 3000 ° C. in a non-oxidizing atmosphere during the graphitization process. The graphite material of the present invention can be obtained by applying a force to the graphite material. On the other hand, when a force is applied at a lower temperature, the fired product is broken or the desired plastic deformation cannot be obtained even if the fired product is not broken.
焼成品に負荷する力としては、各種のものを適用でき、曲げ応力、せん断応力、圧縮応力、引張応力及びねじり応力からなる群から選択でき、所望の黒鉛材料成形品を得るために必要に応じて最適な応力方法を選択するとよい。一種の応力だけでなく、複数の応力を作用させてもよい。応力の負荷方向としても、特に限定されることなく、所望の黒鉛材料成形品を得るために、種々の方向から応力を負荷できる。
ここで、黒鉛化工程において焼成品に力をかけるためには種々の方法が適用できるが、その方法のひとつとしては、黒鉛化炉内に焼成品を固定し、黒鉛材料等で製作された治具を用いて黒鉛化炉外より力を負荷する方法がある。他には、黒鉛化炉内に焼成品を固定し、黒鉛材料等で製作された所定の重量のものを載荷し、力を負荷することができる。
焼成品にかける最大応力は、黒鉛材料成形品として所望の諸物性を維持することも考慮すると、10MPa以上、60MPa未満であることが好ましい。より好ましくは、30〜50MPaである。
Various force can be applied to the fired product, and it can be selected from the group consisting of bending stress, shear stress, compressive stress, tensile stress and torsional stress, and it is necessary to obtain a desired graphite material molded product. It is advisable to select the optimum stress method. Not only one kind of stress but also a plurality of stresses may be applied. The stress loading direction is not particularly limited, and stress can be loaded from various directions in order to obtain a desired graphite material molded product.
Here, various methods can be applied to apply force to the fired product in the graphitization step, and one of the methods is to fix the fired product in a graphite-moderated reactor and cure it by using a graphite material or the like. There is a method of applying force from outside the graphitization furnace using a tool. Alternatively, a fired product can be fixed in a graphite furnace, and a product of a predetermined weight made of a graphite material or the like can be loaded and a force can be applied.
The maximum stress applied to the fired product is preferably 10 MPa or more and less than 60 MPa in consideration of maintaining various physical properties desired as a graphite material molded product. More preferably, it is 30 to 50 MPa.
また、2400℃以上の黒鉛化温度まで加熱する方法としては、電気ヒーターによる加熱、直接通電による加熱、誘導電流による加熱、マイクロ波による加熱、プラズマアークによる加熱など、一般的な方法が適用できる。 Further, as a method of heating to a graphitization temperature of 2400 ° C. or higher, general methods such as heating by an electric heater, heating by direct energization, heating by an induced current, heating by microwaves, and heating by a plasma arc can be applied.
本発明によれば、黒鉛化後の材料を塑性変形することでは得ることのできないより大きな塑性変形によって所定の最終製品により近い黒鉛材料成形品を得ることができる。すなわち、得られる黒鉛材料成形品の塑性変形量(ひずみ)は、好ましくは1.0%以上、より好ましくは1.5%以上、特に1.6%以上である。最大ひずみに対する最終ひずみの割合(塑性変形率)は、好ましくは40%以上、より好ましくは50%以上、特に60%以上である。
本発明によって得られる黒鉛材料成形品は、黒鉛材料として要求される諸物性も維持しており、かさ密度は、1.750〜2.000g/cm3、より好ましくは1.800〜1.950g/cm3、特に1.850〜1.910g/cm3であり、ショア硬度(SH)は40〜90、特に45〜80を維持できる。
According to the present invention, it is possible to obtain a graphite material molded product closer to a predetermined final product by a larger plastic deformation that cannot be obtained by plastically deforming the graphitized material. That is, the amount of plastic deformation (strain) of the obtained graphite material molded product is preferably 1.0% or more, more preferably 1.5% or more, and particularly 1.6% or more. The ratio of the final strain to the maximum strain (plastic deformation rate) is preferably 40% or more, more preferably 50% or more, and particularly 60% or more.
The molded product of graphite material obtained by the present invention also maintains various physical properties required as a graphite material, and has a bulk density of 1.75 to 2.000 g / cm 3 , more preferably 1.800 to 1.950 g. It is / cm 3 , especially 1.85 to 1.910 g / cm 3 , and the shore hardness (SH) can be maintained at 40 to 90, especially 45 to 80.
<かさ密度>
かさ密度は、2.5mmx5.0mmx10mmに切り出したサンプルの体積と質量を計測し、JIS−R7222−2017「黒鉛素材の物理特性測定方法」に準拠した方法により求めた。
<Bulk density>
The bulk density was determined by measuring the volume and mass of a sample cut into 2.5 mm x 5.0 mm x 10 mm and using a method based on JIS-R7222-2017 "Method for measuring physical characteristics of graphite material".
<ショア硬さ>
ショア硬さは、5mmx5mmx2.5mmに切り出したサンプルを用い、JIS-Z2246−2000「ショア硬さ試験−試験方法」に準拠した方法により求めた。
<Shore hardness>
The shore hardness was determined by a method based on JIS-Z2246-2000 "Shore hardness test-test method" using a sample cut out to 5 mm x 5 mm x 2.5 mm.
<曲げひずみ>
塑性変形量としての曲げひずみは、JIS−K7171−2016「プラスチック-曲げ特性の求め方」に準拠し、以下の式により算出した。
曲げひずみ(%)=600×変形量×試験片厚さ/(支点間距離)2
<Bending strain>
The bending strain as the amount of plastic deformation was calculated by the following formula in accordance with JIS-K7171-2016 "Plastic-How to obtain bending characteristics".
Bending strain (%) = 600 x deformation amount x test piece thickness / (distance between fulcrums) 2
<塑性変形率>
塑性変形率は以下の式より算出した。
塑性変形率(%)=100×最終曲げひずみ量/最大曲げひずみ量
<Plastic deformation rate>
The plastic deformation rate was calculated from the following formula.
Plastic deformation rate (%) = 100 x final bending strain amount / maximum bending strain amount
次いで、本発明を実施例により比較例と対比しながら具体的に説明する。
実施例1
偏光顕微鏡観察においてアモルファス組織のみが観察されるピッチコークス(アモルファスコークス)を粒径10〜30μm(粒径はメジアン系である。以下、同じ。)に粉砕した骨材1を軟化点105℃の石炭系バインダーピッチを粒径5mm以下に粉砕した結合材を、それぞれ、骨材60重量部に対し、結合材40重量部の範囲で配合し、ニーダーにて200℃以上300℃以下で加熱混練し捏合した。この捏合品を冷却後約50μmに再粉砕し、これをラバーケースに充填し、静水圧プレス機により1t/cm2の圧力で成形した。得られた成形品を非酸化性雰囲気下で1000℃まで加熱して焼成品(かさ密度1.620g/cm3、SH96)とした。
この焼成品よりサンプル(2.5mmx5mmx60mm)を切り出し、図1に示した曲げ試験ジグを黒鉛化炉内にセットし、非酸化性雰囲気下で2600℃まで加熱し、炉外上部よりロッドを毎分0.5mmで降下させて、試験片に力を負荷し、最大曲げ応力40MPa、最大曲げひずみ2.4%まで変形させ、黒鉛材料成形品1(最終曲げひずみ1.65%、塑性変形率69%)を得た。すなわち、図1に基づいて説明すれば、支持台9によってサンプルの中心部を浮かせた状態で黒鉛化炉内を2600℃に加熱した後、圧縮ロッド3を降下させ、圧縮子4を介して、炭素材料(焼成品)6の中心部に力をかけ曲げ応力を与え続けて、変形量を測定し、曲げひずみを算出した。
Next, the present invention will be specifically described with reference to Examples while comparing with Comparative Examples.
Example 1
Pitch coke (amorphous coke) in which only an amorphous structure is observed in a polarizing microscope observation is crushed into a particle size of 10 to 30 μm (the particle size is a median type; the same applies hereinafter), and
A sample (2.5 mm x 5 mm x 60 mm) was cut out from this fired product, the bending test jig shown in FIG. 1 was set in a graphitization furnace, heated to 2600 ° C. in a non-oxidizing atmosphere, and the rod was placed every minute from the upper part of the outside of the furnace. The test piece is lowered by 0.5 mm, a force is applied to the test piece, and the test piece is deformed to a maximum bending stress of 40 MPa and a maximum bending strain of 2.4%. Graphite material molded product 1 (final bending strain 1.65%, plastic deformation rate 69) %) Was obtained. That is, according to the explanation based on FIG. 1, after heating the inside of the graphitizing furnace to 2600 ° C. with the central portion of the sample floating by the
実施例2
アモルファスコークスを粒径10〜30μmに粉砕した骨材1と流れ組織が観察されるピッチコークス(ニードルコークス)を粒径10〜50μmに粉砕した骨材2をそれぞれ重量部50:50に混合して骨材とし、これらを軟化点105℃の石炭系バインダーピッチを粒径5mm以下に粉砕した結合材を、それぞれ、骨材55重量部に対し、結合材45重量部の範囲で配合し、ニーダーにて200℃以上300℃以下で加熱混練し捏合した。この捏合品を冷却後約50μmに再粉砕し、これをラバーケースに充填し、静水圧プレス機により1t/cm2の圧力で成形した。得られた成形品を非酸化性雰囲気下で1000℃まで焼成して焼成品(かさ密度1.580g/cm3、SH87)とした。
これを実施例1と同様に、サンプルを切り出し、非酸化性雰囲気下で2400℃まで加熱し、試験片に曲げ応力を負荷し変形させ、黒鉛材料成形品2を得た。
Example 2
The sample was cut out in the same manner as in Example 1, heated to 2400 ° C. in a non-oxidizing atmosphere, and the test piece was deformed by applying bending stress to obtain a graphite material molded
実施例3
アモルファスコークスを粒径100〜300μmに粉砕した骨材1とニードルコークスを粒径100〜300μmに粉砕した骨材2をそれぞれ重量部50:50に混合して骨材とし、これらを軟化点105℃の石炭系バインダーピッチを粒径5mm以下に粉砕した結合材を、それぞれ、骨材70重量部、結合材30重量部で配合し、ニーダーにて150℃以上300℃以下で加熱混練し捏合し、押出成形機により成形した。得られた成形品を非酸化性雰囲気下で1000℃まで焼成して焼成品(かさ密度1.580g/cm3、SH55)とした。
これを実施例1と同様に、サンプルを切り出し、非酸化性雰囲気下で2400℃まで加熱し、試験片中心部に力を負荷し、最大曲げ応力50MPa、最大曲げひずみ2.4%まで変形させ、黒鉛材料成形品3(最終曲げひずみ1.85%、塑性変形率77%)を得た。
Example 3
In the same manner as in Example 1, a sample is cut out, heated to 2400 ° C. in a non-oxidizing atmosphere, a force is applied to the center of the test piece, and the sample is deformed to a maximum bending stress of 50 MPa and a maximum bending strain of 2.4%. , A graphite material molded product 3 (final bending strain 1.85%, plastic deformation rate 77%) was obtained.
比較例1
実施例1において、非酸化性雰囲気下で3000℃まで加熱し黒鉛化し、室温まで冷却して黒鉛材料(かさ密度1.800g/cm3、SH60)を得た。
これを実施例1と同様にサンプルを切り出し、治具にセットし、非酸化性雰囲気下で2600℃まで加熱した後、実施例1と同様の方法にて試験片に曲げ応力を負荷し変形させ、黒鉛材料成形品C1を得た。
Comparative Example 1
In Example 1, the graphitized material was obtained by heating to 3000 ° C. in a non-oxidizing atmosphere and cooling to room temperature to obtain a graphite material (bulk density 1.800 g / cm 3 , SH60).
A sample was cut out in the same manner as in Example 1, set in a jig, heated to 2600 ° C. in a non-oxidizing atmosphere, and then the test piece was deformed by applying bending stress in the same manner as in Example 1. , Graphite material molded product C1 was obtained.
比較例2
実施例1において、非酸化性雰囲気下で3000℃まで加熱し黒鉛化し、室温まで冷却して黒鉛材料(かさ密度1.800g/cm3、SH60)を得た。
これを実施例1と同様にサンプルを切り出し、治具にセットし、非酸化性雰囲気下で2400℃まで加熱した後、実施例1と同様の方法にて試験片に曲げ応力を負荷し変形させ、黒鉛材料成形品C2を得た。
Comparative Example 2
In Example 1, the graphitized material was obtained by heating to 3000 ° C. in a non-oxidizing atmosphere and cooling to room temperature to obtain a graphite material (bulk density 1.800 g / cm 3 , SH60).
A sample was cut out in the same manner as in Example 1, set in a jig, heated to 2400 ° C. in a non-oxidizing atmosphere, and then the test piece was deformed by applying bending stress in the same manner as in Example 1. , Graphite material molded product C2 was obtained.
比較例3
実施例1において、非酸化性雰囲気下で2200℃まで加熱した他は、実施例1と同様にして捏合、粉砕、成形、焼成(焼成品のかさ密度1.620g/cm3、SH96)、黒鉛化して、黒鉛材料成形品C3を得た。
Comparative Example 3
In Example 1, kneading, crushing, molding, firing (bulky product bulk density 1.620 g / cm 3 , SH96), graphite, in the same manner as in Example 1, except that the mixture was heated to 2200 ° C. in a non-oxidizing atmosphere. The graphite material molded product C3 was obtained.
比較例4
実施例1において、非酸化性雰囲気下で2000℃まで加熱した他は、実施例1と同様にして捏合、粉砕、成形、焼成(焼成品のかさ密度1.620g/cm3、SH96)、黒鉛化して、黒鉛材料成形品C4を得た。
Comparative Example 4
In Example 1, kneading, crushing, molding, firing (bulky product bulk density 1.620 g / cm 3 , SH96), graphite, in the same manner as in Example 1, except that the mixture was heated to 2000 ° C. in a non-oxidizing atmosphere. The graphite material molded product C4 was obtained.
図2は、焼成品に曲げ力を負荷した際の応力−ひずみ線図の温度依存性を示すグラフである。
実施例1(2600℃)、実施例2、3(2400℃)、比較例3(2200℃)、比較例4(2000℃)に対応する。なお、室温(RT)、1000℃、1600℃で曲げ応力をかけた場合、50MPa以上になると、折損した。
2000℃以上に加熱して曲げ応力をかけた場合、折損することなく、塑性変形した。特に、2400℃以上に加熱して曲げ応力をかけると、曲げひずみが1.5%を超える塑性変形となることが分かる。
FIG. 2 is a graph showing the temperature dependence of the stress-strain diagram when a bending force is applied to the fired product.
Corresponds to Example 1 (2600 ° C.), Examples 2 and 3 (2400 ° C.), Comparative Example 3 (2200 ° C.), and Comparative Example 4 (2000 ° C.). When bending stress was applied at room temperature (RT), 1000 ° C. and 1600 ° C., it was broken when it reached 50 MPa or more.
When it was heated to 2000 ° C. or higher and a bending stress was applied, it was plastically deformed without breaking. In particular, it can be seen that when bending stress is applied by heating to 2400 ° C. or higher, the bending strain becomes plastic deformation exceeding 1.5%.
図3は、黒鉛化品に曲げ応力を負荷した際の応力−ひずみ線図の温度依存性を示すグラフである。
比較例1(2600℃)、比較例2(2400℃)に対応する。なお、室温(RT)、1000℃、1600℃、2000℃、2200℃で曲げ応力をかけた場合、いずれも、50MPa以上になると、折損した。
2400℃以上に加熱して曲げ応力をかけた場合、折損することなく、塑性変形したが、曲げひずみは1.0%以下に留まることが分かる。
FIG. 3 is a graph showing the temperature dependence of the stress-strain diagram when a bending stress is applied to the graphitized product.
Corresponds to Comparative Example 1 (2600 ° C.) and Comparative Example 2 (2400 ° C.). When bending stress was applied at room temperature (RT), 1000 ° C., 1600 ° C., 2000 ° C., and 2200 ° C., all of them were broken at 50 MPa or more.
It can be seen that when the material was heated to 2400 ° C. or higher and a bending stress was applied, the material was plastically deformed without breaking, but the bending strain remained at 1.0% or less.
得られた黒鉛材料成形品の物性測定結果を表1に示した。
上記のように実施例1から3の最終変形量は比較例1から4に比較して大きくなっており、本発明により焼成品に力をかけることにより塑性成形された黒鉛材料を得ることができる。 As described above, the final amount of deformation of Examples 1 to 3 is larger than that of Comparative Examples 1 to 4, and according to the present invention, a plastically molded graphite material can be obtained by applying force to the fired product. ..
本発明によれば、予め賦形された黒鉛材料成形品が容易に製造でき、ガラスや金属などの成形型として使用することができる。 According to the present invention, a preformed graphite material molded product can be easily produced and used as a molding mold for glass, metal, or the like.
1 断熱材
2 ヒーター
3 圧縮ロッド
4 圧縮子
5 固定治具
6 炭素材料
7 受圧板
8 受圧ロッド
9 支持台
1
Claims (3)
A graphite material molded product obtained by the production method according to claim 1, wherein the final strain amount is 1.0% or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020026374 | 2020-02-19 | ||
JP2020026374 | 2020-02-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021130601A true JP2021130601A (en) | 2021-09-09 |
JP7390684B2 JP7390684B2 (en) | 2023-12-04 |
Family
ID=77552041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020068229A Active JP7390684B2 (en) | 2020-02-19 | 2020-04-06 | Manufacturing method for graphite material molded products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7390684B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117848047A (en) * | 2024-03-07 | 2024-04-09 | 山西科福能源科技有限公司 | Pressure roasting furnace for graphite preparation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59223284A (en) * | 1983-05-31 | 1984-12-15 | 株式会社井上ジャパックス研究所 | Manufacture of carbon material |
JPH03279207A (en) * | 1990-03-29 | 1991-12-10 | Matsushita Electric Ind Co Ltd | Production of graphite |
JPH04202052A (en) * | 1990-11-30 | 1992-07-22 | Res Dev Corp Of Japan | Production of graphite |
JP2005314168A (en) * | 2004-04-28 | 2005-11-10 | Kaneka Corp | Highly oriented graphite and manufacturing method thereof |
WO2019065018A1 (en) * | 2017-09-28 | 2019-04-04 | 新日本テクノカーボン株式会社 | Graphite material |
-
2020
- 2020-04-06 JP JP2020068229A patent/JP7390684B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59223284A (en) * | 1983-05-31 | 1984-12-15 | 株式会社井上ジャパックス研究所 | Manufacture of carbon material |
JPH03279207A (en) * | 1990-03-29 | 1991-12-10 | Matsushita Electric Ind Co Ltd | Production of graphite |
JPH04202052A (en) * | 1990-11-30 | 1992-07-22 | Res Dev Corp Of Japan | Production of graphite |
JP2005314168A (en) * | 2004-04-28 | 2005-11-10 | Kaneka Corp | Highly oriented graphite and manufacturing method thereof |
WO2019065018A1 (en) * | 2017-09-28 | 2019-04-04 | 新日本テクノカーボン株式会社 | Graphite material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117848047A (en) * | 2024-03-07 | 2024-04-09 | 山西科福能源科技有限公司 | Pressure roasting furnace for graphite preparation |
CN117848047B (en) * | 2024-03-07 | 2024-05-07 | 山西科福能源科技有限公司 | Pressure roasting furnace for graphite preparation |
Also Published As
Publication number | Publication date |
---|---|
JP7390684B2 (en) | 2023-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4734674B2 (en) | Low CTE isotropic graphite | |
CN104649263A (en) | Preparation method of carbon-graphite composite material | |
CN103121671A (en) | Preparation method of isostatic pressing formed graphite | |
CN105272287A (en) | Method for preparing graphite crucible with recycled graphite | |
CN107522196A (en) | A kind of superhard isostatic pressing formed graphite and preparation method thereof | |
CN108610049B (en) | Isotropic graphite material, method for the production thereof and use thereof | |
CN112521172B (en) | Composite carbon material for in-situ growth of carbon fibers and preparation method and application thereof | |
CN110128142B (en) | Graphite heating body and manufacturing method thereof | |
US7658903B2 (en) | High purity nuclear graphite | |
TWI740061B (en) | Graphite material | |
CN108341669B (en) | Large-size nuclear graphite material for high-temperature gas cooled reactor internals and preparation method thereof | |
JP7390684B2 (en) | Manufacturing method for graphite material molded products | |
CN104477891B (en) | A kind of method for graphitizing of isostatic pressing formed graphite goods | |
CN112266248A (en) | Method for preparing graphite crucible by using low-quality graphite raw material | |
JP4430448B2 (en) | Method for producing isotropic graphite material | |
KR20230083675A (en) | Manufacturing method of carbonized blocks used for manufacturing isotropic graphite | |
JP4311777B2 (en) | Method for producing graphite material | |
TWI395709B (en) | Process of making graphite articles | |
JP2013534505A (en) | Manufacturing method of ceramic material for ceramic material | |
US1317497A (en) | Graphitized electrode and process of making the same | |
RU2258032C1 (en) | Method of manufacture of structural graphite | |
JP7357286B2 (en) | Method for producing graphite material with high coefficient of thermal expansion and its graphite material | |
JP2001130963A (en) | Method for producing isotropic high-density carbon material | |
JPH0234902B2 (en) | ||
JP2652909B2 (en) | Method for producing isotropic high-strength graphite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AA64 | Notification of invalidation of claim of internal priority (with term) |
Free format text: JAPANESE INTERMEDIATE CODE: A241764 Effective date: 20200421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200615 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7390684 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |