JPS59224067A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPS59224067A JPS59224067A JP58097882A JP9788283A JPS59224067A JP S59224067 A JPS59224067 A JP S59224067A JP 58097882 A JP58097882 A JP 58097882A JP 9788283 A JP9788283 A JP 9788283A JP S59224067 A JPS59224067 A JP S59224067A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- catalyst
- particles
- phosphoric acid
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は燃料電池に係り、特に触媒担持層の組成を改良
した燃料電池C二関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell, and particularly to a fuel cell C2 in which the composition of a catalyst support layer is improved.
燃料電池の単セルはガス拡散電極を形成する65%以上
の多孔質カーボンペーパーあるいは多孔質カーボン焼結
板のような導電性基材と電解質層な形成するマトリック
ス間に触媒担持層を設けて形成されている。A fuel cell single cell is formed by providing a catalyst support layer between a conductive base material such as porous carbon paper or porous carbon sintered plate that forms a gas diffusion electrode and a matrix that forms an electrolyte layer. has been done.
前記触媒担持層は、通常、導電性微粒子と疎水性ポリマ
ーにより形成されている。The catalyst supporting layer is usually formed of conductive fine particles and a hydrophobic polymer.
従来の燃料電池の単セルの構成について第1図を参照し
て説明する。1は燃料極基材すなわちアノード側電極、
2は触媒担持層、3はマトリックス、4は空気極基材す
なわちカソード側電極、5は触媒担持層である。第1図
(b)は(a)の変形例でアノード側電極(1)及びカ
ソード側電極4の背面にそれぞれ互いl二直行する燃料
供給溝6、空気供給溝7を各々設けたものである。The configuration of a single cell of a conventional fuel cell will be explained with reference to FIG. 1 is a fuel electrode base material, that is, an anode side electrode;
2 is a catalyst support layer, 3 is a matrix, 4 is an air electrode base material, that is, a cathode side electrode, and 5 is a catalyst support layer. FIG. 1(b) is a modification of FIG. 1(a), in which a fuel supply groove 6 and an air supply groove 7 are provided on the back surfaces of the anode side electrode (1) and the cathode side electrode 4, respectively, and are perpendicular to each other. .
しかしながら、これら従来の単セルの構成について本発
明者らが検討した結果、次の問題点が明らかとなった。However, as a result of the inventors' study of the configurations of these conventional single cells, the following problems became clear.
(1)触媒担持層とは同じ炭素材料でも耐食性を向上さ
せた材料、例えば、カーボンブラックあるいはグラファ
イトの微粒子を用いることが要求されるが、前記耐食性
の向上した材料はそれ自体が撥水性をもっているため、
前記触媒担持層の撥水性が異常に増大し電解質をはじき
、触媒と電解質の接触が不十分で、従って電解質と触媒
と反応ガスの接触界面である反応面積が小さく、従って
電池内部抵抗が増大し、電池性能が著しく低下する。(1) Although it is the same carbon material as the catalyst support layer, it is required to use a material with improved corrosion resistance, such as carbon black or graphite fine particles, but the material with improved corrosion resistance itself has water repellency. For,
The water repellency of the catalyst supporting layer increases abnormally and repels the electrolyte, resulting in insufficient contact between the catalyst and the electrolyte, resulting in a small reaction area, which is the contact interface between the electrolyte, the catalyst, and the reaction gas, and thus increasing the internal resistance of the battery. , battery performance deteriorates significantly.
(2)燃料電池の運転温度、運転圧力、負荷、反応ガス
中の湿度などの変動は必然的に電解質の体積変化を伴う
。(2) Changes in the operating temperature, operating pressure, load, humidity in the reaction gas, etc. of the fuel cell are inevitably accompanied by changes in the volume of the electrolyte.
すなわち、電解質であるリン酸は次の反応式の如く水と
五酸化リンの反応生成物であり、かつ吸湿性の強い乾燥
剤でもある。したがって、高温で3H,O+1/2 P
2O,。’;j 2H,PO4乾燥した条件下では、上
記反応は左へ進み、低温で湿度が高い条件下では上記反
応は右へ進む。ここでは説明のため省略しているが、上
記中間生成物として多数の複雑なリン酸の縮合体が生成
される。しかしそれらの反応の進行については上記説明
の如き傾向は同じである。That is, phosphoric acid, which is an electrolyte, is a reaction product of water and phosphorus pentoxide as shown in the following reaction formula, and is also a highly hygroscopic desiccant. Therefore, 3H,O+1/2P at high temperature
2O,. ';j 2H,PO4 Under dry conditions, the reaction proceeds to the left; under low temperature and humid conditions, the reaction proceeds to the right. Although omitted here for the sake of explanation, many complex condensates of phosphoric acid are produced as the intermediate products. However, the progress of these reactions has the same tendency as explained above.
一方、負荷をとると電気化学的反応生成物として水が生
成する。また湿度は水蒸気分圧と全圧の比で決められる
のであるから、運転圧力によっても前記反応の平衡は変
動する。On the other hand, when a load is applied, water is produced as an electrochemical reaction product. Furthermore, since humidity is determined by the ratio of water vapor partial pressure to total pressure, the equilibrium of the reaction will vary depending on the operating pressure.
この様な変動によって電解質の体積は時々変化する。Due to such fluctuations, the volume of the electrolyte changes from time to time.
ところで、上記電解質の変動(−伴い、触媒担持層の撥
水性が大きすぎると電解質層であるマトリックスからあ
ふれ出た電解質が触媒の撥水性にさからい、触媒担持層
を通って押し出され電極に達し吸蔵されるが、マトリッ
クス中の電解質量が減少したとき、あふれ出た電解aは
再びマトリックスに電解質を供給し、結果としてマトリ
ックスには常に一定額の電解質が保持されるという、い
わゆるゝリザーバ機能“が阻害される。このため、一度
あふれ出た電解質は、触媒担持層の強い撥水性のため電
極基材中に隔離保持されたま\の状態となる。By the way, if the water repellency of the catalyst support layer is too large, the electrolyte overflowing from the matrix, which is the electrolyte layer, will interfere with the water repellency of the catalyst and be pushed out through the catalyst support layer and reach the electrode. However, when the amount of electrolyte in the matrix decreases, the overflowing electrolyte a supplies electrolyte to the matrix again, and as a result, a constant amount of electrolyte is always retained in the matrix, a so-called "reservoir function". Therefore, once the electrolyte overflows, it remains isolated in the electrode base material due to the strong water repellency of the catalyst support layer.
その結果として、マトリックスの電解質は徐々に減少し
、これに伴い空隙部が増加し、燃料電池の反応ガスすな
わち燃料ガスと空気の混合を防出するセパレータ機能が
なくなり、前記再反応ガスの混合が起る、いわゆるクロ
スオーバー現象が発生し、著しく電池性能は低下し、か
つ爆発の原因ともなる。As a result, the electrolyte in the matrix gradually decreases, the void area increases accordingly, the separator function to prevent the reaction gas of the fuel cell, that is, the fuel gas, and air from mixing is lost, and the mixing of the re-reactant gas is eliminated. A so-called crossover phenomenon occurs, which significantly reduces battery performance and may even cause an explosion.
(3)電池性能向上のためには触媒担持体は数10ミク
ロン以下の微粒子であることが要求されるが、微粒であ
る程、上記(1) 、 (2)の現象はより促進される
。(3) In order to improve battery performance, the catalyst carrier is required to be fine particles of several tens of microns or less, and the finer the particles, the more the phenomena (1) and (2) above are promoted.
本発明は上記問題点に鑑みなされたもので、触媒担持層
の組成を改良し、電極の電解質に関するリザーバ機能を
有効に利用し電池性能を向上させた燃料電池を提供する
ことを目的とする。The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a fuel cell in which the composition of the catalyst support layer is improved and the reservoir function of the electrode for the electrolyte is effectively utilized to improve the cell performance.
かかる目的を達成するため、本発明は電解質層な形成す
るマトリックスを介して対向して配置される一対のガス
拡散電極を有する単セルを複数個積層して成る燃料電池
において、前記マトリックスと前記ガス拡散電極間に配
置される触媒担持層を導電性微粒子と親りん酸性粒子の
混合物を疎水性ポリマーで結着して形成したことを特徴
とする。In order to achieve such an object, the present invention provides a fuel cell comprising a plurality of stacked single cells each having a pair of gas diffusion electrodes arranged opposite to each other with a matrix forming an electrolyte layer interposed therebetween. The catalyst supporting layer disposed between the diffusion electrodes is characterized in that it is formed by binding a mixture of conductive fine particles and phosphoric acidic particles with a hydrophobic polymer.
以下、本発明の実施例を第2図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIG.
本発明は触媒担持層2の組成に改良を加え、導電性微粒
子8(例えば、カーボンブラック)と親りん酸性粒子9
(例えばシリコンカーバイト)の混合物を疎水性ポリマ
ー10で結着して形成する。The present invention improves the composition of the catalyst support layer 2, and includes conductive fine particles 8 (e.g. carbon black) and phosphoric acid particles 9.
(for example, silicon carbide) bound by a hydrophobic polymer 10.
〔実施例1〕
白金の担持量が14重量パーセントで平均粒径が0.0
3μの導電性微粒子、アセチレンブラック粒子に親リン
酸性粒子である平均粒径5μのシリコンカーバイド粒子
をアセチレンブラック粒子10に対してシリコンカーバ
イド粒子1の容積比を中心に体積比をかえて混合した。[Example 1] The amount of platinum supported was 14% by weight and the average particle size was 0.0
Conductive fine particles of 3 μm, acetylene black particles, and silicon carbide particles having an average particle diameter of 5 μm, which are phosphoric acid particles, were mixed at different volume ratios, centering on a volume ratio of 1 silicon carbide particle to 10 acetylene black particles.
次いで、これらの容積比の混合物を溶媒として水を加え
混練し、更にポリテトラフロロエチレンの分散溶液を固
形分として40重量パーセント添加しミキサーで混練し
、それぞれを気孔率75%で厚さ0.41111の電極
を形成する多孔質カーボンペーパーは吸引噴霧塗布した
。80℃で2時間乾燥したのち、320℃で1時間焼成
した。触媒量は約25■/dである。カーボンペーパー
上の触媒押持層の厚みは約8011mであった。これら
の電極を用いて第1図(a)の如く単セルを形成し、電
池の内部抵抗及び220 mA/CrIの負荷電圧を測
定した結果を第3図に示す。図にみられる通り〔シリコ
ンカーバイド粒子容積〕/〔カーボン粒子容積〕の比が
2.5%より小さいが、又は20%より大きいと電池内
部抵抗は急激に大きくなり、又電池性能は著しく低下す
ることがわかる。したがって上記容積比は25〜20%
の範囲内、望ましくは33〜10%の範囲内であること
が好ましい。この容積比(2,5〜20Q’o)・に対
する重量比はほぼ(30〜240%)に相当した。Next, a mixture of these volume ratios was mixed with water as a solvent and kneaded, and then a dispersion of polytetrafluoroethylene was added in an amount of 40% by weight as a solid content and kneaded with a mixer. The porous carbon paper forming the 41111 electrode was applied by suction spraying. After drying at 80°C for 2 hours, it was fired at 320°C for 1 hour. The amount of catalyst is approximately 25 μ/d. The thickness of the catalyst supporting layer on the carbon paper was about 8011 m. A single cell was formed using these electrodes as shown in FIG. 1(a), and the internal resistance of the battery and the load voltage of 220 mA/CrI were measured, and the results are shown in FIG. As shown in the figure, when the ratio of [silicon carbide particle volume]/[carbon particle volume] is smaller than 2.5% or larger than 20%, the internal resistance of the battery increases rapidly and the battery performance deteriorates significantly. I understand that. Therefore, the above volume ratio is 25-20%
It is preferably within the range of 33% to 10%. The weight ratio to the volume ratio (2.5-20Q'o) was approximately (30-240%).
また、リザーバ機能を確認するため、第3図中、A点の
条件下で作成した電池に対して電池の運転=−停止のサ
イクルテストを繰返した結果、シリコンカーバイド粒子
を加えてない電池が上記の50回サイクルテスト後、ク
ロスオーバー現象が発生したのに対し、上記本発明に係
る電池では100回サイクルテスト後もクロスオーバー
現象はみとめられず、電池性能は安定していた。即ち、
電解質であるりん酸の容I変化を多孔性カーボンペーパ
ーが吸収する作用を十分行なっていることを示している
。In addition, in order to confirm the reservoir function, a cycle test of battery operation = - stop was repeated for the battery prepared under the conditions of point A in Figure 3, and as a result, the battery without silicon carbide particles was In contrast, in the battery according to the present invention, no crossover phenomenon was observed even after 100 cycle tests, and the battery performance was stable. That is,
This shows that the porous carbon paper has a sufficient effect of absorbing changes in the volume I of phosphoric acid, which is an electrolyte.
この理由は下記の如く考えられる。触媒担持層が電解質
とよく接触し、かつ触媒が電解質に浸漬してしまうこと
を防止するだけの撥水性を有するとともに、電解質の自
由に通過できる通路を有し、電極基材の有する電解質の
リザーバ機能を十分に発揮させることができるためであ
る。尚、親リン酸性粒子が導電性微粒子に対して容積比
で2.5%、以上において、触媒担持層の親リン酸性部
が触媒担持層厚み方向に連通し、電解質が撥水性の強い
触媒担持層を自由に通過可能となる。ところで疎水性ポ
リマーが1fflitパーセントで20%以下になると
上記導電性粒子間の接触力が小さくなり、かつ触媒担持
層の撥水性が減少し触媒が電解質でぬれてしまう。一方
、その値が45%以上になると触媒担持層の導電性が低
下し、電池内部抵抗が増 大し、電池の性能が低下
する。The reason for this is thought to be as follows. The catalyst supporting layer is in good contact with the electrolyte and has enough water repellency to prevent the catalyst from being immersed in the electrolyte, and has a passage through which the electrolyte can freely pass, and the electrode base material has a reservoir for the electrolyte. This is because the functions can be fully demonstrated. In addition, when the phosphoric acidic particles account for 2.5% or more by volume of the conductive fine particles, the phosphoric acidic part of the catalyst supporting layer communicates in the thickness direction of the catalyst supporting layer, and the electrolyte supports the highly water-repellent catalyst. can pass freely through the layers. By the way, if the hydrophobic polymer is less than 20% at 1 fflit percent, the contact force between the conductive particles becomes small, and the water repellency of the catalyst supporting layer decreases, causing the catalyst to become wet with the electrolyte. On the other hand, when the value exceeds 45%, the conductivity of the catalyst supporting layer decreases, the internal resistance of the battery increases, and the performance of the battery decreases.
親リン酸性粒子は高温でかつリン酸中及び空気中で安定
な1利であることが要求され、ZrO2゜Ta20B
、 SiC,(zno)、p、o□などマトリックス材
として利用できるものが望ましい。これらは非電子伝導
性材料である。又、この親リン酸性粒子は前記導電性微
粒子に対して容量比で20%以上になると触媒層の導電
性が低下するため好ましくない。Phosphorophilic acid particles are required to be stable at high temperatures and in phosphoric acid and air, and ZrO2゜Ta20B
, SiC, (zno), p, o□, etc., which can be used as a matrix material are desirable. These are electronically non-conducting materials. Furthermore, if the phosphoric acidic particles have a capacity ratio of 20% or more to the conductive fine particles, the conductivity of the catalyst layer will decrease, which is not preferable.
〔実施例2〕
白金の担持量が10重量パーセントの平均粒径が0.3
μのカーボンブラック粒子(二、親リン酸性である平均
粒径5μのシリコンカーバイド粒子を混合した。この体
積比は各々92.3%と7.7%とした。次いで、溶媒
として水を加え混練し、更にポリテトラフルオロエチレ
ンの分散溶液を固形分として40重量パーセント添加し
て混練した。気孔率75%で厚さQ、 4 my、の多
孔質カーボンペーパーに吸引噴霧塗布した。80℃で2
時間乾燥したのち、320℃で2時間焼成した。触媒層
は約5 zaq/clである。[Example 2] The average particle size with a supported amount of platinum of 10% by weight is 0.3
Microcarbon black particles (2. Silicon carbide particles with an average particle size of 5 microns, which are phosphoric acidophilic) were mixed.The volume ratios were 92.3% and 7.7%, respectively.Next, water was added as a solvent and kneaded. Then, 40% by weight of a dispersion solution of polytetrafluoroethylene was added as a solid content and kneaded.The mixture was applied by suction spraying onto a porous carbon paper with a porosity of 75% and a thickness of Q, 4 my.
After drying for an hour, it was fired at 320°C for 2 hours. The catalyst layer is about 5 zaq/cl.
触媒担持層はカーボンペーパーの表面(:約0.05〜
0.1朋の厚さで層を形成した。単セルを構成し、さら
に実施例1と同じく電池を作成して運転停止サイクルテ
ストを100回繰返した結果、実施例1と同様にクロス
オーバー現象はみとめられず安定した電池性能が検証さ
れた。The catalyst supporting layer is the surface of the carbon paper (: about 0.05~
A layer was formed with a thickness of 0.1 mm. A single cell was constructed, and a battery was created in the same manner as in Example 1, and the operation/stop cycle test was repeated 100 times. As a result, no crossover phenomenon was observed as in Example 1, and stable battery performance was verified.
シリコンカーバイド粒子にかえて酸化ジルユニラム粉末
を用いても同様の結果が得られた。Similar results were obtained when dill unilum oxide powder was used instead of silicon carbide particles.
以上詳細に説明した様に、本発明によれば従来の触媒担
持層が電解質との親和性が良好でなかったのに対して、
本発明に係る触媒担持層は電解質との親和性が良好とな
り、触媒担持層全体にわたって電解質−触媒−反応ガス
の界面三相帯は増大し、かつ、電池内部抵抗は減少し、
電池性能が向上すると\もに、運転条件による゛電解質
容積の増減に対し、余分な電解質を電極に吸引し、マト
リックスの電解質量が減少した場合電極より供給するこ
とが可能となり、マトリックスの電解質量は一定に維持
することが可能となる。As explained in detail above, according to the present invention, whereas the conventional catalyst supporting layer did not have good affinity with the electrolyte,
The catalyst support layer according to the present invention has good affinity with the electrolyte, the interfacial three-phase zone of electrolyte-catalyst-reactant gas increases throughout the catalyst support layer, and the internal resistance of the battery decreases.
As battery performance improves, it becomes possible to attract excess electrolyte to the electrodes as the electrolyte volume increases or decreases depending on operating conditions, and to supply it from the electrodes when the amount of electrolyte in the matrix decreases, increasing the amount of electrolyte in the matrix. can be maintained constant.
第1図(a) 、 (b)は単セルの断面構成図、第2
図≠琳は本発明の一実施例!−係る触媒担持層の要部断
面図、第3図(a) 、 (b)は触媒担持層の形成材
の容積比と電池特性の関係図である。
1・・・アノード側電極 4・・・カソード側電極2
.5・・・触媒担持層 6・・・燃料供給溝3・・
・マトリックス 7・・・空気供給溝8・・・導電
性微粒子 9・・・親りん酸性粒子10・・・疎水
性ポリマー
代理人 弁理士 則 近 憲 佑(ばか1名)第1図
(久)
<−b)
第2図
第3図
(0−)Figures 1 (a) and (b) are cross-sectional diagrams of a single cell;
Figure≠Rin is an embodiment of the present invention! - A sectional view of a main part of the catalyst support layer, and FIGS. 3(a) and 3(b) are diagrams showing the relationship between the volume ratio of the material forming the catalyst support layer and the battery characteristics. 1... Anode side electrode 4... Cathode side electrode 2
.. 5...Catalyst support layer 6...Fuel supply groove 3...
・Matrix 7...Air supply groove 8...Conductive fine particles 9...Phosphorophilic particles 10...Hydrophobic polymer Representative Patent attorney Noriyuki Chika (1 idiot) Figure 1 (Hisashi) <-b) Figure 2 Figure 3 (0-)
Claims (1)
れる一対のガス拡散電極を有する単セルを複数個積層し
て成る゛燃料電池において、前記マトリックスと前記ガ
ス拡散電極間に設けられる触媒担持層を、導電性微粒子
80〜97.5Vo1%と親りん酸粒子2.5〜20
Vo1%とで100Vo1%と成す混合物を形成し、こ
の混合物50〜80wt%に対して疎水性ポリマーを2
0〜45wt%加えて結着して形成したことを特徴とす
る燃料電池。A catalyst support layer provided between the matrix and the gas diffusion electrode in a fuel cell formed by laminating a plurality of unit cells each having a pair of gas diffusion electrodes facing each other with a matrix impregnated with phosphoric acid interposed therebetween. , conductive fine particles 80-97.5Vo1% and parent phosphoric acid particles 2.5-20%
A mixture of 100Vo1% is formed with 1% Vo1%, and 2% of the hydrophobic polymer is added to 50 to 80wt% of this mixture.
A fuel cell characterized in that it is formed by adding and binding 0 to 45 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58097882A JPS59224067A (en) | 1983-06-03 | 1983-06-03 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58097882A JPS59224067A (en) | 1983-06-03 | 1983-06-03 | Fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59224067A true JPS59224067A (en) | 1984-12-15 |
JPH0574190B2 JPH0574190B2 (en) | 1993-10-15 |
Family
ID=14204114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58097882A Granted JPS59224067A (en) | 1983-06-03 | 1983-06-03 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59224067A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6124157A (en) * | 1984-07-13 | 1986-02-01 | Toshiba Corp | Fuel cell |
US5480735A (en) * | 1990-06-25 | 1996-01-02 | International Fuel Cells Corporation | High current alkaline fuel cell electrodes |
WO2001003212A3 (en) * | 1999-07-05 | 2001-06-21 | Siemens Ag | High-temperature polymer electrolyte membrane (htm) fuel cell, htm fuel cell system, method for operating an htm fuel cell and/or an htm fuel cell system |
-
1983
- 1983-06-03 JP JP58097882A patent/JPS59224067A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6124157A (en) * | 1984-07-13 | 1986-02-01 | Toshiba Corp | Fuel cell |
US5480735A (en) * | 1990-06-25 | 1996-01-02 | International Fuel Cells Corporation | High current alkaline fuel cell electrodes |
WO2001003212A3 (en) * | 1999-07-05 | 2001-06-21 | Siemens Ag | High-temperature polymer electrolyte membrane (htm) fuel cell, htm fuel cell system, method for operating an htm fuel cell and/or an htm fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JPH0574190B2 (en) | 1993-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3899354A (en) | Gas electrodes and a process for producing them | |
JP7387905B2 (en) | Gas diffusion layer, manufacturing method thereof, membrane electrode assembly and fuel cell | |
KR100421708B1 (en) | Fuel cell and method of menufacture thereof | |
JPS58156B2 (en) | Fuel cell with electrolyte retention matrix made of silicon carbide | |
US20110008706A1 (en) | Polymer coating of pem fuel cell catalyst layers | |
EP3579315B1 (en) | Gas diffusion layer for fuel battery, membrane electrode assembly, and fuel battery | |
US7094492B2 (en) | Electrode for polymer electrolyte fuel cell | |
JP2021136056A (en) | Gas diffusion layer for fuel cell | |
JPS59224067A (en) | Fuel cell | |
JPS6046515B2 (en) | Method for manufacturing electrolyte retention matrix for fuel cells | |
JP4520815B2 (en) | Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell | |
EP0557259B1 (en) | Gas diffusion electrode for electrochemical cell and process of preparing same | |
JPH0544145B2 (en) | ||
US6913844B2 (en) | Method for humidifying reactant gases for use in a fuel cell | |
JPH0722020B2 (en) | Method for manufacturing gas diffusion electrode | |
US3458361A (en) | Fuel cell electrode comprising sintered porous body impregnated with barium oxide | |
KR20200046901A (en) | Composite electrolyte membrane with patterned hydrophilic inorganic layer, method of manufacturing the same, and fuel cell comprising the same | |
JPH02226659A (en) | Electrode construction for fuel cell | |
JPS63187575A (en) | Electrolyte retaining electrode peripheral seal of fuel cell | |
JPH0724223B2 (en) | Fuel cell | |
JPS60133660A (en) | Manufacture of electrode substrate of fuel cell | |
CA1241370A (en) | Silicon carbide matrix for fuel cells | |
JPH06103630B2 (en) | Fuel cell | |
JPH0456429B2 (en) | ||
JPH0785879A (en) | Matrix for phosphoric acid type fuel cell |