JPS59181681A - Light emitting element - Google Patents
Light emitting elementInfo
- Publication number
- JPS59181681A JPS59181681A JP58056003A JP5600383A JPS59181681A JP S59181681 A JPS59181681 A JP S59181681A JP 58056003 A JP58056003 A JP 58056003A JP 5600383 A JP5600383 A JP 5600383A JP S59181681 A JPS59181681 A JP S59181681A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- film
- type
- transparent
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000002431 hydrogen Chemical class 0.000 claims abstract 2
- 239000000758 substrate Substances 0.000 abstract description 9
- 238000000354 decomposition reaction Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 7
- 239000012535 impurity Substances 0.000 abstract description 6
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 5
- 238000002347 injection Methods 0.000 abstract description 4
- 239000007924 injection Substances 0.000 abstract description 4
- 239000011521 glass Substances 0.000 abstract description 2
- 229910003437 indium oxide Inorganic materials 0.000 abstract description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 abstract description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 abstract description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract description 2
- 229910001887 tin oxide Inorganic materials 0.000 abstract description 2
- 238000001704 evaporation Methods 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
- H01L33/18—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は水素を含む非晶質炭化珪素膜勿用いた注入型の
発光素子に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an injection type light emitting device using an amorphous silicon carbide film containing hydrogen.
結晶半導体を用いた発光素子は、GaPによる緑色ある
いは赤色LED 、 GaAsPによる赤色LEDなど
、多くのものが実用化されている。しかしこれらは、結
晶半導体を用いるために、大面積かつ安価なものを得る
ことができないという難点があった。Many light emitting devices using crystalline semiconductors have been put into practical use, such as green or red LEDs made of GaP and red LEDs made of GaAsP. However, since these use crystalline semiconductors, they have the disadvantage that they cannot be manufactured with a large area and at low cost.
最近、水素を含む非晶質珪素( a Sj:H )がこ
れらの問題を解決するものとして注目されている。a−
Si:H膜は、シランや70ルシラン々どの珪素化合物
ガスのグロー放電分解全利用して、低温プロセスで大面
積の基板上に容易に形成することができるからである。Recently, amorphous silicon containing hydrogen (aSj:H) has been attracting attention as a solution to these problems. a-
This is because the Si:H film can be easily formed on a large-area substrate in a low-temperature process by fully utilizing the glow discharge decomposition of a silicon compound gas such as silane or 70 silane.
a−Sj:Hi用いた注入型の発光素子として、従来p
in構造全利用したものが試作されている。As an injection type light emitting device using a-Sj:Hi, conventional p
A prototype that fully utilizes the in structure has been produced.
しかしこれは、77°にという低温で赤〜赤外領域の発
光が観4(Iノされているだけで、発光効率の点でも実
用には程遠いものである。However, this method only emits light in the red to infrared region at a low temperature of 77 degrees, and is far from practical in terms of luminous efficiency.
本発明は上記の点に鑑みなされたもので、常温で可視領
域の発光を可能とした、非晶質半導体膜を用いた注入型
の発光素子を提供することを目的とする。The present invention has been made in view of the above points, and an object of the present invention is to provide an injection-type light emitting element using an amorphous semiconductor film that is capable of emitting light in the visible region at room temperature.
本発明に係る発光素子は、水素を含む非晶質炭化珪素(
a−SiC : H )膜を用い、その一方の面に整
流接合を形成する酸化物透明導電膜からなる第1の電極
を設け、他方の面に水素を含むn型あるいはp型の非晶
質珪素(a−8i :H)膜を介して第2の電極を設け
て構成される。The light-emitting element according to the present invention is made of amorphous silicon carbide containing hydrogen (
A-SiC:H) film is used, a first electrode made of an oxide transparent conductive film forming a rectifying junction is provided on one surface, and an n-type or p-type amorphous film containing hydrogen is provided on the other surface. A second electrode is provided through a silicon (a-8i:H) film.
この場合発光素子の製造工程は、第1の電極が形成され
た透明基板上にa−8iC: H膜、a−8t:H膜、
第2の電極膜を順次積層形成してもよいし、逆に第2の
′「電極が形成された絶縁基板又は第2の電極となる金
属基板上にa−8i : HI戻、a −S r C:
H膜、第1の電極紫順次潰層形成してもよい。In this case, the manufacturing process of the light emitting device includes forming an a-8iC:H film, an a-8t:H film,
The second electrode films may be sequentially laminated, or conversely, a-8i: HI return, a-S rC:
The H film and the first electrode may be sequentially formed into a collapsed layer.
本発明によれば、非晶質半導体膜を用いるだめ、大面積
の基板上に低温プロセスで発光素子を実現できる。また
発光層として、−31:uよシパンドギャップの広いa
−3iC:H膜を用いるため可視領域の発y0が得られ
る。更にa −S iC: Hは注入によp生成したキ
ャリヤの放射再結合確率が高くなるため、室温において
発光させる事ができる。According to the present invention, since an amorphous semiconductor film is used, a light-emitting device can be realized on a large-area substrate by a low-temperature process. In addition, as a light-emitting layer, -31:u has a wider wavelength gap than a.
Since the -3iC:H film is used, an emission y0 in the visible region can be obtained. Furthermore, a-SiC:H can emit light at room temperature because the probability of radiative recombination of p-generated carriers by injection is high.
又、本発明ではa−8iC:Hの裏面に不純物をドープ
したa−8i :H層を設ける。a−8iC:Hは光学
的バンドギャップが2.3 eV以上になると高C,度
に不純物をドーグするのが建しい。従ってこの発明によ
れば光射出側はa−3iC:Hに酸化物透明電極が設け
られるので光のロスなく元金外部に取り出せると共に、
裏面にオーミック用のドープしたa−8i: H膜を設
けるので高輝度が得られる。Further, in the present invention, an a-8i:H layer doped with impurities is provided on the back surface of the a-8iC:H. When the optical bandgap of a-8iC:H becomes 2.3 eV or more, it is recommended to add impurities to a high C ratio. Therefore, according to this invention, since a transparent oxide electrode is provided on the a-3iC:H on the light exit side, light can be taken out to the outside without loss of light, and
High brightness can be obtained because an ohmic doped a-8i:H film is provided on the back surface.
以下本発明の詳細な説明する。第1図は一実施例の発光
素子を示す断面図である。1ノはガラス等の透明絶縁基
板であって、この上に第1の電極として透明電極12が
形成されている。The present invention will be explained in detail below. FIG. 1 is a sectional view showing a light emitting device of one embodiment. 1 is a transparent insulating substrate made of glass or the like, on which a transparent electrode 12 is formed as a first electrode.
透明電極12は例えば酸化インジウム錫、酸化錫、酸化
インゾウム等であp、EB蒸尤云等によυ形成される。The transparent electrode 12 is made of, for example, indium tin oxide, tin oxide, indium oxide, etc., and is formed by EB vaporization or the like.
この透り」電極12上に、グロー放電分解法によってア
ンドーグのa−8jC: H膜13、不純物をドープし
たn型もしくはp型a−8+:H膜14を順次堆積し、
その表面に万一ミック接触をなず第2の電極とじでAt
44の金属電極15f:蒸着して、発光素子が完成す
る。On this transparent electrode 12, an undog a-8JC:H film 13 and an n-type or p-type a-8+:H film 14 doped with impurities are sequentially deposited by a glow discharge decomposition method.
In case there is no contact with the surface, please attach the second electrode.
44 metal electrodes 15f: Vapor deposited to complete the light emitting device.
a−8iC:H膜12とa−8i: Hd 13の形成
には、第2図に示すグロー放電分解装置を用いる。この
工程を具体的に説明すると、まずチャツバ2ノ内の平イ
テ平板電極22.23の一方、この例では上部′4L極
22に、第1図の透明′−極12才で形成した基板1ノ
を装着する。そしてチャンバ21内を3 X 10
Torr以下に排気した後、図示しないヒータによシ基
板11を約200℃まで加熱する。この後、がンペ24
a、24bからそれぞれシラン(5iH4)とメタン(
CH4)を質1計流量計25a、25bで流量調整して
チャンバ2ノ内に供給し、内部圧力をl Torrに設
頑して、高周波′、11.源26から34m鞭偏2の電
力を印加する。これにより、原料ガスの70−放電分解
が生じて、アンドーグのa−8iC: H%% I 3
が堆@する。A glow discharge decomposition apparatus shown in FIG. 2 is used to form the a-8iC:H film 12 and the a-8i:Hd 13. To explain this process in detail, first, on one side of the flat plate electrodes 22 and 23 in the chatuba 2, in this example the upper '4L pole 22, a substrate 1 is formed using the transparent '-pole 12' shown in FIG. Attach the no. Then, the inside of the chamber 21 is 3 x 10
After exhausting to a temperature below Torr, the substrate 11 is heated to about 200° C. by a heater (not shown). After this, Ganpe 24
Silane (5iH4) and methane (
CH4) is adjusted in flow rate using flowmeters 25a and 25b and supplied into chamber 2, the internal pressure is set to 1 Torr, and high frequency', 11. A power of 34 m/2 is applied from a source 26. As a result, 70-discharge decomposition of the raw material gas occurs, and Andog's a-8iC: H%% I3
I will compile @.
この後、放′亀およびfス供給を一旦停止し、チャンバ
2ノ内を排気した後、ポンベ24a。After that, the supply of air and f-sulfur is temporarily stopped, and the inside of the chamber 2 is evacuated, and then the pump 24a is removed.
24cから貝量靴箪計25a、25cで流気調整してS
iH4とドーパントガスである7オスフイン(PH3
)’xチャンバ21内に供給し、上記と同様グロー放電
分解によシn型a −3i : H膜14全堆積する。From 24c, adjust the air flow with the shellfish meter 25a and 25c.
iH4 and the dopant gas 7osphine (PH3
)'x chamber 21, and the entire thin n-type a-3i:H film 14 is deposited by glow discharge decomposition as described above.
なお、グロー放電分解の条件は、基板温度100〜35
0℃、内部圧力0.1〜I Torr 。Note that the conditions for glow discharge decomposition are a substrate temperature of 100 to 35
0°C, internal pressure 0.1 to I Torr.
高周波電力密度I X 10−2〜1毀会2の範囲で適
当に選択し得る。又、各層の膜厚は、透明電極12が2
00〜5000 X、 a−8iC: H膜13がo、
oi〜1μm、n型a−8j:H膜14が1oo〜1o
o。The high-frequency power density I x can be appropriately selected within the range of 10 -2 to 2. Also, the thickness of each layer is such that the transparent electrode 12 has a thickness of 2
00-5000X, a-8iC: H film 13 is o,
oi~1μm, n-type a-8j:H film 14 is 1oo~1o
o.
X1金属電極15が1〜3μmの範囲で選択し得る。n
型a−8t:H膜14の不純物ドーf遺は0.1〜3%
の範囲でよい。The thickness of the X1 metal electrode 15 can be selected within the range of 1 to 3 μm. n
Type a-8t: The impurity concentration of the H film 14 is 0.1 to 3%
The range is fine.
実際の試作例では、透明電極12i750La−8iC
: H膜13 ’1lo00x、 a−3t:HldJ
4を500 X、その不純物ドープ量を1%、金属電
極15を1μmとした。In the actual prototype example, transparent electrode 12i750La-8iC
: H film 13'1lo00x, a-3t:HldJ
4 was 500X, its impurity doping amount was 1%, and the metal electrode 15 was 1 μm.
このように形成された発光素子では、鷲属′屯極15と
透明電極12の間に直流電圧を印加すると、常温で可視
領域の発光が見られる。In the light-emitting element formed in this way, when a DC voltage is applied between the wire electrode 15 and the transparent electrode 12, light emission in the visible region can be seen at room temperature.
下表は、a−8tC*H膜13の炭素量と光学的バンド
ギャップ、発光ピーク波長、またその発光ピーク波長に
対する透明電極12の透過率の関係を示したものである
。The table below shows the relationship between the carbon content of the a-8tC*H film 13, the optical band gap, the emission peak wavelength, and the transmittance of the transparent electrode 12 with respect to the emission peak wavelength.
表から明らかなように、a−8iC:H膜13の形成条
件を制御することによシ発光ピーク波長全選択すること
ができ、所望の発光色を僧ることができる。また透明電
極は可視光領域で十分な透過率を有し、a −S iC
: H膜からの発光を十分外−昌Isに」4叉り出すこ
とができる。As is clear from the table, by controlling the formation conditions of the a-8iC:H film 13, all emission peak wavelengths can be selected and a desired emission color can be obtained. In addition, the transparent electrode has sufficient transmittance in the visible light region, and a-SiC
: The light emitted from the H film can be sufficiently emitted to the outside.
なお本9し明は上記実施例に限られない。例えばa−8
+C: f(膜はフッ累を含んでもよい。又、a−8i
C:H膜を形成する原料ガ゛スは例えばテトラメチルシ
ラン等、他のものを用い得る。a−8t:H膜はn型に
ドープされる場合に限らずp型にドーグされたa−8i
:I(膜であってもよい。金・萬電極としてもAtの他
、n型もしくはp型a−8i:H膜に対してオーミック
接触するものであればよい。又、金属電極側7を出発基
板として、上1己実施例と逆の工程で膜形成することが
可能でちる0Note that the present invention is not limited to the above embodiment. For example a-8
+C: f (The film may contain fluorine. Also, a-8i
Other materials such as tetramethylsilane may be used as the raw material gas for forming the C:H film. The a-8t:H film is not limited to n-type doping, but also p-type a-8i doping.
:I (may be a film. The gold electrode may be At, as long as it makes ohmic contact with the n-type or p-type a-8i:H film. Also, the metal electrode side 7 may be As a starting substrate, it is possible to form a film by the reverse process of the above example.
第1図は本発明の一実施例の発光素子を示す1ス、第、
2図はその発光層を形成するグロー放電分解装置を示す
図である。
1〕・−・透明絶縁基板、12・・・透明電極(@ 1
0電極)、13 =−アンド−ゾロ−8iC: l(膜
、14− n W a−3i : HBIA、 15
・・−金属電極(第2の電極)。FIG. 1 shows a light emitting device according to an embodiment of the present invention.
FIG. 2 is a diagram showing a glow discharge decomposition device for forming the light emitting layer. 1] - Transparent insulating substrate, 12... Transparent electrode (@ 1
0 electrode), 13 =-and-Zolo-8iC: l (membrane, 14-n Wa-3i: HBIA, 15
...-metal electrode (second electrode).
Claims (1)
形成する1軟化物透明導電瞑からなる第1の電極を設け
、他方の面に水素を合むn型まだはp型の非晶質珪素膜
を介して第2の電極を設けたこと全特徴とする発光素子
。A first electrode made of a 1-softened transparent conductive film that forms a rectifying junction is provided on one side of an amorphous silicon carbide film containing hydrogen, and an n-type or p-type electrode is provided on the other side of the amorphous silicon carbide film containing hydrogen. A light emitting device characterized in that a second electrode is provided through an amorphous silicon film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58056003A JPS59181681A (en) | 1983-03-31 | 1983-03-31 | Light emitting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58056003A JPS59181681A (en) | 1983-03-31 | 1983-03-31 | Light emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59181681A true JPS59181681A (en) | 1984-10-16 |
Family
ID=13014886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58056003A Pending JPS59181681A (en) | 1983-03-31 | 1983-03-31 | Light emitting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59181681A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5408109A (en) * | 1991-02-27 | 1995-04-18 | The Regents Of The University Of California | Visible light emitting diodes fabricated from soluble semiconducting polymers |
-
1983
- 1983-03-31 JP JP58056003A patent/JPS59181681A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5408109A (en) * | 1991-02-27 | 1995-04-18 | The Regents Of The University Of California | Visible light emitting diodes fabricated from soluble semiconducting polymers |
US5869350A (en) * | 1991-02-27 | 1999-02-09 | The Regents Of The University Of California | Fabrication of visible light emitting diodes soluble semiconducting polymers |
US6534329B2 (en) | 1991-02-27 | 2003-03-18 | The Regents Of The University Of California | Visible light emitting diodes fabricated from soluble semiconducting polymers |
US6878974B2 (en) | 1991-02-27 | 2005-04-12 | The Regents Of The University Of California | Visible light emitting diodes fabricated from soluble semiconducting polymers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5034784A (en) | Diamond electric device on silicon | |
US5075764A (en) | Diamond electric device and manufacturing method for the same | |
JP3254885B2 (en) | Manufacturing method of resistor | |
US5139970A (en) | Electric device and manufacturing method of the same | |
CN113471343A (en) | GaN green light emitting diode based on ScAlGaN super-polarized n-type layer and preparation method thereof | |
JPS59181681A (en) | Light emitting element | |
EP0413595A2 (en) | Method of manufacturing electric devices | |
JPH0158839B2 (en) | ||
US3413507A (en) | Injection el diode | |
JPH06283755A (en) | Light emitting element | |
JPS5956478A (en) | Thin-film luminescent element and preparation of same | |
JPS59228777A (en) | Thin film light emitting element | |
JP2002170985A (en) | GREEN, BLUE OR WHITE AMORPHOUS p-i-n THIN FILM LIGHT EMITTING DIODE AND ITS FABRICATING METHOD | |
JPH0554692B2 (en) | ||
JP2761759B2 (en) | Diamond electronics | |
JPH0652806B2 (en) | Method for manufacturing semiconductor light emitting device | |
JPS6247171A (en) | Light emitting element | |
JPS6054196A (en) | Thin film el element | |
JPH081962B2 (en) | Method for manufacturing blue light emitting device | |
JPH08255924A (en) | Luminance modulation diamond light emission element | |
JPH02216877A (en) | Light emitting diode | |
JPS6269572A (en) | Light emitting element | |
JPH01278782A (en) | Manufacture of photovoltaic element | |
JPS6254976A (en) | Light emitting element | |
JPS6254977A (en) | Light emitting element |