JPS59188159A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS59188159A JPS59188159A JP58060750A JP6075083A JPS59188159A JP S59188159 A JPS59188159 A JP S59188159A JP 58060750 A JP58060750 A JP 58060750A JP 6075083 A JP6075083 A JP 6075083A JP S59188159 A JPS59188159 A JP S59188159A
- Authority
- JP
- Japan
- Prior art keywords
- type
- schottky barrier
- layer
- region
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 13
- 230000004888 barrier function Effects 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000004020 conductor Substances 0.000 claims 1
- 238000002955 isolation Methods 0.000 abstract description 7
- 150000002500 ions Chemical class 0.000 abstract description 4
- 238000009792 diffusion process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/07—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
- H01L27/0744—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
- H01L27/075—Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
- H01L27/0755—Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
- H01L27/0761—Vertical bipolar transistor in combination with diodes only
- H01L27/0766—Vertical bipolar transistor in combination with diodes only with Schottky diodes only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Bipolar Transistors (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明はショットキバリアをそなえた半導体装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor device equipped with a Schottky barrier.
半導体集積回路装置(IC,LSI)の一部としてショ
ットキバリア・ダイオードを形成する場合,第1図に示
すように、例えばp型シリコン(Si)基板の上にn十
型埋込層2を介してn型Si層3をエピタキシャル成長
させ存この、n型Si層をp型拡散層4等により他領域
から分離させた島領域内のn型Si層表面の一部にA4
等の金属を蒸着させてショットキバリア電極(アノード
)Aとし、n型Si層の他部忙高濃度計型拡散層5を形
成し、このn 型拡散層5に対しオーミック接続する第
2の電極(カンード)Kを設けるようにしている。とこ
ろで、このままではショットキバリア・ダイオード内の
シリーズ抵抗がエピタキシャルn型層によって犬となり
、高温度特性上好ましくない。このためn+型拡散M5
に重ねてトランジスタのコレクタ取出し部に用いる深い
高1濃度n型拡散層(1山常CN −1−1列と称する
)6をn十ノVす叩込層2に■幸するように形成してい
る。しかし、51〈拡散されるCN十層6は同時に横方
向へも拡散(〜で広いスペースをとるため高集債化上好
−![2くなく、又、シリーズ抵抗の減少の効果も充分
とはいえない。When forming a Schottky barrier diode as part of a semiconductor integrated circuit device (IC, LSI), as shown in FIG. After epitaxially growing the n-type Si layer 3, A4 is deposited on a part of the surface of the n-type Si layer in the island region where the n-type Si layer is separated from other regions by the p-type diffusion layer 4, etc.
A Schottky barrier electrode (anode) A is formed by vapor-depositing a metal such as A, a Schottky barrier electrode (anode) A is formed in the other part of the n-type Si layer, and a high concentration meter type diffusion layer 5 is formed, and a second electrode is ohmically connected to this n-type diffusion layer 5. (Kando) K is provided. By the way, if left as is, the series resistance in the Schottky barrier diode will be increased by the epitaxial n-type layer, which is unfavorable in terms of high temperature characteristics. Therefore, n+ type diffusion M5
A deep high concentration n-type diffusion layer (referred to as a CN-1-1 row) 6, which is used for the collector extraction portion of the transistor, is formed on the n-10V implanted layer 2. There is. However, 51〈The diffused CN ten layer 6 is also diffused in the horizontal direction at the same time. No, no.
本発明は上記した点を改4するためになされたものであ
り、その目的とするところは、ショットキバリアを有す
る半導体装置の集積度の向上及び高温度特性の改良にあ
る。The present invention has been made to improve the above-mentioned points, and its purpose is to improve the degree of integration and high temperature characteristics of a semiconductor device having a Schottky barrier.
1−記目的を達成するための本発明では、第2図((−
具体例で示すよりにショットキバリアの形成された半導
体島領域3のカソード側に表面から埋込層2に達する凹
陥部7をあけ、この高濃度埋込142に直接ショットキ
バリアの対向電極(カソード)Kk設けることにより、
シリーズ抵抗を大幅に低減させたものである。In order to achieve the object 1-, the present invention has the following features:
As shown in the specific example, a recess 7 reaching from the surface to the buried layer 2 is formed on the cathode side of the semiconductor island region 3 where the Schottky barrier is formed, and a counter electrode (cathode) of the Schottky barrier is directly formed in this high concentration buried layer 142. By providing Kk,
This significantly reduces series resistance.
半導体単結晶吊金エツチングして凹陥部を形成する場合
、例えばアルカリニ、f液による異方性エッチ技イホj
を採用すれば比較的に侠い面積の中に急峻な傾斜面を有
する深い凹陥部が得られ、従来のCN十拡散の場合のよ
うに横方向へ広がることが少なく、集積度向上の上で有
利である。このような本発明によれば、ショットキバリ
アダイオードの少なくともカソード側はエピタキシャル
n型層が存在せずn十型埋込層に直接にコンタクトされ
ることでシリーズ抵抗が大幅に低減され、高温度峙にも
回路動作マージンの低下することなく高電流領域での素
子の特性が向上する。When forming a recessed part by etching a semiconductor single crystal hanger, for example, an anisotropic etching technique using alkaline or F liquid is used.
By adopting this method, a deep recess with a steep slope can be obtained in a relatively small area, and it will not spread laterally as in the case of conventional CN-10 diffusion, and will improve the degree of integration. It's advantageous. According to the present invention, at least the cathode side of the Schottky barrier diode does not have an epitaxial n-type layer and is in direct contact with the n-type buried layer, so that the series resistance is significantly reduced and it can withstand high temperatures. Also, the characteristics of the device in the high current region are improved without deteriorating the circuit operation margin.
第31すお〜第7図はショットキバリア・ダイオード付
トランジスタを有するIC(この場合I2Lを含む)に
本発明を適用した場合の実施例のプロセヌにおける主要
■稈の断面図であり、腹下、各I稈に従って詳述する。Figures 31 to 7 are cross-sectional views of the main culms of the prosthene of the embodiment in which the present invention is applied to an IC having a transistor with a Schottky barrier diode (including I2L in this case), and shows The details will be explained according to each I culm.
(1)第31図に示すよう1にp型81基板1の一主表
面上にn十型埋込層2を介してn−型Sij萌3を約1
〜2μm厚にエピタキシャル成長させた基体を用意する
。n++埋込層2はその上に形成される素子に対応して
複数個所に埋込まれる。(1) As shown in FIG.
A substrate epitaxially grown to a thickness of ~2 μm is prepared. The n++ buried layer 2 is buried in a plurality of locations corresponding to the elements to be formed thereon.
(2)第4図に示すようI/Cn−型Si層3表面の一
部をSin、膜8等でマスクし、ショットキバリア・ダ
イオードとなる部分、素子間を分離するアイソレーショ
ン部分及びI2L素子となる部分を約1μm程度の深さ
に選択的にエッチし、凹陥部9を形成する。(2) As shown in FIG. 4, a part of the surface of the I/Cn-type Si layer 3 is masked with a Sin film 8, etc. to form a part that will become a Schottky barrier diode, an isolation part that separates the elements, and an I2L element. A recessed portion 9 is formed by selectively etching the portion to a depth of approximately 1 μm.
(3) さらに、第5図に示すように、アイソレーシ
ョン領域形成の拡散時間を短縮するため、またショット
キバリア・ダイオードのシリーズ抵抗を低減させるため
に、n−型Si層3表面の一部を新らたな5in2膜8
′をマスクとして選択的にエッチして凹陥部10を形成
する。(3) Furthermore, as shown in Fig. 5, in order to shorten the diffusion time for forming the isolation region and to reduce the series resistance of the Schottky barrier diode, a part of the surface of the n-type Si layer 3 is New 5in2 membrane 8
' is used as a mask to selectively etch to form a recessed portion 10.
(4)第6図に示すように、凹陥部10のn−型Si層
表面に形成した5in2膜11をマスクとして各素子間
のアイソレーション部とするところにB(ボロン)イオ
ンを選択的に打込みそして引き伸し拡散することによっ
てp型基板に接続するp型(アイソレーション)領域1
2を形成するとともにショットキバリア・ダイオードの
ガードリング、かつ低耐圧npn )ランジヌタのベー
スとなるP型領域13aならびに高耐圧トランジスタの
ベースとなるp型領域13bを形成する。(4) As shown in FIG. 6, using the 5in2 film 11 formed on the surface of the n-type Si layer in the recessed portion 10 as a mask, B (boron) ions are selectively applied to the isolation portion between each element. p-type (isolation) region 1 connected to p-type substrate by implantation and stretching diffusion
At the same time, a P-type region 13a which becomes a guard ring of a Schottky barrier diode and a base of a low breakdown voltage npn transistor and a p-type region 13b which becomes a base of a high breakdown voltage transistor are formed.
なお、この工程においては、同図では図示されないが、
他の島領域において、I2L のインジェクタとなるp
型領域及びnpnインバーストランジスタのペースとな
るp型領域(一部が図示されろ)が同時に形成される。Note that in this step, although not shown in the figure,
In other island regions, p becomes the injector of I2L.
A type region and a p-type region (partially shown) which will serve as a base for an npn inverse transistor are formed at the same time.
(5) 第7図に示すように、表面のSiO2膜11
′をマスクとして、Asイオン打込み(又はデポジット
)拡散により、低耐圧トランジスタのエミッタとなるn
+型領領域15a、高耐圧トランジスタのエミッタとな
るn+型領領域15b、さらにショットキバリア・ダイ
オードのカソードコンタクト部としてn++埋込層表面
に高濃度n+型領領域6、図示されないがI”Lのイン
バーストランジスタのマルチコレクタとなるn+型領領
域を同時に形成する。(5) As shown in FIG. 7, the SiO2 film 11 on the surface
′ as a mask, by implanting (or depositing) As ions and diffusing n, which will become the emitter of the low voltage transistor.
+ type region 15a, n+ type region 15b which becomes the emitter of the high voltage transistor, and furthermore, a high concentration n+ type region 6 on the surface of the n++ buried layer as the cathode contact part of the Schottky barrier diode, and although not shown in the figure, the I''L At the same time, an n+ type region that will become the multi-collector of the inverse transistor is formed.
この後1表面にPSG等によりバンシベイション膜を形
成し、コンタクトホトエッチ後、Apを蒸暗し、配線パ
ターンエッチして各領域にコンタクトする電極(配線)
を形成する。After that, a bancivation film is formed on one surface using PSG or the like, and after contact photoetching, Ap is evaporated and wiring patterns are etched to form electrodes (wirings) that contact each area.
form.
第9図は上記プロセスに従って一つの基板上に形成され
たnpn)ランジスタ、 I2L、ショットキバリア
付トランジスタの形態を示すものである。FIG. 9 shows the configuration of an npn (npn) transistor, an I2L transistor, and a Schottky barrier transistor formed on one substrate according to the above process.
第8図は第9図のショットキバリア付トランジスタと等
価の回路図である。FIG. 8 is a circuit diagram equivalent to the Schottky barrier transistor shown in FIG. 9.
以上、実施例で述べたように、I2L共存型の微細プロ
セスでは分離領域とI2L領域とでn型Si層表面をあ
る深さにエッチすることにより、アイソレージ1ンp型
拡散の際に横方向への拡散を防ぐこともできるとともに
、I2Lのβ1%性を向上できる。そこでショットキバ
リアダイオード付のトランジスタのコレクタコンタクト
部をエッチによってn++埋込層を露出さぜることによ
りカソード電極側のシリーズ抵抗を低減させる構造を同
時に実現できるとともにコレクク取出しのための拡散も
不要となる。As described above in the examples, in the I2L coexistence type microprocess, by etching the surface of the n-type Si layer to a certain depth in the isolation region and the I2L region, it is possible to In addition to being able to prevent diffusion to , the β1% property of I2L can be improved. Therefore, by exposing the N++ buried layer by etching the collector contact part of a transistor with a Schottky barrier diode, it is possible to simultaneously realize a structure that reduces the series resistance on the cathode electrode side, and also eliminates the need for diffusion to take out the collector. .
ショットキバリア・ダイオードの抵抗分減少は工程追加
又は縦構造の改善なしでは素子サイズを大きくする以外
にないが、上記構ゴ告にすれば特に工程を追加すること
なくコレクタ直−Fの抵抗を無視でき、ショットキバリ
ア・ダイオードのシリーズ抵抗の低減ができ、回1洛動
作にあたって消音電力が少なく温度特性も向上する。The only way to reduce the resistance of a Schottky barrier diode is to increase the element size without adding a process or improving the vertical structure, but if you follow the above plan, you can ignore the resistance directly across the collector and F without adding any process. This reduces the series resistance of the Schottky barrier diode, requires less silencing power during one-time operation, and improves temperature characteristics.
本発明はJ持に高周波素子内+に、のICに適用して有
効である。The present invention is effective when applied to an IC inside a high frequency element.
第1図はショットキバリアダイオードの一例を示す縦断
面図である。
第2図は本発明によるショットキバリア・ダイオードの
原理的構造を示す縦断面図である。
第31采〜第7図は本発明によるショットキバリア・ダ
イオード付トランジスタのプロセスの一実施例金示す工
程断面図である。
第81Aはショットキバリア・ダイオード付トランジス
タの等価回路図である。
第9図は本発明によるショットキバリア・ダイオード内
蔵のICを示す縦断面図である。
1・・p−型Si基板、2−・・n−型埋込層、3・エ
ピタキシャルn型Si層、4・・アイソレーションp型
層、5・・n+型型数散層6−・n型ウェル(CN+)
、7・凹陥部、8.− S i 02膜、9・・浅い凹
陥部、10・深イ凹陥部、11 、11′・SiO2膜
、12.− p型ウェル、13a、13b−p型領域、
15a、15b、16−n+型領領域第 1 図
第 2 図
第 3 図
第 4 図FIG. 1 is a longitudinal sectional view showing an example of a Schottky barrier diode. FIG. 2 is a longitudinal sectional view showing the principle structure of a Schottky barrier diode according to the present invention. Figures 31 to 7 are cross-sectional views showing one embodiment of the process for manufacturing a transistor with a Schottky barrier diode according to the present invention. No. 81A is an equivalent circuit diagram of a transistor with a Schottky barrier diode. FIG. 9 is a longitudinal sectional view showing an IC incorporating a Schottky barrier diode according to the present invention. 1. P-type Si substrate, 2-. N-type buried layer, 3. Epitaxial n-type Si layer, 4. Isolation p-type layer, 5. N+-type scattering layer 6-.n Type well (CN+)
, 7. Concave portion, 8. - Si02 film, 9... Shallow recess, 10. Deep recess, 11, 11', SiO2 film, 12. - p-type well, 13a, 13b-p-type region,
15a, 15b, 16-n+ type region Fig. 1 Fig. 2 Fig. 3 Fig. 4
Claims (1)
ショットキバリアが形成された半導体装置において、半
導体基体の他の一部に凹部があけられ、上記高濃度埋込
層にショットキバリアの対向電極が直接に設けられてい
ることを特徴とする半導体装置− 2上記ショットキバリアは上記半導体基体の表面に形成
されたトランジスタのベース・コレクタ間に並列に接続
するように設けられている特許請求の範囲 3 上記半導体の複数個所にトランジスタ等の回:洛素
子が形成され、各素子間に凹陥部及び基体と導電型の異
なるウニ)Vによって電気的に分離され、七iC凹陥部
の一部に前記ショットキバリアの対向電極を設けてある
特許.請求の範囲第1項又は第2項に記載の老導体装置
。[Claims] 1. In a semiconductor device in which a Schottky barrier is formed on a part of the surface of a semiconductor substrate having a high concentration buried layer, a recess is formed in another part of the semiconductor substrate, and A semiconductor device characterized in that a counter electrode of a Schottky barrier is directly provided in the semiconductor substrate. Claim 3: Elements such as transistors are formed at a plurality of locations on the semiconductor, and each element is electrically separated by a recessed portion and a conductivity type V having a different conductivity from the base. In this patent, a counter electrode of the Schottky barrier is provided in a part of the iC recess. An old conductor device according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58060750A JPS59188159A (en) | 1983-04-08 | 1983-04-08 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58060750A JPS59188159A (en) | 1983-04-08 | 1983-04-08 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59188159A true JPS59188159A (en) | 1984-10-25 |
Family
ID=13151253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58060750A Pending JPS59188159A (en) | 1983-04-08 | 1983-04-08 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59188159A (en) |
-
1983
- 1983-04-08 JP JP58060750A patent/JPS59188159A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4433470A (en) | Method for manufacturing semiconductor device utilizing selective etching and diffusion | |
JPS60194558A (en) | Manufacture of semiconductor device | |
JPS6252963A (en) | Manufacture of bipolar transistor | |
US4404737A (en) | Method for manufacturing a semiconductor integrated circuit utilizing polycrystalline silicon deposition, oxidation and etching | |
JP2605030B2 (en) | Quadrature bipolar transistor | |
JPH0241170B2 (en) | ||
JPS60202965A (en) | Method of producing improved oxide defined transistor and structure obtained as its result | |
JPH05235014A (en) | Semiconductor device | |
JPS58218168A (en) | Bidirectional transistor | |
JPS6128236B2 (en) | ||
JPS59188159A (en) | Semiconductor device | |
JPH0465528B2 (en) | ||
JPS5821866A (en) | Semiconductor device | |
JPS61265867A (en) | Semiconductor device | |
JPS637665A (en) | Lateral p-n-p transistor | |
KR900008818B1 (en) | Manufacture method of a particle in bipolar integrated circuit | |
JPS627704B2 (en) | ||
JP3175707B2 (en) | Method for manufacturing semiconductor device | |
JPH09181335A (en) | Semiconductor device | |
JPS6084878A (en) | Semiconductor device having negative resistance characteristic and manufacture thereof | |
JPS59214263A (en) | Double diffusion type insulated gate field-effect transistor | |
JPS61269373A (en) | Semiconductor device | |
JPS6276775A (en) | Semiconductor device | |
JPH03203333A (en) | Semiconductor device and manufacture thereof | |
JPS62122169A (en) | Manufacture of semiconductor device |