[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5914273B2 - Method of using grit-free zeolite molecular sieve for water softening - Google Patents

Method of using grit-free zeolite molecular sieve for water softening

Info

Publication number
JPS5914273B2
JPS5914273B2 JP56023249A JP2324981A JPS5914273B2 JP S5914273 B2 JPS5914273 B2 JP S5914273B2 JP 56023249 A JP56023249 A JP 56023249A JP 2324981 A JP2324981 A JP 2324981A JP S5914273 B2 JPS5914273 B2 JP S5914273B2
Authority
JP
Japan
Prior art keywords
water
crystallization
particles
particle size
molecular sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56023249A
Other languages
Japanese (ja)
Other versions
JPS56124486A (en
Inventor
ウオルフガング・レ−プケ
デイ−テル・クナイテル
エ−ルフリ−ド・パ−ル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEGUTSUSA AG
HENKERU KG AUFU AKUCHEN
Original Assignee
DEGUTSUSA AG
HENKERU KG AUFU AKUCHEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DEGUTSUSA AG, HENKERU KG AUFU AKUCHEN filed Critical DEGUTSUSA AG
Publication of JPS56124486A publication Critical patent/JPS56124486A/en
Publication of JPS5914273B2 publication Critical patent/JPS5914273B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2815Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of type A (UNION CARBIDE trade name; corresponds to GRACE's types Z-12 or Z-12L)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/33Wastewater or sewage treatment systems using renewable energies using wind energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Detergent Compositions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は45μm以下の直径の粒子を少なくとも99.
5重量%含有している水和物水含有結晶アルミノ珪酸塩
をベースとするタイプAのゼオライ15 トーモレキユ
ラーシーブの用途に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises particles having a diameter of 45 μm or less.
Zeolite 15 of type A based on crystalline aluminosilicates containing 5% by weight of hydrated water.

イオン交換および吸着に対する特別な長所を有するゼオ
ライト=モレキユラiシーブは既に以前から知られてい
る。ゼオライト合成は、a−Na2O×b−Ae203
×c−SiO2成分を有する水性合成混合20物を50
〜300℃の温度に加熱することに基づいている。原料
混合物の組成、反応温度および反応時間次第で一般式N
axAexSly02(xl−y)n(H2O)の化合
物が得られる。
Zeolite-molecule i-sieves have already been known for a long time, which have special advantages for ion exchange and adsorption. Zeolite synthesis is a-Na2O x b-Ae203
x 50% of 20 aqueous synthetic mixtures containing c-SiO2 components
Based on heating to temperatures of ~300°C. Depending on the composition of the raw material mixture, reaction temperature and reaction time, the general formula N
A compound axAexSly02(xl-y)n(H2O) is obtained.

これらの化合物はX−線ス25ベクトルによつて区別で
きる。この合成の場合ナトリウムは他の1価または2価
のイオンに代えることができる。例えばドイツ特許第1
030017号明細書には、総計式1.0±O、2M2
/nO、■Al2O3■1.85±O、5SiO2■Y
H2O(式中、M30は金属陽イオン、nはその価数お
よびYは6までの値を意味する。)で表わされるモレキ
ユラーシーブAの製造方法を提示している。A−タイプ
を製造する場合、一般に、SiO2およびAe2o3(
例えば水ガラスあるいはナトリウム−アルミ酸35塩の
状態)がモル比2:1でそして水およびアルカリ酸化物
(例えばNa2O)が17.5:1のモル比で存在する
合成混合物を用いる。公知の方法には、合成の際に平均
直径が約2μ以上である結晶が得られ、その際著しい部
分、通常3〜12重量%が45μm以上の限界粒子であ
るという共通点が有る。
These compounds can be distinguished by their X-ray spectra. In this synthesis, sodium can be replaced by other monovalent or divalent ions. For example, the first German patent
In the specification of No. 030017, the total formula 1.0±O, 2M2
/nO, ■Al2O3■1.85±O, 5SiO2■Y
A method for producing a molecular sieve A represented by H2O (wherein M30 is a metal cation, n is its valence and Y means a value up to 6) is presented. When producing A-type, SiO2 and Ae2o3 (
A synthetic mixture is used in which water glass (for example in the form of sodium aluminic acid 35 salt) is present in a molar ratio of 2:1 and water and an alkali oxide (for example Na2O) are present in a molar ratio of 17.5:1. The known processes have in common that during the synthesis crystals with an average diameter of about 2 .mu.m or more are obtained, with a significant portion, usually 3 to 12% by weight, of critical particles of 45 .mu.m or more.

この成分はグリッドと表示される。このものはモカ一(
MOcker)に従う湿式篩分けによつてDIN535
8Oにより確認される。吸着剤、触媒担体またはイオン
交換体として用いる為に、このモレキユラーシーブを適
当な結合剤で成形体に変える。
This component is displayed as a grid. This one is Mochaichi (
DIN 535 by wet sieving according to MOcker)
Confirmed by 8O. The molecular sieves are converted into shaped bodies with suitable binders for use as adsorbents, catalyst supports or ion exchangers.

この成形体の製造は、結合剤成分に帰因して、工業的な
多大の消費と同時に効能の低下を意味する。長い拡散行
程によつて反応速度も著しく遅く成る。このことは有機
系液体の乾燥を煩雑にする。更に例えば金属あるいは放
射性金属を供給水および排水から除く際にイオン交換と
沈殿物とを分けなければならない。それ故、か\る用途
の場合粉末状モレキユラーシープを用いることが重要で
ある。モレキユラーシープ粉末だけをラツカ一状でも用
いられる。本発明は、特に例えば水の軟化の為にイオン
交二換体として用いる為に構成されている粉末状のAタ
イプゼオライトーモレキユラーシープを、限定された粒
度を有するグリッド成分(粒子〉45μm)を形成せず
に合成する方法を見出すという課題の解決から出発して
いる。
The production of these moldings, due to the binder component, means a large amount of industrial consumption and at the same time a reduction in efficacy. The long diffusion path also significantly slows down the reaction rate. This makes drying the organic liquid complicated. Furthermore, ion exchange and precipitation must be separated, for example when removing metals or radioactive metals from feed water and waste water. Therefore, it is important to use powdered molecular sheep for such applications. Molecular sheep powder alone can also be used in the form of raduka. In particular, the present invention uses a powdered A-type zeolite-molecular sheet, which is configured for use as an ion exchanger, for example for the softening of water, with a grid component having a limited particle size (particles > 45 μm). The starting point is to find a way to synthesize without forming it.

グリッドの存在は、洗滌ニーおよび浄化剤中のリン酸塩
代用品としてか\るモレキユラーシープを用いる為の本
発明の範囲内にある必須のことがらである。即ち、特に
機械中での洗滌一および浄化過程では、工程の経過後に
徹底的な洗浄を可能とする為に、浴中にモレキユラーシ
ーブが(沈殿傾向が小さいことによつて)浮遊残留する
必要がある。本発明で用いるゼオライトーモレキユラー
シーブは、45μm以下の直径の粒子を少なくとも99
.5重量%、殊に99.9重量%、特に99.99J重
量%含有している水和物水含有結晶アルミノ珪酸塩をベ
ースとするA−タイプのゼオライトーモレキユラーシー
ブを、アルミン酸塩/水ガラス一合成混合物を熱水晶化
することによつて製造する方法に於て、1.9以下:1
であるSiO2とAl2O3qとのモル比および好まし
くは少なくとも30:1である水とアルカリ酸化物との
モル比の状態にある合成混合物の成分を非晶質前生成物
の沈殿前に親密に混合し、アルミニウム一珪酸塩懸濁物
を結晶化後に結晶化条件のもとで熱処理(TOmper
n)しそして結晶化および/または熱処理の間に剪断す
ることを特徴とする、上記製造方法によつて得られる。
The presence of a grid is essential within the scope of the present invention for the use of such molecular sheep as a phosphate substitute in cleaning and cleaning agents. This means that, especially during cleaning and purification processes in machines, the molecular sieve remains suspended in the bath (due to its low tendency to settle) to enable thorough cleaning after the process has finished. There is a need. The zeolite-molecular sieve used in the present invention contains at least 99 particles with a diameter of 45 μm or less.
.. A-type zeolite-molecular sieves based on crystalline aluminosilicate containing hydrated water containing 5% by weight, in particular 99.9% by weight, in particular 99.99J% by weight, are added to the aluminate/molecular sieve. In a method for producing a water glass-synthetic mixture by thermal crystallization, 1.9 or less: 1
The components of the synthesis mixture in a molar ratio of SiO2 to Al2O3q of , and a molar ratio of water to alkali oxide of preferably at least 30:1 are intimately mixed prior to precipitation of the amorphous pre-product. , the aluminum monosilicate suspension was subjected to a heat treatment (TOmper) under crystallization conditions after crystallization.
n) and shearing during the crystallization and/or heat treatment.

従つて所望の限界粒子を有しそして一定の粒度を有する
生成物の実質的に定量的な合成を協力的に可能にする以
下の重要な手段は本方法に基づくものである。
The following important measures are therefore based on the present method, which cooperatively allows a substantially quantitative synthesis of products with the desired particle limit and with a constant particle size.

公知の方法に比べて合成混合物中に著しく多量の酸化ア
ルミニウム成分が加えられている。
Compared to known processes, a significantly higher amount of aluminum oxide component is added to the synthesis mixture.

それ故、緊密に混合された合成混合物からの沈殿を、一
様な晶子形成を保証する為に行なうことが考慮される。
更に、省略できない手段には結晶化に後続する熱処理段
階がある。この段階においては一般に結晶化の為の通常
の条件が守られる。更に続いて結晶化の間または両方の
方法段階の間、アルミニウム一珪酸塩懸濁物に剪断力が
作用していなければならない。特に僅かである限界粒子
の含有量は、上記の手段を、公知の方法に比べて減少し
た合成混合物中アルカリ濃度と結び付けた場合に、達成
できる。熱処理(Temperung)並びに減少した
アルカリ濃度によつて一様に実現する限界粒子成分の減
少は驚ろくべきものである。
It is therefore contemplated to carry out precipitation from the intimately mixed synthesis mixture in order to ensure uniform crystallite formation.
Furthermore, an essential measure is a heat treatment step subsequent to crystallization. At this stage, the usual conditions for crystallization are generally observed. Furthermore, shear forces must subsequently act on the aluminum monosilicate suspension during crystallization or during both process steps. Particularly low limiting particle contents can be achieved if the above measures are combined with a reduced alkali concentration in the synthesis mixture compared to the known methods. The reduction in the limiting particle fraction, which is uniformly achieved by the heat treatment and the reduced alkali concentration, is surprising.

何故なら熱処理並びに濃度の低下が結晶化の際に大きな
結晶の形成をもたすことが周知であり、そして本発明の
システムで達成し得る効果がこの支配的な教示に反して
いるからである。本発明に従つて構成された限界粒子お
よびその割合を調節する手段は、結晶の所望の平均粒子
径が得られる様に選らぶことができる。
This is because it is well known that heat treatment as well as concentration reduction leads to the formation of large crystals during crystallization, and the effects that can be achieved with the system of the present invention are contrary to this prevailing teaching. . The limiting particles constructed in accordance with the invention and the means for adjusting their proportions can be selected to obtain the desired average particle size of the crystals.

平均粒子径は、1μm以下〜15μmの値を有すことが
できるしまた殊に、結晶化の間に作用する剪断強度によ
つて決定できる。
The average particle size can have a value of ≦1 μm to 15 μm and can be determined, in particular, by the shear strength acting during crystallization.

本発明に従う目的にとつては、平均粒子径が約8μmで
あることと限界粒子が45μm以下であることとを組合
せることが合目的的であることが判つた。限界粒子の寸
法が減少するのと共に、大きな粒子の方へ傾射した分布
線は理想的なガラス分布に近似してくる。所望の限界粒
子の割合を最適に且つそれ故に実際的に有利に調整する
ことが一その割合は本発明に従つて0.01重量%まで
および更にこれよりも下に下げることができる一重要な
方法手段の協力によつてのみ達成される。沈殿挙動の検
査で、限界粒子が本発明に従つて約20μmの値まで減
少することが判る。合成混合物はSlO2およびAe2
O3を0.8〜1.6:1特に約1.3:1のモル比で
含有することができそして水およびアルカリ酸化物を3
5〜50:1のモル比で含有することができる。
It has been found to be expedient for the purposes according to the invention to combine an average particle size of approximately 8 μm with a limiting particle size of less than 45 μm. As the critical particle size decreases, the distribution line tilted toward large particles approximates the ideal glass distribution. One important point is that the proportion of the desired limit particles can be adjusted optimally and therefore with practical advantage; the proportion can be lowered according to the invention to 0.01% by weight and even below this. It can only be achieved through the cooperation of methods and means. Examination of the settling behavior shows that the limiting particles are reduced according to the invention to a value of approximately 20 μm. The synthesis mixture is SlO2 and Ae2
O3 can be contained in a molar ratio of 0.8 to 1.6:1, particularly about 1.3:1, and water and alkali oxide can be contained in a molar ratio of 3
It can be contained in a molar ratio of 5 to 50:1.

特に有利な方法形態は、非晶質の前生成物を沈殿させる
為に少なくとも撹拌作用を可能とする量の水またはアル
ミン酸塩溶液を予め入れて置きそして激しく撹拌下に一
特に撹乱度の高い領域に I−ナトリウム−アルミン酸
塩一並びに水ガラス溶液を同時に注ぎ込むことにある。
A particularly advantageous process configuration is to precipitate the amorphous pre-product by prefilling with at least an amount of water or aluminate solution that allows for a stirring action and, under vigorous stirring, with a particularly high degree of agitation. The solution consists in simultaneously pouring into the area the I-sodium aluminate solution and the water glass solution.

ゞ剪断O概念は、本発明の関係において用いられている
様に、懸濁状態で存在する粒子を小さくするあらゆる機
械的応力であつて、主として真1の剪断作用に基づくも
のの意味である。
The term shear O, as used in the context of the present invention, refers to any mechanical stress that reduces the size of particles present in suspension and is primarily based on a true shear action.

この剪断は不連続的にもまたは連続的にも行なうことが
できる。特に、剪断するべき品物を前後して数回剪断力
の作用下に置く再循環的処理方法が好のましい。これの
為の目安は、1時間当り(デメンシヨンン11′1 )
の流過量を示すいわゆる循環回数(Dunchsatz
frequenz)であるo剪断装置としてはタービン
撹拌機、例えばEKATO−タービン撹拌機が有利であ
る。
This shearing can be done discontinuously or continuously. Particular preference is given to recirculating processing methods in which the articles to be sheared are subjected to shearing forces several times back and forth. The standard for this is 11'1 per hour.
The so-called circulation number (Dunchsatz
A turbine stirrer, for example an EKATO turbine stirrer, is preferred as the shearing device.

しかしながらフエースギヤーデイソルバ一、分散ホン
二プ(DispergatOrpumpe)、循環ポン
プ等でも剪断することができる。所望の限界粒度を達成
する為の本発明に従う処理条件の場合に消費される剪断
エネルギーは、平均粒子径を徹底的に低下させる為に必
要とされる.同様な剪断エネルギー(ドイツ特許出願P
233O689参照)に比べて実際的に問題に成らない
However, the phase gear desolver and dispersion phone
Shearing can also be performed using a dispergat or pump, a circulation pump, or the like. The shear energy consumed in the case of processing conditions according to the invention to achieve the desired critical particle size is required to drastically reduce the average particle size. Similar shear energy (German patent application P
233O689) does not pose a practical problem.

限界粒子および限界粒子割合を適切に調整する際に、重
要な用途技術的特性、即ち洗滌剤中で用いられる本発明
に従うゼオライト製水軟化剤の洗滌能を悪化させること
なく、平均粒子径も2μm以上にあり得るということは
予期しえなかつたことである。例えば、タービン撹拌機
を用いる場合撹拌機は既に0.6〜2、殊に0.6〜1
、特に0.8kW/イの電力消費にて稼動することがで
きる。本発明の場合結晶化は例えば94℃で行なうこと
ができるのに、熱処理は結晶化母液中において85〜1
05℃で行なうことが有利であり、そしてその際の熱処
理時間は0.2〜6、殊に0.8〜1.8時間、特に1
時間が有利であることが判つた。
When adjusting the limiting particles and limiting particle proportions appropriately, an average particle size of 2 μm can be achieved without impairing the important application-technical properties, namely the cleaning ability of the zeolite water softener according to the invention used in cleaning agents. It was unimaginable that anything more than that could happen. For example, when using a turbine stirrer, the stirrer is already 0.6 to 2, in particular 0.6 to 1
In particular, it can be operated with a power consumption of 0.8 kW/I. In the case of the present invention, crystallization can be carried out at, for example, 94°C;
It is advantageous to carry out at 0.05° C. and the heat treatment time is between 0.2 and 6, in particular between 0.8 and 1.8 hours, in particular between 1
Time proved to be an advantage.

熱処理時間は、最大のイオン交換能の実理が認められ、
最高のレントゲン線強度の達成および約22.5%水蒸
気吸収の達成が認められる結晶化が終了した時点で開始
する。実際には処方を最高にすることによつて確められ
た実験が基礎になつている。一定の目的の為の方法結果
を最善にする為に特に熱処理一および剪断条件を相互に
同調させなければならず、他方Ae2O3/SiO2の
モル比に関してもまたは合成混合物中のアルカリ含有量
に関しても前述の範囲を厳守することで実質的に充分で
ある。
The heat treatment time is determined by the fact that the maximum ion exchange capacity is achieved.
It begins at the end of crystallization, at which point the highest X-ray intensity is achieved and about 22.5% water vapor absorption is achieved. In fact, it is based on experiments that have been confirmed by optimizing the formulation. In order to optimize the process results for a given purpose, in particular the heat treatment and shear conditions must be synchronized to each other, while also regarding the molar ratio of Ae2O3/SiO2 or the alkali content in the synthesis mixture. It is practically sufficient to strictly adhere to this range.

結晶化段階の終りまでに作用する剪断は、平均粒子径が
非常に小さな値に低下し得る程に強めることができる。
The shear acting by the end of the crystallization stage can be so strong that the average particle size can be reduced to very small values.

その際限界粒子および生成物中の該粒子の百分率的割合
の値も同様に低下する。平均粒子径および限界粒子ある
いは限界粒子成分への剪断の影響は、それにもか\わら
ずあらゆる方法条件のもとで一様であるとは認められな
い。即ち、例えば合成混合物中のアルカリ濃度が低い有
利な場合、平均粒子径は増大するが、限界粒子寸法およ
び限界粒子割合は少さくなる。しかし熱処理段階の間に
行なわれる剪断は限界粒子およびその割合に主として影
響を及ぼす。本発明は、45μm以下の粒子を少なくと
も99.5、殊に99.9、特に99.99(f)有し
そして、\ ω VVv− ▼ ▼ なる粒子スペクトルを有しそして殊に前記の方法手段に
よつて得られるタイプ−Aのゼオライト一モレキユラー
シーブを洗滌−および浄化剤中のリン酸塩代用品として
、水の軟化の為に用いることに関する。
In this case, the value of the limiting particles and their percentage proportion in the product likewise decreases. The influence of shear on the average particle size and on the critical particles or critical particle components nevertheless does not appear to be uniform under all process conditions. Thus, for example, in advantageous cases where the alkali concentration in the synthesis mixture is low, the average particle size increases, but the critical particle size and the critical particle proportion decrease. However, the shearing carried out during the heat treatment step primarily affects the critical particles and their proportions. The present invention provides a method having at least 99.5, in particular 99.9, in particular 99.99 (f) particles of less than 45 μm and a particle spectrum of \ ω VVv- ▼ ▼ The present invention relates to the use of zeolite monomolecular sieves of type A obtained by a method for softening water, as a phosphate substitute in cleaning and cleaning agents.

本発明に従う生成物は、その製造の際に既に粗粒がない
という長所を有している。
The product according to the invention has the advantage that it is already free of coarse grains during its production.

それ故、このものは、洗滌一および浄化剤中の水一軟化
剤として用いる際に、浴中に容易に浮遊されるし、また
洗滌−および浄化機械およびそのバツチ(Beschi
chung)を残りなく特に容易に洗浄する。
It is therefore easily suspended in baths when used as a water softener in cleaning and purifying agents, and is also used in cleaning and purifying machines and batches thereof.
chung) is particularly easily cleaned without any residue.

本発明を以下で実施例によつて更に詳細に説明する。The invention will be explained in more detail below by way of examples.

実施例 1 7k9の市販の湿一水和物、即ち灼熱減量によつて確認
できる42.5%の水分含有量の酸化アルミニウム水和
物を、12重量%の苛性ソーダ溶液50e中に100℃
のもとで溶解する。
Example 1 A commercially available wet monohydrate of 7k9, i.e. hydrated aluminum oxide with a water content of 42.5% as determined by loss on ignition, was dissolved at 100° C. in a 12% by weight caustic soda solution 50e.
dissolves under

得られる透明な溶液を80℃に冷却する。撹拌機を備え
た60eのガラス容器中で他の処理を行なう。電力消費
は接続されてあるアンペア−メーターによつて測ること
ができる。撹拌速度は非段階的に調整できる。撹拌機は
15cmの直径を有するDIN28l3lに従うEKA
TO−タボ撹拌機である。撹拌容器は40cmの直径を
有しそしてそれぞれ90容の角度で4個の流れ破砕手段
(StrOmbre− 二Cher)を持つている〇沈
殿は、タービン撹拌機の円板の上方約0.5礪で終つて
いる管にて26.5重量%のSiO2および8重量%の
Na2Oを含有している8.8eの水ガラスを配量供給
して行なう。
The resulting clear solution is cooled to 80°C. Other treatments are carried out in a 60e glass vessel equipped with a stirrer. Power consumption can be measured by a connected ampere meter. The stirring speed can be adjusted non-stepwise. Stirrer EKA according to DIN28l3l with a diameter of 15 cm
It is a TO-Turbo stirrer. The stirred vessel has a diameter of 40 cm and has four flow crushing means (StrOmbre-2 Cher) at an angle of 90 volumes each. This is carried out by metering 8.8e water glass containing 26.5% by weight of SiO2 and 8% by weight of Na2O in the terminating tube.

(沈殿開始前に15eのアルミ
ン酸塩溶液を撹拌容器中に予め入れて置く。その残りは
水ガラスと同時に反応混合物に配量添加する。沈殿は3
0分後に終了する。沈殿生成物はレントゲン一非晶質で
ある。反応混合物中には各成分が以下のモル比△で存在
している。H2:Na2O=33および SlO2:Ae2O3=1.3 沈殿の終りに撹拌機は0.8kW/M3のエネルギ―を
消費する。
(Before the start of the precipitation, the aluminate solution of 15e is pre-charged in a stirred vessel. The remainder is metered into the reaction mixture at the same time as the water glass.
Ends after 0 minutes. The precipitated product is roentgenically amorphous. Each component is present in the reaction mixture in the following molar ratio Δ. H2:Na2O=33 and SlO2:Ae2O3=1.3 At the end of the precipitation the stirrer consumes 0.8 kW/M3 of energy.

水蒸気によつて反応溶液を90℃にずAる。、そこで開
始する結晶化の経過はC2a一結合力によつて観察され
る。Ca一結合力とは、200℃で2時間乾燥した19
の生成物のイオン交換性を意味する。
The reaction solution is brought to 90° C. with water vapor. , the course of crystallization initiated therein is observed by the C2a binding force. Ca-bonding strength is 19
refers to the ion exchange properties of the product.

この量はCaCe2(300TrLgのCaOに相当す
る)を含む1eの水について測定されている。次いで淵
過しそして水中に残つているCaOを錯滴定する。元の
300ηとの差がゼオライトの結合能である。Ca一結
合能が更に変らない場合には、結晶化は終了している。
80分の反応時間の後に16.4の値に達しそして不変
的にそのま〜になる。
This amount has been measured for 1e water containing CaCe2 (corresponding to 300 TrLg of CaO). It is then filtered and the CaO remaining in the water is complexometrically titrated. The difference from the original 300η is the binding capacity of the zeolite. If the Ca-binding capacity does not change further, crystallization has been completed.
After a reaction time of 80 minutes, a value of 16.4 is reached and remains unchanged.

結晶化を行なつた後に温度を95℃に高め、そして尚3
0分間剪断丁に熱処理する。
After crystallization the temperature is increased to 95°C and
Heat treat the shear knife for 0 minutes.

次いで、得られる結晶生成物を洗滌して,HlO.Oに
しそしてその上で200℃の乾燥棚中で乾燥する。この
ものはドイツ特許第1038017号明細書に記載の如
きゼオライトA<7)X線曲線を示す。限界粒子を評価
する為にDIN5358Oに従つて湿一篩分けを行なう
。この場合水で懸濁した試料をモーカー(MOcker
)試験装置中で回転ノズルから噴出される水によつて渦
巻運動状態にし、その際細かい成分は試験篩布を通して
洗われ、粗らい成分は篩布上に残留する。篩土の残留物
を乾燥し、秤量する。試験篩布としてはDIN4l88
に従う45μmメツシユの篩を用いる。得られる生成物
は、この様に確かめられた限界粒子〉45μmを0.0
10%有している。
The resulting crystalline product is then washed with HlO. O and then dried in a drying cabinet at 200°C. This exhibits a zeolite A<7) X-ray curve as described in German Patent No. 1,038,017. A wet sieve according to DIN 5358O is carried out to evaluate the limit particles. In this case, the sample suspended in water is placed in a MOcker.
) A swirling motion is created in the test device by means of water ejected from a rotating nozzle, with the fine components being washed through the test sieve cloth and the coarse components remaining on the sieve cloth. Dry and weigh the sieve residue. DIN4l88 as a test sieve cloth
Use a 45 μm mesh sieve according to the following. The resulting product has a particle size of 0.0 μm with a particle size of 45 μm.
It has 10%.

生成物を更に特徴付ける為に沈殿秤で粒度分析する。測
定すべき試料をウルトラートウラツクス(UItra−
Turrax)によつて水中に分散し、次いで沈殿を行
なう。次の粒子分布が判つた。実施例 242.5%の
水含有の湿一水和物5.5k9を50iの10重量%の
苛件ソーダ溶液に溶解する。
To further characterize the product, particle size analysis is performed on a sedimentation balance. The sample to be measured was placed in an Ultra Trax (UItra-
Turrax) followed by precipitation. The following particle distribution was found. Example 24 Wet monohydrate 5.5k9 containing 2.5% water is dissolved in a 10% by weight caustic soda solution of 50i.

実施例1に記載の反応容器はDIN28l3lに従う直
径15(1771のプロペラ撹拌機を備えている。沈殿
および結晶化の間、撹拌装置のエネルギー消費は0.3
kW/イである。実施例1における如く、水ガラスの添
加開始の際に撹拌装置の充分な能力を保証する為に、こ
\でも15eのアルミン酸塩溶液を予め人れて置く。ア
ルミン酸塩アルカリ液の残りを30分に亘つて配量供給
する。同時に26.5%SlO2および8%のNa2O
・゛を有する6.8′の水ガラスをプロペラ上に配置供
給する。次いでこうして得られる以下のモル比を有する
合成混合物を93℃において結晶化する:SiO2:M
2O3一1.3:1およびH2O:Na2O−39:1
、90分後に168W!9Ca0/9のCa一結合能が
達成されそして反応が終了する。実施例1に記載の如き
ターボ撹拌機にプロペラを取り換えそして0.8kW/
dのエネルギー供給量で同じ温度(即ち93゜C)のも
とで剪断エネルギー下で熱処理する。1時間後に反応を
中断し、生成物をPHlO.Oで洗滌しそして次いで噴
霧乾燥する。
The reaction vessel described in Example 1 is equipped with a propeller stirrer with a diameter of 15 (1771) according to DIN 28l3l. During precipitation and crystallization, the energy consumption of the stirring device is 0.3
It is kW/I. As in Example 1, the aluminate solution of 15e is also pre-soiled in order to ensure sufficient capacity of the stirring device at the beginning of the water glass addition. The remainder of the aluminate lye is metered in over 30 minutes. 26.5% SlO2 and 8% Na2O at the same time
・A 6.8' water glass having a diameter of 2.5 mm is placed and fed onto the propeller. The synthesis mixture thus obtained with the following molar ratio is then crystallized at 93°C: SiO2:M
2O3-1.3:1 and H2O:Na2O-39:1
, 168W after 90 minutes! A Ca binding capacity of 9Ca0/9 is achieved and the reaction is terminated. Replace the propeller with a turbo stirrer as described in Example 1 and power up to 0.8kW/
Heat treatment under shear energy at the same temperature (ie 93° C.) with an energy supply of d. After 1 hour the reaction was stopped and the product was dissolved in PHLO. Wash with O and then spray dry.

モーカー(DIN5358O)に従うグリッド測定の際
に45μmくの粉子成分をもはや測定不能な程しか有し
ていないX一線グラフで純粋なAタイプのゼオライトが
得られる。この方法の測定精度は0.001%で表示す
ることができる。沈殿秤の上での粒子分析では次の粒子
分布が示される。実施例 3 実施例2に近似して、成分SiO2およびAe2O3が
1.3:1のモル比でそして水および酸化ナトリウム3
9:1のモル比で含まれている合成混合物を製造する。
An X-line-pure zeolite of the A type is obtained which has a powder component of only 45 μm which is no longer measurable during grid measurement according to Morker (DIN 5358 O). The measurement accuracy of this method can be expressed as 0.001%. Particle analysis on a sedimentation balance shows the following particle distribution: Example 3 Approximately to Example 2, the components SiO2 and Ae2O3 are in a molar ratio of 1.3:1 and water and sodium oxide 3
A synthetic mixture containing a molar ratio of 9:1 is prepared.

沈殿段階の終了後に直径10(177!のターボ撹拌機
を結晶化中に剪断する為に用いる。エネルギー消費は0
.6kW/M3であり、結晶化温度は90℃である。1
10分後に結晶化したゼオライトのCa一結合能は16
1即CaO/9の最終値に達する。
After the end of the precipitation stage, a turbo stirrer with a diameter of 10 (177!) is used for shearing during the crystallization. Energy consumption is 0.
.. 6kW/M3, and the crystallization temperature is 90°C. 1
The Ca-binding capacity of the zeolite crystallized after 10 minutes was 16
1 immediately reaches the final value of CaO/9.

撹拌装置をEKATO社の3段階MIG(商標)一撹拌
機に代えそして合成混合を0.1kW/M3のエネルギ
ー消費にて撹拌下に92゜Cで4時間(剪断なしで)熱
処理する。得られる生成物はX線グラフで純粋なゼオラ
イトであり、モーカー装置で測定し得る0.13(Fb
の限界粒子成分を有しており且つ沈殿秤にて測定し1こ
次の粒子スペクトルを示す。実施例 4 5.5k9の市販の湿一水和物を50eの11重量%の
苛性ソーダ溶液中に溶解する。
The stirring device is replaced by a 3-stage MIG® stirrer from the company EKATO and the synthesis mixture is heat treated at 92° C. for 4 hours (without shearing) with stirring at an energy consumption of 0.1 kW/M3. The product obtained is X-ray-graphically pure zeolite and has a concentration of 0.13 (Fb
It has a limit particle component of Example 4 A commercial wet monohydrate of 5.5k9 is dissolved in an 11% by weight caustic soda solution of 50e.

得られるアルミン酸塩溶液を、60eの反応容器中にス
タティク・ミキサー(StaticMixer:商標)
によつてポンプ送入する。混合疑集する前に8.2eの
水ガラスを配量添加する。混合過程の後に反応容器中に
水状透明混合物が流れている。反応容器の底部でこの溶
液を吸引淵過しそして循環ポンプによつて40h−1に
て剪断的にポンプ循環する。ポンプは1.8kW/M3
のエネルギー消費する。SiO2:Ae2O3=1,6
:1そしてH2O:Na2O=37:1のモル比の合成
混合物を95℃にする。50分後に結晶化を終了する。
The resulting aluminate solution was placed in a 60e reaction vessel using a static mixer (StaticMixer™).
Pump by. 8.2e of water glass is metered in before mixing. After the mixing process, an aqueous clear mixture flows into the reaction vessel. At the bottom of the reaction vessel, the solution is filtered off with suction and pumped in a shearing manner at 40 h@-1 by means of a circulation pump. Pump is 1.8kW/M3
consumes energy. SiO2:Ae2O3=1,6
:1 and the synthesis mixture with a molar ratio of H2O:Na2O=37:1 is brought to 95°C. Crystallization is completed after 50 minutes.

その後に温度を105℃に高めそして連続的剪断下に3
0分間熱処理する。得られる生成物はモーカーによつて
測定した0.0301)の45μm以上のグリッド成分
を有し且つ沈殿秤で測定した次の粒子スペクトルを有す
る。実施例 54.5k9の市販の湿一水和物を50e
の8重量%の水酸化ナトリウム溶液に溶解する。
Thereafter the temperature was increased to 105°C and under continuous shear
Heat treatment for 0 minutes. The resulting product has a grid content greater than 45 .mu.m of 0.0301) measured by Moker and the following particle spectrum measured by sedimentation balance: Example 54.5k9 commercially available wet monohydrate was converted into 50e
of 8% by weight sodium hydroxide solution.

次いでこの溶液を実施例1に記載の方法に相応して4.
31の水ガラス溶液と激しく混合する。その上で結晶化
を、剪断力の作用下に92℃で実施例1に記載の如く実
施する。その際のエネルギー消費は1kW/M3である
。次で結晶化の終つた後に同じ剪断力および94℃の温
度にて熱処理を行なう。
This solution was then subjected to 4.corresponding to the method described in Example 1.
Mix vigorously with the water glass solution of 31. Crystallization is then carried out as described in Example 1 at 92° C. under the action of shear forces. The energy consumption at that time is 1kW/M3. Then, after the crystallization is complete, a heat treatment is carried out at the same shear force and temperature of 94°C.

得られるX線グラフにて純粋なゼオライトAは一般に4
5μmの限界粒子を含有しておらず、且つ次の粒子スペ
クトルを有する。\ωu▲νV9V 実施例1〜5によつて製造した全てのゼオライトーイオ
ン交換体は、通常の洗滌剤中において従来の通例のリン
酸塩と少なくとも1部分を代えることができる。
In the resulting X-ray graph, pure zeolite A is generally 4
It does not contain the limit particles of 5 μm and has the following particle spectrum. \ωu▲νV9V All the zeolite-ion exchangers prepared according to Examples 1 to 5 can replace at least one portion of conventional phosphates in conventional detergents.

Claims (1)

【特許請求の範囲】 1 直径45μm以下の粒子を少なくとも99.5重量
%含有し且つ▲数式、化学式、表等があります▼ なる粒子分布を有するA−タイプのゼオライト−モレキ
ユラーシープを洗滌−および浄化剤中のリン酸塩の代用
品として水の軟化に用いる方法。
[Claims] 1. An A-type zeolite containing at least 99.5% by weight of particles with a diameter of 45 μm or less and having a particle distribution of ▲a mathematical formula, a chemical formula, a table, etc.▼ and for use in water softening as a substitute for phosphates in purification agents.
JP56023249A 1974-10-02 1981-02-20 Method of using grit-free zeolite molecular sieve for water softening Expired JPS5914273B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE24470211 1974-10-02
DE2447021A DE2447021C3 (en) 1974-10-02 1974-10-02 Type A crystalline zeolite powder and the process for its preparation

Publications (2)

Publication Number Publication Date
JPS56124486A JPS56124486A (en) 1981-09-30
JPS5914273B2 true JPS5914273B2 (en) 1984-04-03

Family

ID=5927336

Family Applications (2)

Application Number Title Priority Date Filing Date
JP11830675A Pending JPS5184790A (en) 1974-10-02 1975-10-02 Guritsutoojusanai zeoraito morekyuraashiibu no seizohoho
JP56023249A Expired JPS5914273B2 (en) 1974-10-02 1981-02-20 Method of using grit-free zeolite molecular sieve for water softening

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP11830675A Pending JPS5184790A (en) 1974-10-02 1975-10-02 Guritsutoojusanai zeoraito morekyuraashiibu no seizohoho

Country Status (12)

Country Link
JP (2) JPS5184790A (en)
AT (1) AT346814B (en)
BE (1) BE834110A (en)
CA (1) CA1057272A (en)
CH (1) CH614423A5 (en)
DE (1) DE2447021C3 (en)
ES (1) ES441177A1 (en)
FR (1) FR2286794A1 (en)
GB (1) GB1517323A (en)
IT (1) IT1047260B (en)
NL (1) NL180808C (en)
SE (1) SE413017B (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2514399C2 (en) * 1975-04-02 1987-01-29 Degussa Ag, 6000 Frankfurt Process for the production of aluminium silicates
DE2651436A1 (en) 1976-11-11 1978-05-18 Degussa TYPE A III CRYSTALLINE ZEOLITE POWDER
DE2651437A1 (en) 1976-11-11 1978-05-18 Degussa TYPE A VI CRYSTALLINE ZEOLITE POWDER
DE2660728C2 (en) * 1976-11-11 1987-03-12 Degussa Ag, 6000 Frankfurt Process for producing a crystalline zeolite powder of type A
DE2660726C2 (en) * 1976-11-11 1987-03-12 Degussa Ag, 6000 Frankfurt Process for producing a crystalline zeolite powder of type A
DE2651419A1 (en) 1976-11-11 1978-05-18 Degussa TYPE A IV CRYSTALLINE ZEOLITE POWDER
DE2651420A1 (en) 1976-11-11 1978-05-18 Degussa TYPE A V CRYSTALLINE ZEOLITE POWDER
DE2651485A1 (en) 1976-11-11 1978-05-24 Degussa TYPE A I CRYSTALLINE ZEOLITE POWDER
DE2651445A1 (en) 1976-11-11 1978-05-18 Degussa TYPE A II CRYSTALLINE ZEOLITE POWDER
DE2660722C2 (en) 1976-11-11 1987-03-12 Degussa Ag, 6000 Frankfurt Process for producing a crystalline zeolite powder of type A
FR2392932A1 (en) * 1977-06-03 1978-12-29 Rhone Poulenc Ind METHOD OF MANUFACTURING AN ALKALINE CRYSTALLINE SILICO-ALUMINATE, PRODUCT OBTAINED AND APPLICATION
DE2744784B1 (en) * 1977-10-05 1978-08-17 Basf Ag Process for the preparation of zeolite A and its use
FR2444005A1 (en) * 1978-12-15 1980-07-11 Ugine Kuhlmann INDUSTRIAL PROCESS FOR THE SEMI-CONTINUOUS MANUFACTURE OF ZEOLITE A
DE2856278A1 (en) * 1978-12-27 1980-07-10 Degussa METHOD FOR PRODUCING FINE-PARTICLE SODIUM ALUMINUM SILICATES
DE2907108A1 (en) * 1979-02-23 1980-09-04 Basf Ag METHOD FOR PRODUCING STORAGE-STABLE, PUMPABLE AND FLOWABLE ALUMOSILICATE SUSPENSIONS BY WET MILLING
US4242223A (en) * 1979-07-11 1980-12-30 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for receiving, storing and handling aluminum hydroxide wet hydrate
DE2941636A1 (en) * 1979-10-13 1981-05-07 Degussa Ag, 6000 Frankfurt METHOD FOR CONTINUOUSLY PRODUCING FINE-PARTICULATED ZEOLITHIC SODIUM ALUMINUM SILICATES
JPS5663817A (en) * 1979-10-31 1981-05-30 Kojiro Takei Manufacture of a-type zeolite of fine crystal particle
DE3011834A1 (en) * 1980-03-27 1981-10-01 Degussa Ag, 6000 Frankfurt METHOD FOR PRODUCING FINE-PARTICULATE ZEOLITHIC SODIUM ALUMINUM SILICATES
DE3021370A1 (en) * 1980-06-06 1981-12-24 Degussa Ag, 6000 Frankfurt METHOD FOR REDUCING THE PARTICULAR SIZE OF ZEOLITHIC SODIUM ALUMINUM SILICATES
DE3132379A1 (en) * 1981-08-17 1983-02-24 Degussa Ag, 6000 Frankfurt ZEOLITE GRANULES, METHOD FOR THE PRODUCTION AND USE THEREOF
DE3132928C1 (en) 1981-08-20 1983-01-13 Degussa Ag, 6000 Frankfurt Process for accelerating the setting of hydraulic cement mixtures
DE3144298A1 (en) * 1981-11-07 1983-05-19 Degussa Ag, 6000 Frankfurt SCRUBBING POWDER
DE3208598A1 (en) * 1982-03-10 1983-09-22 Degussa Ag, 6000 Frankfurt METHOD FOR THE PRODUCTION OF ZEOLITES MODIFIED WITH ORGANOSILANES
AT380805B (en) * 1982-03-22 1986-07-10 Mizusawa Industrial Chem METHOD FOR PRODUCING A ZEOLITE A, ZEOLITE X AND / OR Y CONTAINING ZEOLITE SLAVE FOR WASHER OR CLEANING AGENT
IN157422B (en) * 1982-06-21 1986-03-22 Lever Hindustan Ltd
DE3444311A1 (en) * 1984-12-05 1986-06-05 Degussa Ag, 6000 Frankfurt AQUEOUS, STABLE SUSPENSION OF WATER-INSOLUBLE SILICATES CAPABLE OF CALCIUMIONS AND THE USE THEREOF FOR THE PRODUCTION OF DETERGENT AND CLEANING AGENTS
DE3516660A1 (en) 1985-05-09 1986-11-13 Degussa Ag, 6000 Frankfurt POWDER-BASED BINDER CONCENTRATE
DE3623717A1 (en) * 1985-07-16 1987-01-22 Lion Corp Process for preparing a zeolite and detergent (cleaning composition) containing this
DE102011012805B4 (en) * 2011-03-02 2013-06-06 I-E-S E.K., Inhaber Dr. Oliver Jacobs Treatment of raw brine from seawater desalination plants

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE599134A (en) *
GB339355A (en) * 1929-09-07 1930-12-08 Electric Smelting & Aluminum C Improvements in and relating to detergents and method of preparing the same
US2213641A (en) * 1938-09-01 1940-09-03 Urlyn C Tainton Cleaning powder
US2882243A (en) * 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US3033641A (en) * 1956-03-21 1962-05-08 Union Carbide Corp Process for cation separation using zeolitic materials
US3055841A (en) * 1956-06-29 1962-09-25 Exxon Research Engineering Co Process for preparing attrition resistant adsorbents
FR1204427A (en) * 1957-03-29 1960-01-26 Exxon Research Engineering Co Preparation of selective adsorbents
DK359362A (en) * 1961-08-07
US3310373A (en) * 1963-04-03 1967-03-21 Mobil Oil Corp Method for producing crystalline aluminosilicates
US3433588A (en) * 1964-03-20 1969-03-18 Pechiney Saint Gobain Method for the preparation of 4 angstrom unit zeolites
DE1667620C3 (en) * 1967-08-09 1980-04-03 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Process for the controlled production of sodium aluminum silicates with predetermined chemical and / or physical properties
AT322511B (en) * 1970-06-15 1975-05-26 Martinswerk G M B H Fuer Chem PROCESS FOR THE DIRECT MANUFACTURING OF A PURE CRYSTALLINE ZEOLITHIC MOLECULAR SCREEN WITH A PORE WIDTH OF 4Å.
FR2105475A5 (en) * 1970-09-02 1972-04-28 Sifrance
US3769222A (en) 1971-02-09 1973-10-30 Colgate Palmolive Co Free flowing nonionic surfactants
US3755180A (en) * 1972-02-25 1973-08-28 Colgate Palmolive Co Means to inhibit overglaze damage by automatic dishwashing detergents
AT330930B (en) 1973-04-13 1976-07-26 Henkel & Cie Gmbh PROCESS FOR THE PRODUCTION OF SOLID, SPILLABLE DETERGENTS OR CLEANING AGENTS WITH A CONTENT OF CALCIUM BINDING SUBSTANCES
US4605509A (en) 1973-05-11 1986-08-12 The Procter & Gamble Company Detergent compositions containing sodium aluminosilicate builders
DD107428B3 (en) * 1973-11-05 1992-12-10 Chemie Ag Bittrfeld Wolfen METHOD AND DEVICE FOR PRODUCING SYNTHETIC ZEOLITE
AR205228A1 (en) * 1974-11-08 1976-04-12 Huber Corp J M PROCEDURE TO PRODUCE AN AMORPHOUS ALKALINE METAL ALUMINOSILICATE PIGMENT WITH ION EXCHANGE CAPACITY

Also Published As

Publication number Publication date
DE2447021B2 (en) 1976-10-21
NL7511360A (en) 1976-04-06
JPS56124486A (en) 1981-09-30
FR2286794B1 (en) 1978-03-17
ES441177A1 (en) 1977-07-01
NL180808C (en) 1987-05-04
NL180808B (en) 1986-12-01
ATA750075A (en) 1978-04-15
DE2447021A1 (en) 1976-05-13
DE2447021C3 (en) 1984-03-22
CA1057272A (en) 1979-06-26
AT346814B (en) 1978-11-27
JPS5184790A (en) 1976-07-24
BE834110A (en) 1976-04-01
IT1047260B (en) 1980-09-10
SE413017B (en) 1980-03-31
GB1517323A (en) 1978-07-12
FR2286794A1 (en) 1976-04-30
SE7511094L (en) 1976-04-05
CH614423A5 (en) 1979-11-30

Similar Documents

Publication Publication Date Title
JPS5914273B2 (en) Method of using grit-free zeolite molecular sieve for water softening
JP4023779B2 (en) Process for the production of zeolites and zeolite mixtures with enhanced cation exchange properties, products produced thereby
CA1082161A (en) Crystalline type-a zeolite powder
JP2523433B2 (en) Method for producing P-type zeolite
CN107428549B (en) Process for producing beta-zeolite
JPS6324928B2 (en)
CA1215349A (en) Process for preparation of high-silica faujasite type zeolite
JPS6324927B2 (en)
JPS6049133B2 (en) Production method of cation exchange fine particulate water-insoluble silicate
US3594121A (en) Dry gel process for preparing zeolite y
GB1571538A (en) Crystalline zeolite powder of type a
JPS6324929B2 (en)
JPH08508003A (en) Method for producing fine-grained zeolite-type alkali metal aluminum silicate
JPH1171108A (en) Synthetic magnesium silicate
CN106379913A (en) Method for synthesizing P zeolite molecular sieve from rice husk
AU673474B2 (en) Amorphous aluminosilicate and process for producing the same
US4649036A (en) Process for the manufacture of zeolites 4A having a high crystallinity and a fine granulometry and being particularly suitable for the formulation of detergent compositions
JP6080980B2 (en) Preparation of silica-alumina composition
JPS6324926B2 (en)
EP0097512B1 (en) Aluminosilicates
DE19727893A1 (en) Process for the preparation of synthetic sheet silicates of the hectorite type
GB2051024A (en) Process for preparing crystalline sodium silico-aluminate of zeolite A type
JPS6049130B2 (en) Manufacturing method of A-type zeolite
CN102030341A (en) Preparation method of medium silicon X molecular sieve MSX (medium silicon X) raw powder
JP2003095647A (en) Equipment and method for producing alumina