JPS5914538B2 - Steel with low stress relief annealing cracking susceptibility - Google Patents
Steel with low stress relief annealing cracking susceptibilityInfo
- Publication number
- JPS5914538B2 JPS5914538B2 JP49088643A JP8864374A JPS5914538B2 JP S5914538 B2 JPS5914538 B2 JP S5914538B2 JP 49088643 A JP49088643 A JP 49088643A JP 8864374 A JP8864374 A JP 8864374A JP S5914538 B2 JPS5914538 B2 JP S5914538B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- stress relief
- relief annealing
- cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【発明の詳細な説明】
本発明は鋼材もしくは溶接継手部等の応力除去焼なまし
割れ(以下RSR割れ」と略記する)を防止するために
鋼中不純物制御を行なった鋼に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steel in which impurities in the steel are controlled in order to prevent stress relief annealing cracking (hereinafter abbreviated as RSR cracking) in steel materials or welded joints.
応力除去焼な甘し処理を必要とする部材は鍛鋼品、鋳鋼
品、機械加工部品、ボイラー、圧力容器、溶接継手部、
肉盛クラツド等広汎であり、鋼材の化学組成もSs+
MntNi+ CrtMOrV+ Nb,Cuその他の
合金元素を含む低炭素鋼または中炭素鋼と多岐多様であ
るが、しばしばこの処理に伴なってSR割れが発生して
鋼材もしくは溶接構造物等の製造上大きな問題となって
いる。Components that require stress relief annealing treatment include forged steel products, cast steel products, machined parts, boilers, pressure vessels, welded joints,
There is a wide range of overlay cladding, etc., and the chemical composition of the steel material is Ss+
MntNi+ CrtMOrV+ There is a wide variety of low carbon steels or medium carbon steels containing Nb, Cu, and other alloying elements, but SR cracking often occurs with this treatment, which can be a major problem in manufacturing steel materials or welded structures. It has become.
SR割れはその発生時期が製造工程の最終段階に当って
おり、しかもその発生個所が鋼材の深部であるような場
合には部分的修復は不可能である。従来、SR割れを事
前に防止するための研究は盛んに行なわれており、その
一つの方向として溶接人熱量セ予熱温度等の影響を検討
することによって製造工程を改善してSR割れを防止し
ようという試みがある。SR cracks occur at the final stage of the manufacturing process, and if they occur deep within the steel material, partial repair is impossible. In the past, much research has been conducted to prevent SR cracking in advance, and one direction is to improve the manufacturing process and prevent SR cracking by examining the effects of welding heat, preheating temperature, etc. There is an attempt.
他方、鋼材の化学組成の影響を検討することによってS
R割れ感受性の低い鋼材を開発しようという試みも盛ん
に行なわれている。後者の主流はSR割れ感受性におよ
ぼす個々の合金元素の影響を解明することを目的として
おり、これ等の研究の結果から二次硬化元素の結晶粒内
析出あるいは炭化物の結晶粒界析出がSR割れの原因で
あると言われて来た。しかしながら多岐多様の鋼材にお
ける個々の合金元素の影響は必ずしも画一的普遍的なも
のではなく、上記の析出物があれば必然的にSR割れを
起すわけではない。逆に、上記の析出物が生じないよう
に成分設計しても必ずしもSR割れが防止されるとは限
らない。さらに、鋼材の用途によってはその化学組成を
構成している゛合金元素濃度を大幅に改訂することが許
されない場合が多く、このようなSR割れ防止策は全く
無力である。本発明は、SR割れ感受性に不純物が影響
をおよぼす可能性があるという従来の研究とは全く別の
観点に立って種々研究を進めた結果として得られた下記
の新発見に基づいている。On the other hand, by considering the influence of the chemical composition of steel materials, S
Many attempts are being made to develop steel materials with low susceptibility to R cracking. The main focus of the latter is to elucidate the influence of individual alloying elements on SR cracking susceptibility, and the results of these studies show that intragrain precipitation of secondary hardening elements or grain boundary precipitation of carbides are responsible for SR cracking. It has been said that this is the cause of However, the effects of individual alloying elements on a wide variety of steel materials are not necessarily uniform and universal, and the presence of the above precipitates does not necessarily cause SR cracking. Conversely, even if the composition is designed so that the above-mentioned precipitates are not generated, SR cracking is not necessarily prevented. Furthermore, depending on the use of the steel material, it is often not possible to significantly modify the concentration of alloying elements constituting the chemical composition, and such measures to prevent SR cracking are completely useless. The present invention is based on the following new discovery obtained as a result of various studies conducted from a completely different perspective from the conventional research that impurities may affect SR cracking susceptibility.
すなわち、SR割れした鋼材の粒界破面をオージエ電子
分析法によって調べた結果、第1図に示すように、破面
近傍にS(いおう)の顕著な偏析が認められた。この第
1図は鋼種A3のSR割れ破面から深さ方向のS(いお
う)の分布状態を示したものである。縦軸はオージエ電
子スペクトルにおけるS(いおう)の強度と鉄の強度と
の比であってS(いおう)の濃度に対応する。横軸はS
R割れ破面をスパッタリングによって掘った深さであり
、フルスケールが約50Aの程度である。この偏析の深
さは高々数+Aの程度であり、しかも破面から結晶粒内
に向って濃度が単調に減少していることから、この偏析
しているS(いおう)は介在物としてではなく固溶状態
で分布していることが明白である。次に、このような固
溶状態のS(いおう)の結晶粒界への偏析を除去するた
めに、製鋼工程においてCe(セリウム)を添加した効
果を第2図に示す。すなわち、第2図は後述の第1表お
よび第2表に示す鋼種A3およびGに溶接熱履歴再現処
理を施した後、610℃で約40k1mm2の初期応力
を負荷して定歪拘束保持したときの応力緩和特性と鋼種
A3の破断時間を示したものである。That is, as a result of examining the intergranular fracture surface of a steel material with SR cracking by Auger electron analysis, significant segregation of S (sulfur) was observed near the fracture surface, as shown in FIG. FIG. 1 shows the distribution of S (sulfur) in the depth direction from the SR crack fracture surface of steel type A3. The vertical axis is the ratio of the intensity of S (sulfur) to the intensity of iron in the Auger electron spectrum, and corresponds to the concentration of S (sulfur). The horizontal axis is S
This is the depth of the R-crack fracture surface dug by sputtering, and the full scale is about 50A. The depth of this segregation is at most a few + A, and the concentration decreases monotonically from the fracture surface to the inside of the grain, so this segregated S (sulfur) is not an inclusion. It is clear that it is distributed in a solid solution state. Next, FIG. 2 shows the effect of adding Ce (cerium) in the steel manufacturing process in order to eliminate segregation of S (sulfur) in a solid solution state to grain boundaries. In other words, Figure 2 shows steel types A3 and G shown in Tables 1 and 2 below, subjected to welding thermal history reproduction treatment, and then subjected to an initial stress of approximately 40k1mm2 at 610°C and held under constant strain restraint. This figure shows the stress relaxation characteristics of steel type A3 and the fracture time of steel type A3.
図から明らかなように、Ce(セリウム)を添加しない
鋼種A3は短時間でSR割れを起すのに対して、Ce(
セリウム)を添加した鋼種G1はSR割れを起さず、長
時間の応力除去焼な1し処理によって十分に応力緩和す
る。これ等の発見からして、固溶状態のS(いおう)の
粒界偏析がSR割れの原因になっていることが明白であ
る。なおここで付言すべきことは、SR割れの形態は延
性粒界破壊であるので、固溶状態のS(いおう)の粒界
偏析がSR割れを起す効果は不純物の粒界偏析が焼もど
し脆化を起す効果とは全く異質のものであるということ
である。本発明は上述の新発見にもとづいて、固溶状態
のS(いおう)の粒界偏析を抑制し、SR割れ感受性の
低い鋼の成分系を見出したものである。As is clear from the figure, steel type A3 to which Ce (cerium) is not added causes SR cracking in a short period of time, whereas Ce (cerium)
Steel type G1 containing cerium) does not cause SR cracking, and stress is sufficiently relaxed by long-term stress-relieving annealing treatment. From these findings, it is clear that grain boundary segregation of solid solution S (sulfur) is the cause of SR cracking. It should be added here that the form of SR cracking is ductile grain boundary fracture, so the effect of grain boundary segregation of solid solution S (sulfur) on causing SR cracking is due to the grain boundary segregation of impurities causing tempering embrittlement. This means that the effect that causes change is completely different. The present invention is based on the above-mentioned new discoveries, and has found a composition system for steel that suppresses the grain boundary segregation of solid solution S (sulfur) and has low SR cracking susceptibility.
・次に本発明の限定理由についてのべる。C(炭素)
は鋼の強化のために0.05%は必要であるが、溶接性
及び加工性が劣化するために上限を0.5%とした。S
i(硅素)は鋼の脱酸及び強化のために添加されるもの
で、0.10%以上は必要であるが多すぎると靭性及び
溶接性が劣化するので1.0楚を上限とした。Mn(マ
ンガン)は鋼の脱酸材として、また強度及び焼入性を付
与するために添加されるものであるが、製鋼作業上の因
難性及び加工性の点から3.0%を上限とした。S(い
おう)及びこれを固定するための元素は本発明の特徴を
なすものである。第1表鋼種Bに示したように鋼中の全
S(いおう)量が0。002%以下であればSR割れを
防止出来ることが明らかとなった。-Next, the reasons for the limitations of the present invention will be discussed. C (carbon)
Although 0.05% of Ni is necessary for strengthening steel, the upper limit was set at 0.5% because it deteriorates weldability and workability. S
i (silicon) is added to deoxidize and strengthen steel, and 0.10% or more is necessary, but if it is too much, toughness and weldability deteriorate, so the upper limit was set at 1.0 so. Mn (manganese) is added to steel as a deoxidizer and to add strength and hardenability, but from the viewpoint of difficulty in steelmaking work and workability, the upper limit is 3.0%. And so. S (sulfur) and the element for fixing it are characteristics of the present invention. As shown in Steel Type B in Table 1, it has become clear that SR cracking can be prevented if the total S (sulfur) content in the steel is 0.002% or less.
したがって本発明が目的とするSR割れ防止には全S(
いおう)量を0.002%以下にとどめることが有効で
ある。S(いおう)を0.002%以下に低減するため
には、例えばCaC2処理、取鍋精錬法等、スラグを添
加して精錬する方法が用いられるが、いかなる工程を用
いてS(いおう)を低減しても差支えない。しかしなが
ら鋼中に含1れる全S(いおう)量が0.002%を越
える鋼材でも、その鋼材もしくは溶接構造物の製造工程
における熱履歴を経た後1でS(いおう)が鋼中で安定
に固定されていて、前述のとおり0.002%を超える
固溶状態のS(いおう)が生じなければ、SR割れを起
さない。第1表の鋼種C,D,E,F,G,H,Iある
いはKは製鋼工程においてMg(マグネシウム)Tea
(カルシウム),Al(アルミニウム),Y(イットリ
ウム), Ce(セリウム),Ti(チタン),Zr(
ジルコニウム),あるいはHf(ノ・フニウム)を微量
添加したものであり、これ等の元素の微量添加によって
SR割れは防止されることが明らかである。これ等の元
素はいずれも強い硫化物形成元素であり、これ等の元素
の添加によって鋼中に含有される全S(いおう)量が低
減されるか、あるいは硫化物もしくはS(いおう)を含
む複化合物としてS(いおう)が安定に固定されること
がSR割れの防止のために必要である。これ等の元素の
硫化物はいずれも溶鋼中においてもその溶解度が極めて
小であるから、その原子当量分のS(いおう)が硫化物
となり、残余が固溶状態のS(いおう)として存在する
ことが期待されるが、より確実を期すためには鋼中に残
存するS(いおう)量に対してこれらの元素が鋼中に残
存する量がそれぞれMg(マグネシウム)の場合には3
.0倍以上、Ca(カルシウム)の場合には1.5倍以
上、AI(アルミニウム)の場合には6.0倍以上、Y
(イットリウム)の場合には6。0倍以上、Ce(セリ
ウム)の場合には9.0倍以上、Ti(チタン)の場合
には6.0倍以上、Zr(ジルコニウム)の場合には6
.0倍以上、あるいはHf(ハフニウム)の場合には6
。Therefore, to prevent SR cracking, which is the objective of the present invention, all S(
It is effective to keep the amount below 0.002%. In order to reduce S (sulfur) to 0.002% or less, methods of adding slag and refining, such as CaC2 treatment and ladle refining, are used, but any process can be used to reduce S (sulfur). There is no harm in reducing it. However, even in steel materials in which the total amount of S (sulfur) contained in the steel exceeds 0.002%, S (sulfur) becomes stable in the steel after undergoing thermal history during the manufacturing process of the steel material or welded structure. If it is fixed and S (sulfur) in a solid solution state exceeding 0.002% does not occur as described above, SR cracking will not occur. Steel types C, D, E, F, G, H, I or K in Table 1 are Mg (Magnesium) Tea in the steel making process.
(calcium), Al (aluminum), Y (yttrium), Ce (cerium), Ti (titanium), Zr (
It is clear that SR cracking is prevented by adding a small amount of these elements. All of these elements are strong sulfide-forming elements, and the addition of these elements reduces the total amount of S (sulfur) contained in steel, or contains sulfide or S (sulfur). It is necessary to stably fix S (sulfur) as a composite compound in order to prevent SR cracking. The solubility of sulfides of these elements is extremely low even in molten steel, so the atomic equivalent of S (sulfide) becomes sulfide, and the remainder exists as solid solution S (sulfur). However, in order to be more certain, if the amount of these elements remaining in the steel is 3% compared to the amount of S (sulfur) remaining in the steel,
.. 0 times or more, 1.5 times or more in the case of Ca (calcium), 6.0 times or more in the case of AI (aluminum), Y
(yttrium), 6.0 times or more, Ce (cerium), 9.0 times or more, Ti (titanium), 6.0 times or more, and Zr (zirconium), 6.0 times or more.
.. 0 times or more, or 6 in the case of Hf (hafnium)
.
0倍以上であることが好ましい。It is preferable that it is 0 times or more.
ここで固溶状態のS(いおう)の量の算定は次式による
ものとする。X(%+一(Mg/3.0+Ca/1.5
+AAA.O+Y/6.0・+Ce/9。Here, the amount of S (sulfur) in a solid solution state is calculated using the following formula. X(%+1(Mg/3.0+Ca/1.5
+AAA. O+Y/6.0・+Ce/9.
0+Ti/6.0+Zr//6.0+Hf/E.O)固
溶状態のS量(イ)=鋼中S量(イ)一K(%左辺が負
になるときは零とみなす。0+Ti/6.0+Zr//6.0+Hf/E. O) Amount of S in solid solution (a) = Amount of S in steel (a) - K (% When the left side is negative, it is considered zero.
これ等の元素を鋼中に添加する方法としては、粉粒状の
添加物をガスと共に溶鋼へ注入する方法、添加物を内蔵
するカプセルを鋳型中に固定する方法、あるいは添加物
を内蔵するワイヤーを溶鋼中へ送り込む方法等が用いら
れるが、いかなる方法で添加しても差支えない。These elements can be added to steel by injecting powdered additives into molten steel together with gas, by fixing capsules containing additives in molds, or by using wires containing additives. A method such as feeding it into molten steel is used, but it may be added by any method.
ただし、これ等の元素をあまり過剰に添加し過ぎると添
加元素自体の有害な影響が無視出来なくなるので、S(
いおう)を0.05%以下含有する鋼においては上記元
素の含有量は0.5%以下に限定すべきである。なお、
これ等の元素はフエロアロイやシリコンカルシウム等の
複合物として添加しても差支えなく、1たこれ等の元素
の2種以上を複合添加しても差支えない。複合添加の場
合には鋼中に残存する量(イ)として(Mg/3.0+
Ca/1.5+All/6,0+Y/6.0+Ce/9
.0+Ti/6。However, if too many of these elements are added, the harmful effects of the added elements themselves cannot be ignored, so S(
In steel containing 0.05% or less of sulfur), the content of the above elements should be limited to 0.5% or less. In addition,
These elements may be added as a composite such as ferroalloy or silicon calcium, or two or more of these elements may be added in a composite. In the case of composite addition, the amount (A) remaining in the steel is (Mg/3.0+
Ca/1.5+All/6,0+Y/6.0+Ce/9
.. 0+Ti/6.
0+Zr/ 6.0+Hf/6.0)が0.1%以下に
限定されるべきであり、壕た上記の量が鋼中に残存する
S(いおう)量(ハ)以上であることが好1しい。0+Zr/6.0+Hf/6.0) should be limited to 0.1% or less, and it is preferable that the above amount of trenched S (sulfur) remaining in the steel is at least 1 Yes.
1た本発明の効果は溶接熱影響部の主なる金属組織がマ
ルテンサイト、ペイナイトあるいはこれらの混合組織で
ある場合に生じるものであり、また本発明による鋼の用
途は主としてボイラー、圧力容器、溶接構造物などであ
るので、その際に要求される強度、靭性及び焼入性をみ
たすために必要に応じてNi(ニッケル)5%以下、C
r(クロム)3%以下、MO(モリブデン)3%以下、
V(バナジウム)1%以下、Nb(ニオブ)1%以下、
Cu(銅)1%以下の一種または二種以上を添加するこ
とが出来る。1) The effects of the present invention occur when the main metal structure of the weld heat affected zone is martensite, paynite, or a mixed structure thereof, and the steel according to the present invention is mainly used in boilers, pressure vessels, and welding. Since it is a structure, etc., in order to meet the required strength, toughness and hardenability, Ni (nickel) of 5% or less and C may be added as necessary.
r (chromium) 3% or less, MO (molybdenum) 3% or less,
V (vanadium) 1% or less, Nb (niobium) 1% or less,
One or more types of Cu (copper) up to 1% can be added.
Niは主として鋼材の靭性を向上させるためにしばしば
添加されるが、Ni量が5%を越える現用鋼においては
通常応力除去焼なまし割れが生じない。Crは主として
鋼材の強度を高めるためにしばしば添加されるが、Cr
量が3%を越える鋼においては通常応力除去焼な1し割
れが生じない。MO,V&よびNbは主として鋼材の強
度を高めるためにしばしば添加されるが、これ等の元素
は高価であるので、MOは3%以下に、Vは1%以下に
、およびNbは1%以下に限定される。Cuは鋼材の強
度を高めるため、および/一【たは耐食性を向上させる
ためにしばしば添加されるが、添加量が多過ぎると溶接
施工の際に既に割れを生じ易いので1%以下に限定され
る。本発明の実施例を第1表,第2表に示した。Ni is often added mainly to improve the toughness of steel materials, but stress relief annealing cracks do not usually occur in currently used steels containing more than 5% Ni. Cr is often added mainly to increase the strength of steel materials, but Cr
Stress relief annealing cracks usually do not occur in steels with a content of more than 3%. MO, V & Nb are often added mainly to increase the strength of steel materials, but these elements are expensive, so MO should be kept below 3%, V below 1%, and Nb below 1%. limited to. Cu is often added to increase the strength and/or corrosion resistance of steel materials, but if the amount added is too large, cracks are likely to occur during welding, so it is limited to 1% or less. Ru. Examples of the present invention are shown in Tables 1 and 2.
またMg,Ca,AltYyce,Ti,Zr,Hfを
添加した場合の以下の方法によって算定したXおよび固
溶Sの値も表中に記載した。X%)= (Mg/3.0
+Ca7’ 1.5+All/6.0+Y/6.0+
Ce/9.0+Ti/6.0+Zr/6.0+Hf/6
.0)固溶状態のS量(イ)=鋼中S量(イ)一X@左
辺が負になるときは零とみなす。In addition, the values of X and solid solution S calculated by the following method when Mg, Ca, AltYyce, Ti, Zr, and Hf were added are also listed in the table. X%) = (Mg/3.0
+Ca7' 1.5+All/6.0+Y/6.0+
Ce/9.0+Ti/6.0+Zr/6.0+Hf/6
.. 0) Amount of S in solid solution (a) = Amount of S in steel (a) - X @ When the left side is negative, it is considered zero.
U〕
以上説明したように本発明によればSR割れを防止する
ことができ、従ってその効果は極めて太きい。U] As explained above, according to the present invention, SR cracking can be prevented, and the effect is therefore extremely significant.
第1図は鋼種A3についてS(いおう)の相対オージエ
電子強度とSR割れ破面からの深さとの関係を示す図表
、第2図は鋼種A3とG1について定歪拘束の負荷応力
と610℃における応力除去焼な1し時間との関係を示
す図表である。Figure 1 is a chart showing the relationship between the relative Auger electron strength of S (S) and the depth from the SR crack surface for steel type A3, and Figure 2 shows the load stress of constant strain restraint and the relationship at 610°C for steel types A3 and G1. It is a chart showing the relationship between stress relief annealing time.
Claims (1)
%、Mn:3%以下に、Cr:3%以下、Mo:3%以
下、V:1%以下、Nb:1%以下、Cu:1%以下の
一種または二種以上を含み、残余が実質的にFeで、か
つ溶接熱影響部の主な金属組織がマルテンサイト、ベイ
ナイトあるいはこれらの混合組織からなり、応力除去焼
なまし処理の際に割れを生じ易い鋼において、更にSを
0.002%以下に抑制した応力除去焼なまし割れ感受
性の低い鋼。 2 C:0.05〜0.5%、Si:0.10〜1.0
%、Mn:3%以下に、Cr:3%以下、Mo:3%以
下、V:1%以下、Nb:1%以下、Cu:1%以下の
一種または二種以上とNi:5%以下を含み、残余が実
質的にFeで、かつ溶接熱影響部の主な金属組織がマル
テンサイト、ベイナイトあるいはこれらの混合組織から
なり、応力除去焼なまし処理の際に割れを生じ易い鋼に
おいて、更にSを0.002%以下に抑制した応力除去
焼なまし割れ感受性の低い鋼。 3 C:0.05〜0.5%、Si:0.10〜1.0
%、Mn:3%以下に、Cr:3%以下、Mo:3%以
下、V:1%以下、Nb:1%以下、Cu:1%以下の
一種または二種以上を含み、残余が実質的にFeで、か
つ溶接熱影響部の主な金属組織がマルテンサイト、ベイ
ナイトあるいはこれらの混合組織からなり、応力除去焼
なまし処理に際し割れを生じ易い鋼において、更にMg
、Ca、Al、Y、Ce、Ti、ZrおよびHfの一種
または二種以上をそれぞれが0.5%以下でかつ(Mg
/3.0+Ca/1.5+Al/6.0+Y/6.0+
Ce/9.0+Ti/6.0+Zr/6.0+Hf/6
.0)が0.1%をこえない範囲で添加することにより
鋼中の固溶状態のSを0.002%以下に抑制した応力
除去焼なまし割れ感受性の低い鋼。 4 C:0.05〜0.5%、Si:0.10〜1.0
%、Mn:3%以下に、Cr:3%以下、Mo:3%以
下、V:1%以下、Nb:1%以下、Cu:1%以下の
一種または二種以上とNi:5%以下を含み、残余が実
質的にFeで、かつ溶接熱影響部の主な金属組織がマル
テンサイト、ベイナイトあるいはこれらの混合組織から
なり、応力除去焼なまし処理に際し割れを生じ易い鋼に
おいて、更にMg、Ca、Al、Y、Ce、Ti、Zr
およびHfの一種または二種以上をそれぞれが0.5%
以下でかつ(Mg/3.0+Ca/1.5+Al/6.
0+Y/6.0+Ce/9.0+Ti/6.0+Zr/
6.0+Hf/6.0)が0.1%をこえない範囲で添
加することにより鋼中の固溶状態のSを0.002%以
下に抑制した応力除去焼なまし割れ感受性の低い鋼。[Claims] 1 C: 0.05-0.5%, Si: 0.10-1.0
%, Mn: 3% or less, Cr: 3% or less, Mo: 3% or less, V: 1% or less, Nb: 1% or less, Cu: 1% or less, and the remainder is substantially For steels that are mainly made of Fe and whose main metallographic structure in the weld heat affected zone is martensite, bainite, or a mixed structure of these, and which tend to crack easily during stress relief annealing treatment, S is further added to 0.002. Steel with low stress relief annealing cracking susceptibility suppressed to less than %. 2C: 0.05-0.5%, Si: 0.10-1.0
%, Mn: 3% or less, Cr: 3% or less, Mo: 3% or less, V: 1% or less, Nb: 1% or less, Cu: 1% or less, and Ni: 5% or less. , the remainder is substantially Fe, and the main metallographic structure of the weld heat affected zone is martensite, bainite, or a mixture of these structures, and is likely to crack during stress relief annealing treatment. A steel with low stress relief annealing cracking susceptibility, with S content suppressed to 0.002% or less. 3C: 0.05-0.5%, Si: 0.10-1.0
%, Mn: 3% or less, Cr: 3% or less, Mo: 3% or less, V: 1% or less, Nb: 1% or less, Cu: 1% or less, and the remainder is substantially In addition, in steels that are primarily Fe and whose main metallographic structure in the weld heat affected zone is martensite, bainite, or a mixed structure of these, and which tend to crack during stress relief annealing treatment, Mg
, Ca, Al, Y, Ce, Ti, Zr and Hf in an amount of 0.5% or less each and (Mg
/3.0+Ca/1.5+Al/6.0+Y/6.0+
Ce/9.0+Ti/6.0+Zr/6.0+Hf/6
.. A steel with low stress relief annealing cracking susceptibility, in which S in solid solution in the steel is suppressed to 0.002% or less by adding 0) in a range not exceeding 0.1%. 4C: 0.05-0.5%, Si: 0.10-1.0
%, Mn: 3% or less, Cr: 3% or less, Mo: 3% or less, V: 1% or less, Nb: 1% or less, Cu: 1% or less, and Ni: 5% or less. In addition, Mg , Ca, Al, Y, Ce, Ti, Zr
and 0.5% each of one or more types of Hf.
and (Mg/3.0+Ca/1.5+Al/6.
0+Y/6.0+Ce/9.0+Ti/6.0+Zr/
6.0+Hf/6.0) is added within a range not exceeding 0.1%, thereby suppressing S in the solid solution state in the steel to 0.002% or less. A steel with low stress relief annealing cracking susceptibility.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49088643A JPS5914538B2 (en) | 1974-08-03 | 1974-08-03 | Steel with low stress relief annealing cracking susceptibility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49088643A JPS5914538B2 (en) | 1974-08-03 | 1974-08-03 | Steel with low stress relief annealing cracking susceptibility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5117112A JPS5117112A (en) | 1976-02-10 |
JPS5914538B2 true JPS5914538B2 (en) | 1984-04-05 |
Family
ID=13948487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49088643A Expired JPS5914538B2 (en) | 1974-08-03 | 1974-08-03 | Steel with low stress relief annealing cracking susceptibility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5914538B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5541961A (en) * | 1978-09-21 | 1980-03-25 | Kawasaki Steel Corp | Cr-mo steel for pressure vessel |
JPS59110765A (en) * | 1982-12-16 | 1984-06-26 | Kawasaki Steel Corp | Cr-mo steel for pressure container excellent in hydrogen corrosion resistant characteristics and sr crack-resistant |
JPS59170243A (en) * | 1983-03-14 | 1984-09-26 | Nippon Steel Corp | High-strength and high-toughness low alloy heat- resisting steel having improved characteristics resistant to creep embrittleness |
CN106435389B (en) * | 2016-06-20 | 2018-10-12 | 中国神华能源股份有限公司 | A kind of alloy, connector of hydraulic support and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50155418A (en) * | 1974-06-08 | 1975-12-15 |
-
1974
- 1974-08-03 JP JP49088643A patent/JPS5914538B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50155418A (en) * | 1974-06-08 | 1975-12-15 |
Also Published As
Publication number | Publication date |
---|---|
JPS5117112A (en) | 1976-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0177851B1 (en) | Steel materials for welded structures | |
JP3898814B2 (en) | Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness | |
EP2206796A1 (en) | Austenitic heat resistant alloy | |
JP4835770B1 (en) | Welding material for austenitic heat resistant steel, weld metal and welded joint using the same | |
JPH02194115A (en) | Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone | |
JPH03202422A (en) | Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone | |
JPH0443977B2 (en) | ||
JPS5914538B2 (en) | Steel with low stress relief annealing cracking susceptibility | |
JPH03162522A (en) | Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone | |
JPH021208B2 (en) | ||
JPS593537B2 (en) | welded structural steel | |
JP4012497B2 (en) | High strength steel with excellent weld heat affected zone toughness and method for producing the same | |
FI84370B (en) | STAOL. | |
JPH04280942A (en) | Cast steel excellent in machinability | |
JPH08269566A (en) | Production of high strength and high toughness uoe steel pipe excellent in sr characteristic | |
JP2007177259A (en) | Austenitic stainless steel for nuclear power use, and its manufacturing method | |
BR102022022512A2 (en) | HIGH-RESISTANCE MICROLALLY BAY STEEL FLAT BAR, PRODUCTION METHOD, USE, SPARK, CHASSIS SETS AND MOTOR VEHICLE SUSPENSIONS | |
RU2049146C1 (en) | Steel | |
JPH07323392A (en) | Low hydrogen type coated arc electrode and welding method | |
JP2622516B2 (en) | Welding material for heat resistant steel with excellent creep strength | |
SU901336A1 (en) | Corrosion-resistant casting steel | |
SU961905A1 (en) | Alloy composition | |
JPH01176016A (en) | Manufacture of steel stock for welded joint excellent in toughness | |
FI73469B (en) | HOEGHAOLLFAST, SVETSBART STAOL FOER FRAMSTAELLNING AV FASONGJUTSTYCKEN. | |
JPH01180948A (en) | High-tensile steel for low temperature use excellent in toughness in weld zone |