[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08269566A - Production of high strength and high toughness uoe steel pipe excellent in sr characteristic - Google Patents

Production of high strength and high toughness uoe steel pipe excellent in sr characteristic

Info

Publication number
JPH08269566A
JPH08269566A JP7477995A JP7477995A JPH08269566A JP H08269566 A JPH08269566 A JP H08269566A JP 7477995 A JP7477995 A JP 7477995A JP 7477995 A JP7477995 A JP 7477995A JP H08269566 A JPH08269566 A JP H08269566A
Authority
JP
Japan
Prior art keywords
less
weld metal
toughness
steel pipe
uoe steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7477995A
Other languages
Japanese (ja)
Inventor
Yoshitomo Okabe
能知 岡部
Koichi Yasuda
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7477995A priority Critical patent/JPH08269566A/en
Publication of JPH08269566A publication Critical patent/JPH08269566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE: To produce a high strength and high toughness UOE steel pipe excellent in SR characteristics by subjecting a base material having a specified compsn. to submerged arc welding to obtain a weld metal having a specified compsn. and thereafter executing specified stress relief annealing. CONSTITUTION: A base material contg., by weight, 0.02 to 0.10% C, <=0.50% Si, <=2.00% Mn, <=0.020% P, <=0.0020% S, <=0.045% Nb, <=0.08% V, <=0.05% Ti, <=0.0010% B, <=0.50% Mo, <=0.0050% N, <=0.0030% O and Fe is subjected to submerged arc welding of one pass on the inside and outside faces with an Mo-Ti-B welding wire. Thus, a weld metal having a compsn. constituted of 0.01 to 0.06% C, <=0.6% Si, <=1.60% Mn, <=0.02% P, S and Nb, <=0.1% V, <=0.02% Al, <=1.5% Ni, <=0.05% Ti, <=0.0030% B, <=0.5% Mo, <=0.10% N, 0.015 to 0.050% O and Fe and in which Pcm in formula I is regulated to 0.13 to 0.18 and α in formula II is regulated to <=1 is obtd. The UOE steel pipe obtd. by the same is subjected to stress relief annealing of heating the same at 580 to 750 deg.C for >=10min and thereafter executing cooling at <=1 deg.C/sec cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、サブマージアーク溶
接法により溶接したのちSR(応力除去焼鈍)処理が施
される大径溶接鋼管および大径溶接ベンド鋼管などの製
造方法に関し、特に溶接部の低温靱性および強度に優れ
たUOE鋼管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing large diameter welded steel pipes, large diameter welded bend steel pipes and the like, which are subjected to SR (stress relief annealing) after being welded by a submerged arc welding method, and more particularly to a welded portion. The present invention relates to a method for manufacturing a UOE steel pipe excellent in low temperature toughness and strength.

【0002】[0002]

【従来の技術】産業用原燃料として採掘される原油や天
然ガス、或いはそれらを精製して得られた液体もしくは
気体、或いはその他の液体、気体、スラリーなどを大量
輸送する手段としてラインパイプが用いられていること
は良く知られている。このラインパイプは産業用原燃料
の大量輸送の方法として極めて効果的な手段であり、よ
り厳しい環境に耐え得るラインパイプが要求されてい
る。特に、寒冷地にラインパイプを配備する場合の対策
として、ラインパイプ用の鋼材および溶接金属には、高
張力化と同時に優れた低温衝撃靱性を確保することが要
求されている。
2. Description of the Related Art A line pipe is used as a means for mass-transporting crude oil or natural gas mined as an industrial raw fuel, or a liquid or gas obtained by refining them, or other liquid, gas, slurry or the like. It is well known that this is done. This line pipe is an extremely effective means as a method for mass transportation of industrial raw fuel, and a line pipe that can withstand more severe environments is required. In particular, as a measure when deploying a line pipe in a cold region, steel materials and weld metals for line pipes are required to have high tensile strength and at the same time ensure excellent low temperature impact toughness.

【0003】このような要求に対応するため、たとえば
特開昭54−161517号公報には、SR処理による脆化は溶
接金属中のNbまたはVの炭窒化物の析出による硬化が原
因だとしてNを40ppm 以下に制御した母材の使用を提案
している。さらに特開昭62−151545号公報には、溶接性
が良好でかつ靱性の優れたラインパイプ用厚肉鋼板とし
てPcm を0.19%以下に制限した鋼板が開示されている。
In order to meet such demands, for example, Japanese Patent Laid-Open No. 54-161517 discloses that the embrittlement due to SR treatment is caused by the hardening of Nb or V carbonitrides in the weld metal due to precipitation. It has been proposed to use a base material with the content controlled to 40 ppm or less. Further, JP-A-62-151545 discloses a steel plate having a Pcm of 0.19% or less as a thick steel plate for a line pipe, which has good weldability and excellent toughness.

【0004】しかしながら、過酷な環境、特にラインパ
イプ全体に負荷がかかるような場所で用いられる鋼管に
おいては、上記公報に開示された鋼板を用いても溶接金
属中の残留応力が問題になる場合が多い。溶接残留応力
とは、溶接によって溶接部の付近は温度上昇により膨張
し、続いて起こる収縮が生じるが、このとき溶接による
温度変化の過程で継手の付近に複雑な拘束による応力変
化が生じ、冷却後にも応力が残存したものである。
However, in a steel pipe used in a harsh environment, especially in a place where a load is applied to the entire line pipe, the residual stress in the weld metal may be a problem even if the steel sheet disclosed in the above publication is used. Many. Welding residual stress means that welding causes expansion in the vicinity of the weld due to temperature rise and subsequent contraction, but at this time, stress changes due to complicated restraint in the vicinity of the joint during the temperature change due to welding, and cooling occurs. The stress remains after that.

【0005】溶接残留応力は、破壊、腐食、割れ、疲労
特性を始めとする諸特性に重要な影響を及ぼす要因とな
る。即ち、溶接残留応力は溶接割れなどの溶接欠陥を発
生する一つの要因となるばかりでなく、その外観をも劣
化させる場合が多い。本来、大径鋼管に使用される低合
金鋼のような延性の高い材料では、この溶接残留応力の
影響は少ないと言われている。
Residual welding stress is a factor that has an important influence on various characteristics including fracture, corrosion, cracking and fatigue characteristics. That is, the welding residual stress is not only one of the factors that cause welding defects such as welding cracks, but also often deteriorates the appearance thereof. Originally, it is said that the effect of this welding residual stress is small in a material having high ductility such as a low alloy steel used for a large diameter steel pipe.

【0006】しかしながら、このように延性の高い材料
においても、溶接部にアンダカット、溶け込み不良など
の小さな欠陥があれば、引張の残留応力によって、諸特
性が著しく劣化することが知られている。この溶接残留
応力を除去するためには、溶接後熱処理を行うことが有
効である。即ち、応力除去焼鈍(SR:Stress relief)
を行うことで溶接残留応力を消失させることが可能であ
り、溶接金属中の応力除去を行うためには、約 600℃以
上で加熱したのち炉内で冷却する必要がある。
However, even in such a material having high ductility, it is known that if there are small defects such as undercuts and poor penetration in the welded portion, various characteristics are significantly deteriorated by residual tensile stress. In order to remove this residual welding stress, it is effective to perform heat treatment after welding. That is, stress relief annealing (SR)
It is possible to eliminate the residual welding stress by carrying out, and in order to remove the stress in the weld metal, it is necessary to heat at about 600 ° C or higher and then cool it in the furnace.

【0007】ところが、一般に使用されているような大
径鋼管において、SR処理を施して約600 ℃以上で加熱
した場合、SR処理後の溶接金属内には、極めて微細な
析出物などが形成されて靱性には好ましくない現象が起
こり、靱性が著しく劣化するという問題点がある。大径
鋼管にSR処理を施すことが可能な溶接金属としては、
特開昭60− 61194号公報に開示されている。これは、供
試鋼板と溶接ワイヤおよび溶接フラックスを規定するこ
とにより、SR処理を施しても溶接部の溶接金属の脆化
を低減することを可能にしたものである。
However, in a commonly used large-diameter steel pipe, when subjected to SR treatment and heated at about 600 ° C. or higher, extremely fine precipitates are formed in the weld metal after SR treatment. As a result, an unfavorable phenomenon occurs in the toughness and the toughness is significantly deteriorated. As a weld metal capable of performing SR treatment on a large diameter steel pipe,
It is disclosed in JP-A-60-61194. This makes it possible to reduce the embrittlement of the weld metal at the welded portion even if SR treatment is performed by defining the test steel sheet, the welding wire and the welding flux.

【0008】[0008]

【発明が解決しようとする課題】しかしながら前述のよ
うに、最近では寒冷地向けのラインパイプ用の鋼材およ
び溶接金属には、これまで以上に高い強度と同時に優れ
た低温衝撃靱性を確保することが要求されており、従来
考えられてきた溶接金属ではこれら要求を同時に満たす
ことは困難である。
However, as described above, recently, in steel materials and weld metals for line pipes for cold regions, it is necessary to secure not only higher strength but also excellent low temperature impact toughness. These requirements have been met, and it is difficult for the conventionally considered weld metal to meet these requirements at the same time.

【0009】この発明は、このような事情を鑑みてなさ
れたものであり、直管製造の際にサブマージアーク溶接
による内外面一層溶接を行ったのち、大径鋼管にSR処
理を行い、溶接金属中の残留応力を除去したうえで、な
お溶接部における低温靱性が優れた高強度の鋼管が得ら
れるベンド管の製造方法である。なお、本発明の製造方
法が目標としたベンド管の強度はTSが600MPa以上であ
り、靱性は切欠靱性値(vE−30℃)で 200J以上であ
る。
The present invention has been made in view of the above circumstances. In the production of a straight pipe, the inner and outer surfaces of the inner and outer surfaces are welded by submerged arc welding, and then the large diameter steel pipe is subjected to SR treatment to obtain a weld metal. It is a method for producing a bend pipe, which is capable of obtaining a high-strength steel pipe having excellent low temperature toughness in a welded portion after removing residual stress therein. The strength of the bend pipe targeted by the manufacturing method of the present invention is TS 600 MPa or more, and the toughness is not less than 200 J in notch toughness value (vE-30 ° C).

【0010】[0010]

【課題を解決するための手段】この発明は、溶接金属の
化学組成のみならず熱処理条件までを総合的に規定して
SR処理を行うことにより鋼管の溶接残留応力を低減す
るとともに強度確保と靱性確保を可能にしたものであ
り、その要旨とするところは下記の通りである。この発
明は、UOE鋼管において、母材の化学成分が重量(w
t)%(以下単に%で示す)でC :0.02〜0.10%、Si
:0.50%以下、Mn :2.00%以下、P :0.020 %以
下、S :0.0020%以下、Nb :0.045 %以下、V :
0.080 %以下、Ti :0.05%以下、B :0.0010%以
下、Mo :0.50%以下、N :0.0050%以下、O :0.
0030%以下を含有し、残部不可避的不純物およびFeから
なり、上記母材にMo−Ti−B系溶接ワイヤを用いて内外
面に1パス潜弧溶接を行い、重量%でC :0.01〜0.06
%、Si :0.6 %以下、Mn :1.60%以下、P :0.02
%以下、S :0.02%以下、Nb :0.02%以下、V :
0.1 %以下、Al :0.02%以下、Ni :1.5 %以下、Ti
:0.05%以下、B :0.0030%以下、Mo :0.5 %以
下、N :0.010 %以下、O :0.015 〜 0.050%を含
有し、残部不可避的不純物およびFeからなり、かつ、下
式のPcm が0.13〜0.18であり、下式のαが1以下である
溶接金属を得、上記母材と溶接金属とからなるUOE鋼
管に580 〜 750℃の温度範囲で10分以上加熱した後、1
℃/秒以下の冷却速度で冷却してなる応力除去焼鈍を施
したSR特性に優れた高強度・高靱性UOE鋼管の製造
方法である。
The present invention reduces the welding residual stress of a steel pipe and secures strength and toughness by performing SR treatment by comprehensively defining not only the chemical composition of the weld metal but also the heat treatment conditions. This is what has been made possible, and the main points are as follows. According to the present invention, in the UOE steel pipe, the chemical composition of the base metal is weight (w
t)% (hereinafter simply referred to as%) C: 0.02 to 0.10%, Si
: 0.50% or less, Mn: 2.00% or less, P: 0.020% or less, S: 0.0020% or less, Nb: 0.045% or less, V:
0.080% or less, Ti: 0.05% or less, B: 0.0010% or less, Mo: 0.50% or less, N: 0.0050% or less, O: 0.
0030% or less, the balance consisting of unavoidable impurities and Fe, 1-pass latent arc welding is performed on the inner and outer surfaces of the above base metal using a Mo-Ti-B welding wire, and C: 0.01 to 0.06% by weight.
%, Si: 0.6% or less, Mn: 1.60% or less, P: 0.02
% Or less, S: 0.02% or less, Nb: 0.02% or less, V:
0.1% or less, Al: 0.02% or less, Ni: 1.5% or less, Ti
: 0.05% or less, B: 0.0030% or less, Mo: 0.5% or less, N: 0.010% or less, O: 0.015 to 0.050%, and the balance is unavoidable impurities and Fe, and Pcm of the following formula is 0.13. To 0.18 and α in the following formula is 1 or less, and a UOE steel pipe composed of the base metal and the weld metal is heated in the temperature range of 580 to 750 ° C. for 10 minutes or more and then 1
This is a method for producing a high-strength, high-toughness UOE steel pipe excellent in SR characteristics which has been subjected to stress relief annealing by cooling at a cooling rate of ° C / sec or less.

【0011】Pcm =C+Si/30+(Mn+Cu+Cr)/20+
Ni/60+Mo/15+V/10+5×B α=38.2×Nb+ 7.5×V
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 +
Ni / 60 + Mo / 15 + V / 10 + 5 × B α = 38.2 × Nb + 7.5 × V

【0012】[0012]

【作用】上記したような母材の化学成分の限定理由は次
の通りである。 C: 母材の強度と靱性に非常に大きな影響を及ぼす元
素であり、0.02%未満では必要強度が得られず、また、
0.10%を超えると靱性や延性に悪影響を及ぼすため、0.
02〜0.10%の範囲とした。
The reason for limiting the chemical composition of the base material as described above is as follows. C: An element which has a great influence on the strength and toughness of the base metal, and if the content is less than 0.02%, the required strength cannot be obtained.
If it exceeds 0.10%, the toughness and ductility are adversely affected.
The range was 02 to 0.10%.

【0013】Si: Siは、鋼の脱酸過程で必然的に含ま
れる元素であるが、HAZ部の靱性向上のためには0.50
%以下にすべきである。 Mn: 母材の強度と靱性を同時に向上する極めて重要な
元素であるが、2.00%を超えると偏析等により鋼材に悪
影響を及ぼすために上限を2.00%とした。 P、S: P、Sは中心偏析を助長する元素であり低い
ことが好ましく、それぞれ 0.020%、0.0020%を上限と
した。
Si: Si is an element that is inevitably contained in the deoxidizing process of steel, but is 0.50 in order to improve the toughness of the HAZ part.
%. Mn: It is an extremely important element that improves the strength and toughness of the base material at the same time, but if it exceeds 2.00%, it will adversely affect the steel material due to segregation, etc., so the upper limit was made 2.00%. P, S: P and S are elements that promote center segregation and are preferably low, and the upper limits were 0.020% and 0.0020%, respectively.

【0014】Nb、V: 母材およびHAZ部の強度と靱
性を確保するためにNb、Vは添加されているが、これら
の母材中のNb、VはSR処理後の溶接金属の靱性を顕著
に劣化させる。発明者らが種々検討した結果、SR処理
後の溶接金属の靱性を確保するためには、Nbを 0.045%
以下、Vを 0.080%以下にすべきであることがわかっ
た。
Nb, V: Nb and V are added to secure the strength and toughness of the base metal and HAZ part. Nb and V in these base metals are the toughness of the weld metal after SR treatment. Remarkably deteriorate. As a result of various studies by the inventors, Nb was 0.045% in order to secure the toughness of the weld metal after SR treatment.
Hereinafter, it was found that V should be 0.080% or less.

【0015】Ti: Tiは、母材の靱性確保に必要な元素
であるが、0.05%を超えて含有すると、逆に母材の靱性
を劣化させるために、0.05%を上限とした。 B: Bは、圧延中にオーステナイト粒界に偏析して焼
入性を上げる作用があるが、0.0010%を超えるとHAZ
部の靱性を劣化させるために、上限を0.0010%とした。
Ti: Ti is an element necessary for ensuring the toughness of the base material, but if it is contained in excess of 0.05%, the toughness of the base material is deteriorated, so the upper limit is 0.05%. B: B segregates at the austenite grain boundaries during rolling to improve hardenability, but if it exceeds 0.0010%, HAZ
The upper limit was made 0.0010% in order to deteriorate the toughness of the part.

【0016】Mo: Moは、母材の強度を確保するために
必要な元素であるが、0.50%を超えて含有するとHAZ
部が硬化するために0.50%を上限とした。 N: Nは、0.0050%を超えると母材の希釈から溶接金
属に溶け込むNにより溶接金属の靱性が劣化するため、
0.0050%以下にすべきである。 O: Oは、母材の靱性を確保するためには少ないほう
が好ましく、 0.0030%を上限とした。
Mo: Mo is an element necessary to secure the strength of the base metal, but if it exceeds 0.50%, HAZ
The upper limit was 0.50% for the part to harden. N: If N exceeds 0.0050%, the toughness of the weld metal deteriorates due to N that dissolves in the weld metal due to dilution of the base metal,
Should be less than 0.0050%. O: O is preferably as small as possible in order to secure the toughness of the base material, and the upper limit was 0.0030%.

【0017】また上記したような本発明の溶接金属にお
ける化学成分限定理由について説明する。 C: 溶接金属の強度と靱性に非常に大きな影響を及ぼ
す元素であり、0.01%未満では必要強度が得られず、ま
た、0.06%を超えると強度的には満足できても高靱性が
得られず、しかも溶接金属の凝固割れ感受性が大きくな
るため、0.01〜0.06%の範囲とした。
The reasons for limiting the chemical components in the above-described weld metal of the present invention will be described. C: It is an element having a great influence on the strength and toughness of the weld metal. If it is less than 0.01%, the required strength cannot be obtained, and if it exceeds 0.06%, high toughness is obtained even if the strength is satisfactory. In addition, since the solidification cracking susceptibility of the weld metal is increased, the range is set to 0.01 to 0.06%.

【0018】Si: Siは母材、溶接ワイヤ、フラックス
から溶接金属中に入るが、Siが 0.6%を超えると溶接金
属の靱性が低下するために 0.6%を上限とした。 Mn: Mnは溶接金属の脱酸の上では不可欠の元素である
と同時に強度、靱性の上からも重要な元素であるが、1.
60%を超えると強度は高くなるが焼入れ性が大きくなり
すぎてラス状組織となり、SR処理をした溶接金属の靱
性が劣化するために1.60%を上限とした。
Si: Si enters the weld metal from the base metal, welding wire and flux, but if Si exceeds 0.6%, the toughness of the weld metal decreases, so 0.6% was made the upper limit. Mn: Mn is an essential element for deoxidizing the weld metal, and at the same time is an important element for strength and toughness.
If it exceeds 60%, the strength becomes high, but the hardenability becomes too large to form a lath-like structure, and the toughness of the SR-treated weld metal deteriorates, so 1.60% was made the upper limit.

【0019】P: Pは溶接金属の靱性を劣化させる元
素であるため少ないほうが好ましく、溶接金属の靱性低
下を防止するためには0.02%以下とすべきである。 S: SもPと同様に溶接金属の靱性を劣化させる元素
であるため少ないほうが好ましく、溶接金属の靱性低下
を防止するためには0.02%以下とすべきである。
P: P is an element that deteriorates the toughness of the weld metal, so it is preferable that its content be small, and in order to prevent the toughness of the weld metal from decreasing, it should be 0.02% or less. S: S, like P, is an element that deteriorates the toughness of the weld metal, so it is preferable that the content be small, and in order to prevent the toughness of the weld metal from decreasing, it should be 0.02% or less.

【0020】Nb、V: 発明者らが種々検討した結果、
溶接金属中のNb、V量は、SR処理を行う鋼管において
は、溶接金属の靱性を確保するうえで最も重要な元素で
あることがわかった。図1は、溶接金属中のNb、V量
と、SR処理を施した溶接金属の破面遷移温度の関係を
現したものであるが、溶接金属中のNb、V量を増加させ
るとSR処理を施した溶接金属の破面遷移温度は顕著に
増加しており、靱性が劣化することは明らかである。即
ち、−30℃においてSR処理を施した溶接金属の靱性を
確保するためには、Nbを0.02%以下にして、Vを 0.1%
以下にすべきであることが明らかである。
Nb, V: As a result of various studies by the inventors,
It has been found that the amounts of Nb and V in the weld metal are the most important elements for ensuring the toughness of the weld metal in the steel pipe subjected to SR treatment. Fig. 1 shows the relationship between the Nb and V contents in the weld metal and the fracture surface transition temperature of the SR-treated weld metal. When the Nb and V contents in the weld metal are increased, the SR treatment is performed. It is clear that the fracture surface transition temperature of the weld metal subjected to the heat treatment markedly increases and the toughness deteriorates. That is, in order to ensure the toughness of the SR-treated weld metal at -30 ° C, Nb should be 0.02% or less and V should be 0.1%.
It should be clear that:

【0021】さらに検討した結果、溶接金属中のNb、V
量を上記の範囲内としてもなお以下の式に示されるα値
が、1以下でなければSR部の靱性は確保できないこと
がわかった。 α=38.2×Nb(%)+ 7.5×V(%) 即ち、図2はα値とSR処理を施した溶接金属の靱性の
関係を示したものであるが、α値が1を超えるとSR処
理を施した溶接金属の靱性は劣化して−30℃において20
0 Jを確保することが出来なくなるためにα値を1以下
とした。
As a result of further examination, Nb and V in the weld metal
It was found that the toughness of the SR portion cannot be ensured unless the α value shown in the following equation is 1 or less even if the amount is within the above range. α = 38.2 × Nb (%) + 7.5 × V (%) That is, Fig. 2 shows the relationship between the α value and the toughness of the weld metal subjected to SR treatment, but when the α value exceeds 1, SR The toughness of the treated weld metal deteriorates to 20 at -30 ℃.
The α value is set to 1 or less because 0 J cannot be secured.

【0022】Al: Alは溶接金属を脱酸させるために含
有されているが、0.02%を超えると溶接金属の靱性を劣
化させるので0.02%以下とすべきである。 Ni: Niは、溶接金属の靱性の面からは良好な元素であ
るが、 1.5%を超えて含有させると溶接時に高温割れを
起こしやすいためにその上限を 1.5%とした。 Ti: Tiは高温加熱時にオーステナイト粒の成長を抑制
するとともに冷却途中に生成するフェライト粒を細かく
する作用が顕著であるために0.01%は必要である。しか
し、0.05%を超えると組織が変化して靱性が大幅に劣化
するために0.05%以下とした。
Al: Al is contained for deoxidizing the weld metal, but if it exceeds 0.02%, the toughness of the weld metal deteriorates, so it should be 0.02% or less. Ni: Ni is a good element in terms of the toughness of the weld metal, but if it is contained in excess of 1.5%, hot cracking easily occurs during welding, so the upper limit was made 1.5%. Ti: 0.01% is required because Ti has a remarkable effect of suppressing the growth of austenite grains during high temperature heating and finely dividing ferrite grains generated during cooling. However, if it exceeds 0.05%, the structure changes and the toughness deteriorates significantly, so the content was made 0.05% or less.

【0023】B: Bは溶接金属の靱性向上には効果的
な元素であるが、0.0030%を超えると組織が変化して靱
性が劣化するため0.0030%以下とした。 Mo: Moは溶接ままの溶接金属靱性を向上させるのに有
効な元素であるが、多量に含有すると靱性低下を招くの
でこれらのバランスから 0.5%以下とすべきである。
B: B is an element effective for improving the toughness of the weld metal, but if it exceeds 0.0030%, the structure changes and the toughness deteriorates, so the content was made 0.0030% or less. Mo: Mo is an element effective in improving the toughness of the weld metal as it is welded, but if it is contained in a large amount, toughness will be reduced, so from the balance of these, it should be 0.5% or less.

【0024】N: Nは溶接金属の靱性向上には有害で
あるために低いほうが好ましく、0.010 %を上限とすべ
きである。 O: Oは溶接金属の靱性に大きく影響し、0.050 %を
超えるような場合は溶接金属の靱性を劣化させるため
に、0.050 %を上限とした。また、 0.015%未満の溶接
金属においては、その組織に焼きが入りすぎて上部ベイ
ナイトと呼ばれる組織となり靱性が顕著に劣化するため
に、 0.015%を下限とした。
N: N is preferably harmful because it is harmful for improving the toughness of the weld metal, and its upper limit should be 0.010%. O: O significantly affects the toughness of the weld metal, and when it exceeds 0.050%, the toughness of the weld metal is deteriorated, so 0.050% was made the upper limit. Further, in a weld metal of less than 0.015%, the structure is so hardened that it becomes a structure called upper bainite and the toughness is significantly deteriorated, so 0.015% was made the lower limit.

【0025】Pcm の限定理由は以下のとおりである。鋼
管の特性を表す指標として従来からPcm が用いられてい
ることは良く知られているが、SR処理後の溶接金属の
靱性にはPcm が大きく影響することがわかった。即ち、
Pcm が0.13%より低いような溶接金属においては、溶接
金属の焼入れ性が低いために、SR処理を行った後の組
織が初析フェライト主体の組織になり、充分な靱性が得
られないばかりか強度を満足させることも困難である。
また、Pcm が0.18%を超えるような溶接金属の場合は、
SR処理後の溶接金属内に、極めて微細な析出物などが
形成されて靱性には好ましくない現象が起こり、靱性が
著しく劣化するために0.13%≦Pcm ≦0.18%とした。
The reason for limiting Pcm is as follows. It is well known that Pcm has been conventionally used as an index showing the properties of steel pipes, but it has been found that Pcm greatly affects the toughness of the weld metal after SR treatment. That is,
In a weld metal having a Pcm of less than 0.13%, the hardenability of the weld metal is low, so the structure after SR treatment becomes a structure mainly composed of pro-eutectoid ferrite, and sufficient toughness cannot be obtained. It is also difficult to satisfy the strength.
If the weld metal has a Pcm of more than 0.18%,
Since extremely fine precipitates are formed in the weld metal after SR treatment and the toughness is unfavorably caused and the toughness is significantly deteriorated, 0.13% ≤ Pcm ≤ 0.18%.

【0026】SR処理の方法は、 580℃〜 750℃に10分
以上加熱したのち1℃/sec 以下の冷却速度で冷却する
方法であり、この限定理由は以下の如くである。図3は
SR処理の温度と溶接金属の残留応力の関係を示したも
のであるが、SR温度が 580℃以上で残留応力が著しく
低減しており、 580℃以上にすべきである。また、あま
り高い温度では残留応力は除去されるものの、溶接金属
の組織が変化して靱性が劣化するために 750℃以下とし
た。
The SR treatment method is a method of heating at 580 ° C. to 750 ° C. for 10 minutes or more and then cooling at a cooling rate of 1 ° C./sec or less. The reason for this limitation is as follows. Figure 3 shows the relationship between the SR treatment temperature and the residual stress of the weld metal. When the SR temperature is 580 ° C or higher, the residual stress is remarkably reduced, and should be 580 ° C or higher. Although the residual stress was removed at a too high temperature, the structure of the weld metal changed and the toughness deteriorated, so the temperature was set to 750 ° C or lower.

【0027】また、図4は 600℃でSRを行ったのちの
冷却速度と溶接残留応力の関係を示したものであるが、
1℃/sec を超える冷却では溶接金属の残留応力が十分
に低減されないことから、冷却速度は1℃/sec 以下と
した。さらに、SR処理の時間があまりにも短いと応力
を除去する効果がなくなるが、処理時間が10分以上あれ
ばその効果が現れると考えられるために、SR時間の最
低を10分とした。
Further, FIG. 4 shows the relationship between the cooling rate and the residual welding stress after SR was performed at 600 ° C.
The cooling rate was set to 1 ° C / sec or less because the residual stress of the weld metal is not sufficiently reduced by cooling at 1 ° C / sec or more. Further, if the SR treatment time is too short, the effect of removing stress disappears, but if the treatment time is 10 minutes or more, it is considered that the effect appears. Therefore, the minimum SR time was set to 10 minutes.

【0028】[0028]

【実施例】以下に本発明による具体的な製造例について
説明する。本発明者等の用いた供試鋼板(母材)は、表
1に示す化学成分を有する板厚24mmのものを使用した。
EXAMPLES Specific production examples according to the present invention will be described below. The test steel plate (base material) used by the inventors of the present invention had a plate thickness of 24 mm having the chemical components shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】この供試鋼板を4電極サブマージアーク溶
接法により、表2に示す溶接条件にて両面一層溶接し試
験片とした。また、前記鋼板の内面側に 4.9mm、外面側
に 7.8mmで、開先角度45°と40°の開先をそれぞれ形成
し溶接した。
This test steel sheet was welded to both sides by the 4-electrode submerged arc welding method under the welding conditions shown in Table 2 to obtain a test piece. Further, a groove having a groove angle of 45 ° and a groove angle of 40 ° was formed with 4.9 mm on the inner surface side and 7.8 mm on the outer surface side, respectively, and welded.

【0031】[0031]

【表2】 [Table 2]

【0032】サブマージアーク溶接用の溶接ワイヤとし
ては、表3に示す化学成分組成を有するMo−Ti−B系の
溶接ワイヤを使用し、フラックスとしては表4に示す成
分組成を有する高塩基性フラックスを使用した。
As the welding wire for submerged arc welding, a Mo-Ti-B type welding wire having the chemical composition shown in Table 3 is used, and as the flux, a highly basic flux having the composition shown in Table 4 is used. It was used.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】このようにして得られた溶接金属の化学組
成を表5に示す。表5において、ア〜オが本発明の範囲
内のものであり、カ〜トがその範囲から外れるものであ
る。
Table 5 shows the chemical composition of the weld metal thus obtained. In Table 5, a to o are within the scope of the present invention, and kato are out of the range.

【0036】[0036]

【表5】 [Table 5]

【0037】これらの溶接金属をそれぞれSR処理を行
いその特性を調べた。これは、溶接金属を 600℃で1時
間加熱した後、 0.1℃/sec で常温まで冷却して該溶接
金属の機械的性質を調べたものであり、その結果を表6
に示している。
Each of these weld metals was subjected to SR treatment and its characteristics were examined. This is one in which the weld metal was heated at 600 ° C. for 1 hour and then cooled to room temperature at 0.1 ° C./sec to examine the mechanical properties of the weld metal. The results are shown in Table 6.
Is shown in.

【0038】[0038]

【表6】 [Table 6]

【0039】表6において、実施例No1〜5は本発明に
て規定した範囲内のもの、比較例No6〜20は熱処理範囲
が本発明にて規定した範囲から外れるものである。実施
例No1〜5は何れも、SRによって残留応力が100MPa以
下に低減されている。さらに、各実施例では−30℃にお
いてシャルピー吸収エネルギーが 200J以上で極めて高
い靱性値が得られているとともに充分な引張強度を有し
ている。即ち、本発明にて規定した範囲内のものであれ
ば、SR後の溶接金属は高強度、高靱性が得られている
ことは明らかである。
In Table 6, Examples Nos. 1 to 5 are within the range specified in the present invention, and Comparative Examples Nos. 6 to 20 are those in which the heat treatment range is out of the range specified in the present invention. In each of Examples 1 to 5, the residual stress was reduced to 100 MPa or less by SR. Furthermore, in each of the examples, the Charpy absorbed energy at −30 ° C. is 200 J or more, an extremely high toughness value is obtained, and sufficient tensile strength is obtained. That is, it is clear that the weld metal after SR has high strength and high toughness within the range specified in the present invention.

【0040】これに対して、比較例No6はCが、比較例
No7はSiが、比較例No8はMnが、比較例No9はNbが、比
較例No10はVが、比較例No11はAlが、比較例No13はMo
が、比較例No14はTiが、比較例No15はBが、比較例No16
はNが、比較例No17はOがそれぞれ本発明の範囲を上回
るために、何れもSR処理後の溶接金属の靱性が 100J
以下となっており、満足な靱性が得られていないことが
わかる。また、比較例No12は、SR処理後の溶接金属の
靱性および強度は確保されているものの、Ni量が本発明
の範囲を上回るために溶接金属に割れが生じていた。
On the other hand, in Comparative Example No. 6, C is a comparative example.
No. 7 is Si, Comparative Example No. 8 is Mn, Comparative Example No. 9 is Nb, Comparative Example No. 10 is V, Comparative Example No. 11 is Al, and Comparative Example No. 13 is Mo.
However, Comparative Example No. 14 has Ti, Comparative Example No. 15 has B, Comparative Example No. 16
Is higher than N in the present invention, and Comparative Example No. 17 is higher than O in the present invention. Therefore, the toughness of the weld metal after SR treatment is 100 J
The following values indicate that satisfactory toughness is not obtained. Further, in Comparative Example No. 12, although the toughness and strength of the weld metal after SR treatment were secured, the weld metal cracked because the Ni content exceeded the range of the present invention.

【0041】さらに比較例No18は、溶接金属の化学組成
は何れも本発明の範囲内に入るものの、α値が本発明の
範囲を上回るために、溶接金属の靱性が顕著に劣化して
いることがわかる。比較例No19は、溶接金属の化学組成
は何れも本発明の範囲内に入るものの、Pcm 値が本発明
の範囲を上回るために靱性が顕著に劣化しており、比較
例No20は、Pcm 値が本願発明の範囲を下回るため溶接金
属の強度が不足しており、何れも不適であるとがわか
る。
Further, in Comparative Example No. 18, although the chemical composition of the weld metal is within the range of the present invention, the toughness of the weld metal is remarkably deteriorated because the α value exceeds the range of the present invention. I understand. Comparative Example No. 19, although the chemical composition of the weld metal is within the scope of the present invention, the toughness is significantly deteriorated because the Pcm value exceeds the range of the present invention, and Comparative Example No. 20 has a Pcm value of It can be seen that the strength of the weld metal is insufficient because it is below the range of the invention of the present application, and that both are unsuitable.

【0042】[0042]

【発明の効果】本発明によれば、サブマージアーク溶接
法により溶接したのちSR処理が施される大径溶接鋼管
および大径溶接ベンド鋼管などを製造するに際し、SR
処理により残留応力を低減させた上で、SR処理後の溶
接金属に高張力化と同時に優れた冷温衝撃靱性を満足さ
せ得るものであり、その効果は多大である。
According to the present invention, when a large-diameter welded steel pipe, a large-diameter welded bend steel pipe, and the like which are subjected to SR treatment after being welded by the submerged arc welding method are manufactured,
The residual stress can be reduced by the treatment, and the weld metal after SR treatment can be made to have a high tensile strength and at the same time excellent cold-temperature impact toughness can be satisfied, and the effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】Nb、V量(%)と破面遷移温度との関係を示す
線図である。
FIG. 1 is a diagram showing a relationship between Nb and V amounts (%) and a fracture surface transition temperature.

【図2】α値(%)とSR処理後の溶接金属の−30℃の
シャルピー吸収エネルギー値(J/cm2 )との関係を示
す線図である。
FIG. 2 is a diagram showing a relationship between an α value (%) and a Charpy absorbed energy value (J / cm 2 ) at −30 ° C. of a weld metal after SR treatment.

【図3】テンパー温度(℃)と溶接線方向の残留応力
(MPa )との関係を示す線図である。
FIG. 3 is a diagram showing the relationship between the temper temperature (° C.) and the residual stress (MPa) in the welding line direction.

【図4】冷却速度(℃/sec )と溶接線の残留応力(MP
a )との関係を示す線図である。
[Fig. 4] Cooling rate (℃ / sec) and residual stress of weld line (MP
It is a diagram which shows the relationship with a).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 UOE鋼管において、母材の化学成分が
重量(wt)%で C :0.02〜0.10%、 Si :0.50%以下、 Mn :2.00%以下、 P :0.020 %以下、 S :0.0020%以下、 Nb :0.045 %以下、 V :0.080 %以下、 Ti :0.05%以下、 B :0.0010%以下、 Mo :0.50%以下、 N :0.0050%以下、 O :0.0030%以下を含有し、残部不可避的不純物およ
びFeからなり、上記母材にMo−Ti−B系溶接ワイヤを用
いて内外面に1パス潜弧溶接を行い、重量(wt)%で C :0.01〜0.06%、 Si :0.6 %以下、 Mn :1.60%以下、 P :0.02%以下、 S :0.02%以下、 Nb :0.02%以下、 V :0.1 %以下、 Al :0.02%以下、 Ni :1.5 %以下、 Ti :0.05%以下、 B :0.0030%以下、 Mo :0.5 %以下、 N :0.010 %以下、 O :0.015 〜 0.050%を含有し、残部不可避的不純物
およびFeからなり、かつ、下式のPcm が0.13〜0.18であ
り、下式のαが1以下である溶接金属を得、上記母材と
溶接金属とからなるUOE鋼管に、580 〜 750℃の温度
範囲で10分以上加熱した後、1℃/秒以下の冷却速度で
冷却してなる応力除去焼鈍を施したSR特性に優れた高
強度・高靱性UOE鋼管の製造方法。 Pcm =C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/
15+V/10+5×B α=38.2×Nb+ 7.5×V
1. In a UOE steel pipe, the chemical composition of the base material is C: 0.02 to 0.10%, Si: 0.50% or less, Mn: 2.00% or less, P: 0.020% or less, S: 0.0020% by weight (wt)%. Below, Nb: 0.045% or less, V: 0.080% or less, Ti: 0.05% or less, B: 0.0010% or less, Mo: 0.50% or less, N: 0.0050% or less, O: 0.0030% or less, and the balance is unavoidable. Containing impurities and Fe, 1-pass latent arc welding was performed on the inner and outer surfaces of the above base metal using a Mo-Ti-B welding wire, and C: 0.01-0.06%, Si: 0.6% or less in weight (wt)%. , Mn: 1.60% or less, P: 0.02% or less, S: 0.02% or less, Nb: 0.02% or less, V: 0.1% or less, Al: 0.02% or less, Ni: 1.5% or less, Ti: 0.05% or less, B: : 0.0030% or less, Mo: 0.5% or less, N: 0.010% or less, O: 0.015 to 0.050%, the balance being unavoidable impurities and Fe, and the formula below. After obtaining a weld metal having Pcm of 0.13 to 0.18 and α of 1 or less in the following formula, heating the UOE steel pipe composed of the base metal and the weld metal in the temperature range of 580 to 750 ° C. for 10 minutes or more, A method for producing a high-strength, high-toughness UOE steel pipe excellent in SR characteristics, which is subjected to stress relief annealing by cooling at a cooling rate of 1 ° C / sec or less. Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo /
15 + V / 10 + 5 × B α = 38.2 × Nb + 7.5 × V
JP7477995A 1995-03-31 1995-03-31 Production of high strength and high toughness uoe steel pipe excellent in sr characteristic Pending JPH08269566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7477995A JPH08269566A (en) 1995-03-31 1995-03-31 Production of high strength and high toughness uoe steel pipe excellent in sr characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7477995A JPH08269566A (en) 1995-03-31 1995-03-31 Production of high strength and high toughness uoe steel pipe excellent in sr characteristic

Publications (1)

Publication Number Publication Date
JPH08269566A true JPH08269566A (en) 1996-10-15

Family

ID=13557126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7477995A Pending JPH08269566A (en) 1995-03-31 1995-03-31 Production of high strength and high toughness uoe steel pipe excellent in sr characteristic

Country Status (1)

Country Link
JP (1) JPH08269566A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045672A (en) * 2004-07-07 2006-02-16 Jfe Steel Kk High-tensile steel sheet and production method thereof
KR100770323B1 (en) * 2001-12-21 2007-10-26 재단법인 포항산업과학연구원 Method for manufactufing high pressure container having enhanced weldment impact resistibility
CN103459618A (en) * 2011-02-18 2013-12-18 悬挂系统股份有限公司 Method for manufacturing high-strength steel sheet parts subject in use to fatigue stresses
JP2016151052A (en) * 2015-02-18 2016-08-22 新日鐵住金株式会社 Submerged arc weld metal of high strength uoe steel tube excellent in sr resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770323B1 (en) * 2001-12-21 2007-10-26 재단법인 포항산업과학연구원 Method for manufactufing high pressure container having enhanced weldment impact resistibility
JP2006045672A (en) * 2004-07-07 2006-02-16 Jfe Steel Kk High-tensile steel sheet and production method thereof
CN103459618A (en) * 2011-02-18 2013-12-18 悬挂系统股份有限公司 Method for manufacturing high-strength steel sheet parts subject in use to fatigue stresses
JP2016151052A (en) * 2015-02-18 2016-08-22 新日鐵住金株式会社 Submerged arc weld metal of high strength uoe steel tube excellent in sr resistance

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
CN101578384B (en) Steel with weld heat-affected zone having excellent CTOD properties and process for producing the steel
KR20170107070A (en) A steel plate having high crack-controllability and a manufacturing method thereof
JPS629646B2 (en)
JP6989606B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method
JP2022548144A (en) High-strength extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JPH0443977B2 (en)
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP2688312B2 (en) High strength and high toughness steel plate
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JPH11172374A (en) Bent pipe with high strength and high toughness, and its production
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP3736209B2 (en) High tensile steel with excellent weld toughness and manufacturing method thereof
JP3085253B2 (en) Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JP4419572B2 (en) Method for producing a composite steel sheet having excellent fatigue properties
JP4660363B2 (en) Manufacturing method of thick steel plate with excellent toughness
JP7445127B2 (en) Steel plate for LPG storage tank and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A02 Decision of refusal

Effective date: 20060606

Free format text: JAPANESE INTERMEDIATE CODE: A02