JPS59134331A - Method of and device for controlling slide pressure operation of pressurized coal gasification type power plant - Google Patents
Method of and device for controlling slide pressure operation of pressurized coal gasification type power plantInfo
- Publication number
- JPS59134331A JPS59134331A JP736383A JP736383A JPS59134331A JP S59134331 A JPS59134331 A JP S59134331A JP 736383 A JP736383 A JP 736383A JP 736383 A JP736383 A JP 736383A JP S59134331 A JPS59134331 A JP S59134331A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- gasifier
- control device
- gas
- coal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/26—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
- F02C3/28—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、加圧式石炭ガス化複合発電プラントの部分負
荷時における石炭ガス化炉の変圧運転の制御方法、及び
その制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for controlling variable pressure operation of a coal gasifier during partial load in a pressurized coal gasification combined cycle power plant, and a control device thereof.
第1図は石炭ガス化複合発電プラントの1例を示すシス
テム構成図である。FIG. 1 is a system configuration diagram showing an example of a coal gasification combined cycle power plant.
ガス化炉3に対して石炭供給設備1から石炭2が供給さ
れ、同時に酸素供給設備4から石炭ガス化剤としての酸
素5が供給される。ガス化炉3では石炭と酸素とが反応
し、組成ガス6が生成される。組成ガス6はガス冷却設
備7で冷却されると共に蒸気8を発生する。冷却された
組成ガス9はガス精製設備10に送られ、脱塵・脱硫さ
れて精製ガス11となる。Coal 2 is supplied to the gasifier 3 from a coal supply facility 1, and at the same time, oxygen 5 as a coal gasifying agent is supplied from an oxygen supply facility 4. In the gasifier 3, coal and oxygen react, and a composition gas 6 is generated. The composition gas 6 is cooled by a gas cooling facility 7 and generates steam 8. The cooled composition gas 9 is sent to a gas purification facility 10, where it is dedusted and desulfurized to become a purified gas 11.
精製ガス11は複合発電設備のガスクーピン12へ送ら
れ、燃焼してタービンを駆動し、電気を発生する。燃焼
してタービンを駆動した後のガスは、高温の排ガス13
として排熱回収ボイラ14へ送られる。高温の排ガス1
3は排熱回収ボイラ14で熱を蒸気として回収され、比
較的低温の排ガス34として排出される。排熱回収ボイ
ラ14で発生した蒸気と、ガス冷却7からの蒸気8は、
排熱回収ボイラ14で過熱され、過熱蒸気15として蒸
気タービン16へ送られる。過熱蒸気15は蒸気タービ
ン16を駆動し、電気を発生する。The purified gas 11 is sent to the gas coupin 12 of the combined power generation facility, where it is combusted to drive a turbine and generate electricity. The gas after being combusted and driving the turbine is a high-temperature exhaust gas 13
The waste heat is sent to the exhaust heat recovery boiler 14 as waste heat recovery boiler 14. High temperature exhaust gas 1
The heat is recovered as steam by an exhaust heat recovery boiler 14, and is discharged as relatively low temperature exhaust gas 34. The steam generated in the exhaust heat recovery boiler 14 and the steam 8 from the gas cooling 7 are
It is superheated in the exhaust heat recovery boiler 14 and sent to the steam turbine 16 as superheated steam 15. Superheated steam 15 drives a steam turbine 16 to generate electricity.
石炭ガス化複合発電プラントの従来の運転方法の一例を
第2図により説明する。An example of a conventional method of operating a coal gasification combined cycle power plant will be explained with reference to FIG.
中央制御装置70からの負荷要求信号17がガスタービ
ン制御装置18にはいり、ガスタービン制御装置18は
要求された負荷に応じて、燃料流量調整弁19を開閉し
、燃料流量をコントロールすることによってガスタービ
ン12の出力を制御する。A load request signal 17 from the central controller 70 is input to the gas turbine controller 18, and the gas turbine controller 18 opens and closes the fuel flow rate regulating valve 19 according to the requested load to control the fuel flow rate. The output of the turbine 12 is controlled.
一方、中央制御装置70には、ガス精製出口の設定圧力
20がセットされており、このガス精製出口の設定圧力
20は、プラントの負荷に関係なく一定の圧力に設定さ
れる。On the other hand, a set pressure 20 at the gas purification outlet is set in the central controller 70, and this set pressure 20 at the gas purification outlet is set to a constant pressure regardless of the load of the plant.
ガス精製設備10の圧力は圧力計21から圧力信号22
としてガス精製圧力制御装置23に送られ、中央制御装
置70からの設定圧力信号20と比較され、設定圧力(
一定値)との差によって石炭供給量制御装置24に石炭
供給量の増減の信号25を送る。The pressure of the gas purification equipment 10 is determined by a pressure signal 22 from a pressure gauge 21.
is sent to the gas purification pressure control device 23 as
A signal 25 indicating an increase or decrease in the coal supply amount is sent to the coal supply amount control device 24 based on the difference from the fixed value).
石炭供給量制御装置24は、ガス精製圧力制御装置23
からの信号と、石炭流量計26からの信号27によシ、
石炭供給量調整弁28へ石炭供給量の増減の信号29を
送る。The coal supply amount control device 24 is the gas purification pressure control device 23
and the signal 27 from the coal flow meter 26,
A signal 29 is sent to the coal supply amount adjustment valve 28 to increase or decrease the amount of coal supplied.
まだ、酸素の供給量は酸素/石炭比制御装置330によ
シ制御される。酸素/石炭比制御装置30へは、石炭流
量計31と酸素流量計32から、それぞれ石炭供給量、
酸素供給量の信号が送られる。酸素/石炭比制御装置3
0は、石炭と酸素の供給量の比が一定となるように、酸
素供給量調整弁33によシ酸素供給量を調整する。The amount of oxygen supplied is still controlled by the oxygen/coal ratio controller 330. The oxygen/coal ratio control device 30 receives coal supply amount and
A signal of the amount of oxygen supplied is sent. Oxygen/coal ratio control device 3
0, the oxygen supply amount is adjusted by the oxygen supply amount adjustment valve 33 so that the ratio of the coal and oxygen supply amounts is constant.
第2図の例では、ガス精製出口の圧力が一定となるよう
に制御しており、これは、定格負荷時。In the example shown in Figure 2, the pressure at the gas purification outlet is controlled to be constant, and this is at rated load.
部分負荷時をとわず常に一定にしている。したがって、
ガス化炉3の圧力は部分負荷時においても組成ガスの流
量が減少することによって圧損が減少した分だけ下がる
だけであシ、定格負荷時の圧力とあまり変わらない。It is always kept constant regardless of partial load. therefore,
Even during partial load, the pressure in the gasifier 3 only decreases by the amount of pressure loss due to the decrease in the flow rate of the composition gas, and is not much different from the pressure at rated load.
従来の運転方法の他の1例を第3図に示す。Another example of the conventional operating method is shown in FIG.
第2図の例との違いは、第2図の例では負荷要求信号1
7がガスタービン側にはいシ、ガス精製設備の設定圧力
信号20がガス化炉側にはいるのに対し、第3図の例で
は、負荷要求信号17がガス化炉側にはいり、ガス精製
の設定圧力信号20がガスタービン側にはいることであ
る。第2図の例はガスタービンにガス化炉が追従してい
くガスタービン主導型であるのに対し、第3図の例はガ
ス化炉にガスタービンが追従していくガス化炉主導型と
なっている。The difference from the example in Figure 2 is that in the example in Figure 2, the load request signal 1
7 is input to the gas turbine side, and the set pressure signal 20 of the gas purification equipment is input to the gasifier side, whereas in the example of Fig. 3, the load request signal 17 is input to the gasifier side, and the gas purification equipment The set pressure signal 20 is input to the gas turbine side. The example in Figure 2 is a gas turbine-driven type where the gasifier follows the gas turbine, whereas the example in Figure 3 is a gasifier-driven type where the gas turbine follows the gasifier. It has become.
ガスタービン主導型とガス化炉主導型の違いはあっても
、第2図の例と同様に第3図の例でも、ガス精製設備出
口圧力がプラント負荷に関係なく一定になるように制御
している。Although there is a difference between gas turbine-driven and gasifier-driven systems, in the example in Figure 3 as well as in the example in Figure 2, the outlet pressure of the gas purification equipment is controlled to be constant regardless of the plant load. ing.
以上に例を挙げて説明したように、従来における石炭ガ
ス化複合発電プラントの運転方法は、ガスタービンが必
要とする燃料ガスの圧力を一定に保持して行なわれてい
る。従来一般に上記のように定圧運転制御を行なってい
るのは主として制御技術的な理由によるものであるが、
後述するごとく、部分負荷運転時においても定格時と同
じガス圧を保つことは、ガス圧縮に費すエネルギー損失
の面から不経済である。As explained above with reference to examples, the conventional method of operating a coal gasification combined cycle power plant is carried out by keeping the pressure of the fuel gas required by the gas turbine constant. Conventionally, constant pressure operation control as described above has been performed mainly for control technology reasons.
As will be described later, it is uneconomical to maintain the same gas pressure as during rated operation even during partial load operation in terms of energy loss spent on gas compression.
第4図は、ガス化剤としての酸素が圧縮機から送出され
た後、ガス化炉、排熱回収ボイラ、などを順次に経由し
て減圧してゆく状態を表わした図表で、縦軸に圧力をと
シ、この圧力は圧力調整弁出口における定格時圧力を1
00%として表わしである。Figure 4 is a diagram showing the state in which oxygen as a gasifying agent is sent out from a compressor and then sequentially passed through a gasification furnace, an exhaust heat recovery boiler, etc. to reduce its pressure. This pressure is equal to the rated pressure at the outlet of the pressure regulating valve by 1
It is expressed as 00%.
実線で示した定格運転時のガス化炉圧力35は、定格運
転時のガスタービン燃焼器入口燃料圧力36にガスター
ビン燃料流量圧力調整弁での減圧分と圧力調整弁・ガス
精製設備・熱回収ボイラ等の系統の圧力損失分を加えた
圧力となる。定格運転時の酸素吐出圧力37は、定格運
転時のガス化炉圧力35に若干の圧力を加えたものとな
る。The gasifier pressure 35 during rated operation shown by the solid line is the gas turbine combustor inlet fuel pressure 36 during rated operation, the reduced pressure at the gas turbine fuel flow pressure regulating valve, the pressure regulating valve, gas purification equipment, and heat recovery. The pressure is the sum of pressure loss in systems such as boilers. The oxygen discharge pressure 37 during rated operation is the gasifier pressure 35 during rated operation plus some pressure.
破線で示したカーブ38は、前述のごとくガス圧を一定
に保つように制御する従来の方法において50チ部分負
荷運転時のガス圧を示す。The dashed curve 38 shows the gas pressure during 50 inch part load operation in the conventional method of controlling the gas pressure to keep it constant as described above.
定格時におけるガスタービン燃焼器入口圧力は点36が
表わす圧力であるのに比して、50%負荷時は点39が
表わす圧力で足シる。しかし前述のように部分負荷時に
もガス圧を一定に保つ制御方法であるため、余分の圧力
Pをガスタービン燃料流量圧力調整弁で落として使うこ
とになる。The inlet pressure of the gas turbine combustor at the rated time is the pressure represented by point 36, while at 50% load it is the pressure represented by point 39. However, as described above, since the control method is to maintain the gas pressure constant even during partial load, the excess pressure P is reduced and used by the gas turbine fuel flow rate pressure regulating valve.
すなわち、ガス精製設備出口圧力を一定に保つ場合、ガ
ス流量が定格運転時の半分となるため、排熱回収ボイラ
、ガス精製設備での圧力損失が減少するので、ガス化炉
圧力38は定格運転時よシも若干低い圧力となる。部分
負荷運転時のガスタービン燃焼器入口燃料圧力39は定
格運転時の圧力36よ漫も下がるので、ガスタービン燃
料流量圧力調整弁は定格運転時に比べて大きな減圧をす
ることになシ、非常に不経済である。In other words, when the gas purification equipment outlet pressure is kept constant, the gas flow rate is half of the rated operation, which reduces the pressure loss in the heat recovery boiler and the gas purification equipment, so the gasifier pressure 38 remains at the rated operation. The pressure will also be slightly lower. The gas turbine combustor inlet fuel pressure 39 during partial load operation is much lower than the pressure 36 during rated operation, so the gas turbine fuel flow pressure regulating valve does not have to reduce the pressure much more than during rated operation. It is uneconomical.
一方、部分負荷時においてガス化炉からガスタービン燃
焼器入口までの間に弁を絞って減圧するようなことをせ
ずに、単に圧損のみを考慮した場合、ガス化炉の圧力は
仮想線40で示しだようになシ、この場合の酸素吐出圧
力は点41が表わす圧力で足りることになろうこれを従
来の制御方法と比較すると、従来の部分負荷運転時の酸
素圧力42は、熱回収ボイラ、ガス精製設備、圧力調整
弁、ガスタービン燃料圧力調整弁の圧損のみによって決
まった酸素圧力41に比べて、斜線で示した分だけ高い
圧力となる。On the other hand, if only the pressure drop is considered without throttling the valve to reduce the pressure between the gasifier and the gas turbine combustor inlet during partial load, the pressure in the gasifier will be 40 As shown in Figure 2, the oxygen discharge pressure in this case is sufficient to be the pressure represented by point 41.Comparing this with the conventional control method, the oxygen pressure 42 during conventional partial load operation is determined by heat recovery. Compared to the oxygen pressure 41 determined only by the pressure loss of the boiler, gas purification equipment, pressure regulating valve, and gas turbine fuel pressure regulating valve, the pressure is higher by the amount indicated by diagonal lines.
との斜線で示した圧力差分は、必要以上に酸素圧力を高
めている分であるため、酸素圧縮機の動力を余分に使っ
ていることになシブラント効率の損失を招く。特に石炭
ガス化複合発電プラントでは、酸素圧縮機の動力の発電
端出力に対する比率が約1割もあり高いので、酸素圧縮
機の動力を低減させることが、大きなプラント効率の向
上につながる。The pressure difference shown by diagonal lines between the two is the amount where the oxygen pressure is increased more than necessary, which means that the power of the oxygen compressor is used excessively, and this causes a loss in sybrant efficiency. Particularly in coal gasification combined cycle power generation plants, the ratio of the power of the oxygen compressor to the final power generation output is as high as about 10%, so reducing the power of the oxygen compressor leads to a significant improvement in plant efficiency.
本発明は上述の検討に基づいて為されたもので、その目
的は、加圧式石炭ガス化複合発電プラントの部分負荷運
転において、加圧式石炭ガス化炉の圧力を、ガスタービ
ンが必要とする燃料ガス圧力を供給できる最低圧力まで
下げ、加圧式石炭ガス化炉の変圧運転を行なうことによ
シ、ガス化炉に酸素を供給する酸素圧縮機の所要動力を
減少させて、プラント効率の向上に貢献し得る変圧式の
制御方法、および変圧式の制御装置を提供することにあ
る。The present invention has been made based on the above-mentioned considerations, and its purpose is to reduce the pressure of the pressurized coal gasifier to the fuel required by the gas turbine during partial load operation of a pressurized coal gasification combined cycle power plant. By lowering the gas pressure to the lowest pressure that can be supplied and performing variable pressure operation of the pressurized coal gasifier, the power required for the oxygen compressor that supplies oxygen to the gasifier can be reduced, improving plant efficiency. It is an object of the present invention to provide a transformer type control method and a transformer type control device that can contribute to the present invention.
上記の目的を達成するため、本発明の制御方法は、加圧
式石炭ガス化炉と、ガス精製設備と、ガスタービンを含
む複合発電設備と、ガス化剤供給設備とよシなる加圧式
石炭ガス化複合発電プラントにおいて、予め変圧モード
を設定したガス化炉制御装置を設け、このガス化炉制御
装置に負荷要求信号を入力せしめ、同ガス化炉制御装置
により石炭供給設備及びガス北側圧縮機に対して負荷に
応じた指令信号を与え、部分負荷運転時におけるガスタ
ービンの燃料供給圧力を自動的に制御して変圧運転を行
なわせることを特徴とする。In order to achieve the above object, the control method of the present invention applies a pressurized coal gasification furnace, a gas purification facility, a combined power generation facility including a gas turbine, and a pressurized coal gasification facility such as a gasification agent supply facility. In a combined cycle power generation plant, a gasifier control device is installed with a pressure transformation mode set in advance, a load request signal is input to this gasifier control device, and the gasifier control device is used to control coal supply equipment and gas north side compressor. The present invention is characterized in that a command signal corresponding to the load is given to the gas turbine to automatically control the fuel supply pressure of the gas turbine during partial load operation to perform variable pressure operation.
また、本発明の制御装置は上記の制御方法を容易に実施
してその効果を充分に発揮せしめるため、加圧式石炭ガ
ス化炉と、ガス精製設備と、ガスタービンを含む複合発
電設備と、ガδ化剤供給設備とよシなる加圧式石炭ガス
化複合発電プラントにおいて、−変圧モードを設定し得
るように構成したガス化炉制御装置を設けるとともに、
上記のガス化炉制御装置に負荷信号を入力し得べくなし
、かつ、上記のガス化炉制御装置により石炭供給設備に
対して負荷に応じた石炭供給量の信号を与えるとともに
ガス北側圧縮機に対して負荷に応じたガス北側流量の信
号を与えるように構成したことを特徴とする。Furthermore, in order to easily implement the above-mentioned control method and fully exhibit its effects, the control device of the present invention is applicable to pressurized coal gasifiers, gas purification equipment, combined power generation equipment including gas turbines, and gas turbines. In a pressurized coal gasification combined cycle power plant that is similar to a delta agent supply facility, a gasifier control device configured to be able to set a -transforming mode is provided, and
A load signal is input to the gasifier control device as described above, and the gasifier control device provides a signal of the coal supply amount according to the load to the coal supply equipment, and also to the gas north side compressor. It is characterized in that it is configured to give a signal of the gas north side flow rate according to the load.
第5図は本発明方法および本発明装置の1実施例の説明
図である。FIG. 5 is an explanatory diagram of one embodiment of the method and apparatus of the present invention.
中央制御装置70からの負荷要求信号17がまずガス化
炉制御装置43にはいる。ガス化炉制御装置43には、
負荷に応じた酸素圧力、酸素圧縮機回転数、及び石炭供
給量が設定されておシ、負荷要求に応じて酸素圧縮機4
42石炭石炭供給量調整弁4へ信号を送る。The load request signal 17 from the central controller 70 first enters the gasifier controller 43. The gasifier control device 43 includes
The oxygen pressure, oxygen compressor rotation speed, and coal supply amount are set according to the load, and the oxygen compressor 4 is adjusted according to the load request.
42 Coal Sends a signal to the coal supply amount adjustment valve 4.
石炭供給量制御装置24はガス化炉制御装置43からの
石炭供給量の信号と、石炭流量計26からの信号によっ
て、石炭供給量調整弁28に石炭供給量の増減の信号を
送る。The coal supply amount control device 24 sends a signal to increase or decrease the coal supply amount to the coal supply amount adjustment valve 28 based on the coal supply amount signal from the gasifier control device 43 and the signal from the coal flow meter 26 .
ガス化炉への酸素供給量は、酸素/石炭比制御装置30
によって制御される。酸素/石炭比制御装置30へは酸
素圧力計45と酸素流量計32と石炭供給量制御装置2
4からの信号がはいり、圧力変化における流量計指示を
補正するこれら3つの信号によシ酸素/石炭比制御装置
30は酸素供給量の増減の信号を酸素圧縮機44へ送る
。The amount of oxygen supplied to the gasifier is controlled by an oxygen/coal ratio controller 30.
controlled by An oxygen pressure gauge 45, an oxygen flow meter 32, and a coal supply amount control device 2 are connected to the oxygen/coal ratio control device 30.
The oxygen/coal ratio controller 30 sends signals to the oxygen compressor 44 to increase or decrease the oxygen supply based on these three signals which correct the flow meter readings due to pressure changes.
酸素圧縮機44は、酸素/石炭比制御装置30からの酸
素供給量の信号とガス化炉圧力制御装置43からの酸素
圧力の信号により制御される。酸素圧縮機44は蒸気タ
ービン(図示せず)で駆動され、圧縮機の回転数を制御
することにより、酸素の流量及び圧力を調整する。また
、酸素圧縮機がモーター駆動の場合は、サイリスク制御
とするか、もしくは流体継手等を用いることにより、圧
縮機の回転数を制御するかベーンで流量をコントロール
する。The oxygen compressor 44 is controlled by an oxygen supply amount signal from the oxygen/coal ratio control device 30 and an oxygen pressure signal from the gasifier pressure control device 43. The oxygen compressor 44 is driven by a steam turbine (not shown), and adjusts the flow rate and pressure of oxygen by controlling the rotation speed of the compressor. In addition, if the oxygen compressor is driven by a motor, the rotational speed of the compressor is controlled by silisk control or by using a fluid coupling or the like, or the flow rate is controlled by vanes.
ガスタービン12の入口の燃料流量調整弁19は、部分
負荷においては弁の開度を一定とし、ガス化炉で生成し
たガスの流量は、ガス圧力低下に伴い比容積が増し、減
少する。したがってガスタービン12の出力はガス化炉
で生成するガスの流量変化に応じて変化する。The fuel flow rate regulating valve 19 at the inlet of the gas turbine 12 maintains a constant valve opening under partial load, and the flow rate of the gas generated in the gasifier increases in specific volume and decreases as the gas pressure decreases. Therefore, the output of the gas turbine 12 changes depending on the change in the flow rate of the gas generated in the gasifier.
第6図は上記と異なる実施例の説明図である。FIG. 6 is an explanatory diagram of an embodiment different from the above.
前例に比して本例は、ガス化炉圧力制御装置43からガ
スタービン制御装置18への燃料ガス圧力補正信号のラ
インが追加されておシ、この信号によってガスタービン
入口燃料圧力を微調整することができ、急激な負荷変化
へ対応することが可能となる。Compared to the previous example, in this example, a fuel gas pressure correction signal line from the gasifier pressure control device 43 to the gas turbine control device 18 is added, and the gas turbine inlet fuel pressure is finely adjusted by this signal. This makes it possible to respond to sudden load changes.
また、酸素流量計は設置せず、酸素圧力計の圧力によっ
て酸素流量を算出する。In addition, no oxygen flow meter will be installed, and the oxygen flow rate will be calculated based on the pressure of the oxygen pressure gauge.
第7図に、酸素圧縮機の流量と効率・圧力・軸動力の関
係を示す。一般にガスタービンの燃料圧力・流量をコン
トロールするには、圧力調整弁で絞ってノズル面積を変
えるコントロール方法と、ノズル面積を一定にして圧力
を変えるコントロール方法とがある。本発明は後者の変
圧運転を行なうものであるが、ガス精製設備出口の圧力
調整弁でガス圧力を調整せずに石炭供給量と酸素ガス圧
縮機吐出圧とによってガスタービンの燃料圧力・流量を
コントロールする。Figure 7 shows the relationship between the flow rate, efficiency, pressure, and shaft power of the oxygen compressor. Generally, there are two ways to control the fuel pressure and flow rate of a gas turbine: one is to restrict the nozzle area using a pressure regulating valve, and the other is to keep the nozzle area constant and change the pressure. The present invention performs the latter variable pressure operation, but instead of adjusting the gas pressure with a pressure regulating valve at the outlet of the gas purification equipment, the fuel pressure and flow rate of the gas turbine are controlled by the coal supply amount and the oxygen gas compressor discharge pressure. control.
ガス化炉定圧の場合は、吐出弁を絞った時の流量・圧力
の関係が本図の曲線46のごとくになり、ベーンコント
ロールの場合は曲線47となる。In the case of constant pressure in the gasifier, the relationship between flow rate and pressure when the discharge valve is throttled is as shown by curve 46 in this figure, and in the case of vane control, it is shown by curve 47.
これに対し、ガス化炉変圧の場合で、ベーンコントロー
ルまたは圧縮機回転数制御の時は、流量と圧力の関係は
カーブ48となる。ここで、ガス化炉で必要とする酸素
圧力は、ガス化炉定圧の場合は47に示す圧力であり、
ガス化炉変圧の場合は48に示す圧力とする。したがっ
て、ガス化炉定圧に比べて、ガス化炉変圧の場合は、4
7の圧力と48の圧力の差分の圧力が、酸素圧縮機にお
いて低減できる圧力となる。On the other hand, in the case of gasifier variable pressure, the relationship between flow rate and pressure becomes curve 48 when vane control or compressor rotation speed control is used. Here, the oxygen pressure required in the gasifier is the pressure shown in 47 in the case of a constant pressure gasifier,
In the case of a gasifier with variable pressure, the pressure shown in 48 shall be used. Therefore, compared to the gasifier constant pressure, in the case of the gasifier variable pressure, 4
The pressure difference between the pressure of 7 and the pressure of 48 is the pressure that can be reduced in the oxygen compressor.
圧縮機の効率は、回転数一定の場合は49に示す曲線と
なり、回転数を変える場合は50に示す曲線となる。第
7図の49と50の関係から、圧縮機の効率は回転数を
変えて制御した方が、回転数一定でベーン・吐出弁等で
制御するよりも、良いことがわかる。The efficiency of the compressor becomes a curve shown at 49 when the number of revolutions is constant, and a curve shown at 50 when the number of revolutions is varied. From the relationship between 49 and 50 in FIG. 7, it can be seen that controlling the efficiency of the compressor by changing the rotation speed is better than controlling the compressor by controlling the rotation speed at a constant speed using vanes, discharge valves, etc.
軸動力は、ガス化炉定圧・圧縮機回転数一定・吐出弁絞
りの場合が51の曲線となり、ガス化炉定圧・圧縮機回
転数一定・ベーンコントロールの場合が52の曲線とな
シ、ガス化炉変圧・圧縮機回転数一定・ベーンコントロ
ールの場合が53の曲線となり、ガス化炉変圧・圧縮機
回転数制御の場合が54の曲線となる。軸動力の大きさ
は第7図かられかるように、51,52,53.54の
順に減少し、ガス化炉変圧・圧縮機回転数制御の場合が
最も小さくなる。The shaft power shows a curve 51 when the gasifier has constant pressure, constant compressor rotation speed, and discharge valve throttle, and a curve 52 when the gasifier has constant pressure, constant compressor rotation speed, and vane control. , the curve 53 is the case with variable gasifier pressure, constant compressor rotation speed, and vane control, and the curve 54 is the case with variable gasifier pressure and constant compressor rotation speed control. As can be seen from FIG. 7, the magnitude of the shaft power decreases in the order of 51, 52, 53.54, and is the smallest in the case of gasifier pressure change/compressor rotation speed control.
上述の作用を総括して、本発明装置を用いて本発明方法
によって変圧運転制御を行なった場合のガス圧縮機消費
動力(カーブ54)は、従来技術におけるガス圧縮機消
費動力(カーブ52)に比して、斜線を付して示した分
だけ低減される。Summarizing the above-mentioned effects, the power consumption of the gas compressor (curve 54) when variable pressure operation is controlled by the method of the present invention using the device of the present invention is equal to the power consumption of the gas compressor in the prior art (curve 52). In comparison, it is reduced by the amount shown with diagonal lines.
酸素ガス圧縮機の動力節減が、発電プラント全体の効率
向上に及はす影響の一例を第8図について次に述べる。An example of the effect of reducing the power of the oxygen gas compressor on improving the efficiency of the entire power plant will be described below with reference to FIG.
本図表の左側縦軸は相対的な効率向上を百分率で表わし
、右側縦軸は発電端出力に対する発゛眠プラント内消費
率(所内率)を、マイナス百分率で表わしている。横軸
は発電機の負荷率である。The vertical axis on the left side of this chart represents the relative efficiency improvement as a percentage, and the vertical axis on the right side represents the consumption rate within the idle plant (in-plant rate) relative to the final power generation output as a negative percentage. The horizontal axis is the generator load factor.
従来の定圧運転方法における酸素圧縮機の所内率はカー
ブ57のととくであシ、本発明の適用によってカーブ5
8のように変わる。従って斜線を付して示した部分が所
内率の低減を表わす。この結果、発電プラント全体の効
率はカーブ59に示す分だけ向上する。本発明の作用原
理から明らかなように、定格負荷時には本発明によ不効
率向上は現われず、負荷率の低い状態において著しく効
率向上が現われる。カーブ55は原料空気圧縮機の所内
率、カーブ56は原料空気圧縮機及び酸素圧縮機を除く
機器類の所内率である。The in-house rate of the oxygen compressor in the conventional constant pressure operation method is the curve 57, but by applying the present invention, the in-house rate is the curve 5.
It changes like 8. Therefore, the shaded area represents the reduction in the on-site ratio. As a result, the efficiency of the entire power plant improves by the amount shown by curve 59. As is clear from the principle of operation of the present invention, the present invention does not cause any inefficiency improvement under rated load, but noticeably improves efficiency under low load conditions. Curve 55 is the in-house rate of the raw air compressor, and curve 56 is the in-house rate of equipment other than the raw air compressor and the oxygen compressor.
以上詳述した如く、本発明の変圧運転制御方法は、加圧
式石炭ガス化炉と、ガス精製設備と、ガスタービンを含
む複合発電設備と、ガス北側供給設備とよりなる加圧式
石炭ガス化複合発電プラントにおいて、予め変圧モード
を設定したガス化炉制御装置を設け、このガス化炉制御
装置に負荷要求信号を入力せしめ、同ガス化炉制御装置
により石炭供給設備及びガス化剤圧縮機に対して負荷に
応じた指令信号を与え、部分負荷運転時におけるガスタ
ービンの燃料供給圧力を自動的に制御して変圧運転を行
なわせることによシ、ガス化炉に酸素を供給する酸素圧
縮機の消費動力を低減し、プラント効率の向上に貢献す
るところ多大である。As described in detail above, the variable pressure operation control method of the present invention provides a pressurized coal gasification complex comprising a pressurized coal gasifier, a gas purification facility, a combined power generation facility including a gas turbine, and a gas north side supply facility. A power generation plant is equipped with a gasifier control device that has been set to a transformer mode in advance, and a load request signal is input to this gasifier control device, and the gasifier control device controls the coal supply equipment and gasifier compressor. By giving a command signal according to the load and automatically controlling the fuel supply pressure of the gas turbine during partial load operation to perform variable pressure operation, This greatly contributes to reducing power consumption and improving plant efficiency.
また、本発明の変圧運転制御装置は、加圧式石炭ガス化
炉と、ガス精製設備と、ガスタービンを含む複合発電設
備と、ガス北側供玲設備とよりなる加圧式石炭ガス化複
合発電プラントにおいて、変圧モードを設定し得るよう
に構成したガス化炉制御装置を設けるとともに、上記の
ガス化炉制御装置に負荷信号を入力し得べくなし、かっ
、上記のガス化炉制御装置によυ石炭供給設備に対して
負荷に応じた石炭供給量の信号を与えるとともにガス化
剤圧縮機に対して負荷に応じたガス北側流量の信号を与
えるように構成することによシ、前記の本発明方法を容
易に実施してその効果を充分に発揮させることができる
。Further, the variable voltage operation control device of the present invention is applicable to a pressurized coal gasification combined cycle power generation plant comprising a pressurized coal gasification furnace, gas purification equipment, combined power generation equipment including a gas turbine, and gas north side supply equipment. In addition to providing a gasifier control device configured to be able to set the pressure transformation mode, it is also possible to input a load signal to the gasifier control device. The above-described method of the present invention is achieved by configuring the supply equipment to give a signal of the coal supply amount according to the load, and to give the gasifier compressor a signal of the gas north side flow rate according to the load. can be easily implemented and its effects can be fully demonstrated.
第1図は石炭ガス化複合発電プラントのシステム構成図
、第2図及び第3図は従来の石炭ガス化複合発電プラン
トの運転方法の説明図、第4図は石炭ガス化複合発電プ
ラントの各機器でのガス圧力を示す図表、第5図及び第
6図はそれぞれ本発明の加圧式石炭ガス化複合発電プラ
ントの変圧運転ガス化複合発電プラントの変圧運転制御
方法及び制御装置の1実施例を示す説明図、第7図は酸
素圧縮機の流量・圧力・効率・軸動力の関係を示す図表
、第8図は本発明の詳細な説明するための図表である。
19・・・燃料流量調節弁、26・・・石炭流量計、2
8・・・石炭供給量調整弁、31・・・石炭流量計、3
2・・・酸素流量計、33・・・酸素供給量調整弁。
代理人 弁理士 秋本正実
茅7 目
茅8 口
手続補正書(自発)
昭和5g年・1月 1日
特許庁長官若杉和夫 殿
1、事件の表示
昭和sty 年特hjj4第7363 号2、発明の名
称 加圧式石炭ガス化複合発電プラントの変圧運転制御
方法およびその装置
3、補正をする者
イ]−所(居所)日立エンジニアリング株式会社4、代
理人
(1)発明の詳細な説明の相第S頁j行目末の「3」を
削除する手続補正書(自発)
ji+
昭和5に年・1月十日
特許庁長官若杉廂夫 殿
16 事件の表示
昭和sg 年特願第73t3 号
3、補正をする者
住所(居所)日立工/ソニアリング株式会社4、代理人Figure 1 is a system configuration diagram of a coal gasification combined cycle power plant, Figures 2 and 3 are explanatory diagrams of the operating method of a conventional coal gasification combined cycle power plant, and Figure 4 is a diagram of each of the coal gasification combined cycle power plants. The charts showing the gas pressure in the equipment, FIGS. 5 and 6, respectively show one embodiment of the method and control device for controlling the variable pressure operation of the pressurized coal gasification combined cycle power plant and the variable pressure operation of the gasification combined cycle plant of the present invention. FIG. 7 is a chart showing the relationship between flow rate, pressure, efficiency, and shaft power of the oxygen compressor, and FIG. 8 is a chart for explaining the present invention in detail. 19...Fuel flow rate control valve, 26...Coal flow meter, 2
8... Coal supply amount adjustment valve, 31... Coal flow meter, 3
2...Oxygen flow meter, 33...Oxygen supply amount adjustment valve. Agent Patent attorney Masamiyoshi Akimoto 7 Mekyo 8 Written amendment to oral proceedings (spontaneous) January 1, 1932 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1. Indication of the case Showa sty 2006 Special Patent hjj 4 No. 7363 2. Title of the invention. Variation voltage operation control method and device for a pressurized coal gasification combined cycle power plant 3, person making the correction A] - Place (residence) Hitachi Engineering Co., Ltd. 4, Agent (1) Detailed explanation of the invention, page S Procedural amendment to delete "3" at the end of line j (voluntary) ji + January 10, 1939, Commissioner of the Japan Patent Office, Mr. Hiroo Wakasugi, 16 Indication of the case Showa SG Patent Application No. 73t3 No. 3, amendment Address of person (residence) Hitachi Kou/Sonia Ring Co., Ltd. 4, Agent
Claims (1)
ビンを含む複合発電設備と、ガス化剤供給設備とよシな
る加圧式石炭ガス化複合発電プラントにおいて、予め変
圧モードを設定したガス化炉制御装置を設け、このガス
化炉制御装置に負荷要求信号を入力せしめ、同ガス化炉
制御装置によシ石炭供給設備及びガス化剤圧縮機に対し
て負荷に応じた指令信号を与え、部分負荷運転時におけ
るガスタービンの燃料供給圧力を自動的に制御して変圧
運転を行なわせることを特徴とする加圧式石炭ガス化複
合発電プラントの変圧運転制御方法。 2、加圧式石炭ガス化炉と、ガス精製設備と、ガスター
ビンを含む複合発電設備と、ガス化剤供給設備とよりな
る加圧式石炭ガス化複合発電プラントにおいて、変圧モ
ードを設定し得るように構成したガス化炉制御装置を設
けるとともに、上記のガス化炉制御装置に負荷信号を入
力し得べくなし、かつ、上記のガス化炉制御装置により
石炭供給設備に対して負荷に応じた石炭供給量の信号を
与えるとともにガス化剤圧縮機に対して負荷に応じたガ
ス化剤流量の信号を与えるように措成しだことを特徴と
する加圧式石炭ガス化複合発電プラントの変圧運転制御
装置っ 3、前記のガス化剤圧縮機は、前記のガス化炉制御装置
の指令信号、及び、ガス化剤/石炭比制御装置の指令信
号を受けてその回転速度が自動的に制御されるように構
成したものであることを特徴とする特許請求の範囲第2
項に記載の加圧式石炭ガス化複合発電プラントの変圧運
転制御装置。[Claims] 1. In a pressurized coal gasification combined power generation plant including a pressurized coal gasification furnace, gas purification equipment, combined power generation equipment including a gas turbine, and gasifying agent supply equipment, A gasifier control device set to a pressure transformation mode is provided, a load request signal is input to the gasifier control device, and the gasifier control device controls the load on the coal supply equipment and gasifier compressor. A variable pressure operation control method for a pressurized coal gasification combined cycle power plant, characterized in that the fuel supply pressure of a gas turbine is automatically controlled during partial load operation by giving a corresponding command signal to perform variable pressure operation. 2. It is now possible to set the pressure transformation mode in a pressurized coal gasification combined cycle power generation plant consisting of a pressurized coal gasification furnace, gas purification equipment, combined cycle equipment including a gas turbine, and gasifying agent supply equipment. In addition to providing the configured gasifier control device, a load signal can be input to the gasifier control device, and the gasifier control device can supply coal to the coal supply equipment according to the load. A variable voltage operation control device for a pressurized coal gasification combined cycle power plant, characterized in that it is configured to give a signal of the amount of gasifying agent and also give a signal of the gasifying agent flow rate according to the load to the gasifying agent compressor. 3. The rotational speed of the gasifier compressor is automatically controlled in response to a command signal from the gasifier controller and a command signal from the gasifier/coal ratio controller. The second claim is characterized in that
2. A variable voltage operation control device for a pressurized coal gasification combined cycle power plant as described in 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP736383A JPS59134331A (en) | 1983-01-21 | 1983-01-21 | Method of and device for controlling slide pressure operation of pressurized coal gasification type power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP736383A JPS59134331A (en) | 1983-01-21 | 1983-01-21 | Method of and device for controlling slide pressure operation of pressurized coal gasification type power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59134331A true JPS59134331A (en) | 1984-08-02 |
JPH0331895B2 JPH0331895B2 (en) | 1991-05-09 |
Family
ID=11663878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP736383A Granted JPS59134331A (en) | 1983-01-21 | 1983-01-21 | Method of and device for controlling slide pressure operation of pressurized coal gasification type power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59134331A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63295822A (en) * | 1987-05-27 | 1988-12-02 | Toshiba Corp | Controller for coal gasification combined cycle |
JPS6436902A (en) * | 1987-08-03 | 1989-02-07 | Toshiba Corp | Controller for coal gasification combined cycle plant |
JPH01155006A (en) * | 1987-12-14 | 1989-06-16 | Toshiba Corp | Load controller for power generating plant |
WO1994016210A1 (en) * | 1992-12-30 | 1994-07-21 | Combustion Engineering, Inc. | Control system for integrated gasification combined cycle system |
WO1998055566A1 (en) * | 1997-06-06 | 1998-12-10 | Texaco Development Corporation | Oxygen flow control for gasification |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59113093A (en) * | 1982-11-08 | 1984-06-29 | コンバッション・エンヂニアリング・インコ−ポレ−テッド | Gasification facilities control method and device |
-
1983
- 1983-01-21 JP JP736383A patent/JPS59134331A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59113093A (en) * | 1982-11-08 | 1984-06-29 | コンバッション・エンヂニアリング・インコ−ポレ−テッド | Gasification facilities control method and device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63295822A (en) * | 1987-05-27 | 1988-12-02 | Toshiba Corp | Controller for coal gasification combined cycle |
JPS6436902A (en) * | 1987-08-03 | 1989-02-07 | Toshiba Corp | Controller for coal gasification combined cycle plant |
JPH01155006A (en) * | 1987-12-14 | 1989-06-16 | Toshiba Corp | Load controller for power generating plant |
WO1994016210A1 (en) * | 1992-12-30 | 1994-07-21 | Combustion Engineering, Inc. | Control system for integrated gasification combined cycle system |
WO1998055566A1 (en) * | 1997-06-06 | 1998-12-10 | Texaco Development Corporation | Oxygen flow control for gasification |
Also Published As
Publication number | Publication date |
---|---|
JPH0331895B2 (en) | 1991-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5203159A (en) | Pressurized fluidized bed combustion combined cycle power plant and method of operating the same | |
CA1068492A (en) | Combined gas turbine and steam turbine power plant | |
US5109665A (en) | Waste heat recovery boiler system | |
US6161385A (en) | Turbomachine and method of use | |
JPS59134331A (en) | Method of and device for controlling slide pressure operation of pressurized coal gasification type power plant | |
JP3716014B2 (en) | Pressure control equipment for gasification plant | |
JPH0216040Y2 (en) | ||
JP2000120445A (en) | Coal gasification composite power generation system | |
JPS62223421A (en) | Sliding pressure operation control method for coal gasification compound power generating plant | |
JP3137147B2 (en) | Control method for turbine compressor device for fuel cell facility | |
JP2000297610A (en) | Integrated coal gasification combined cycle power plant and operation control method of the same | |
JPS61205340A (en) | Control device of gas turbine | |
CA2392384C (en) | Operation method for combined plant | |
JP2000303855A (en) | Control device for gasification combined power generation plant | |
JPS5965507A (en) | Operation of complex cycle power generating plant | |
JPS62241990A (en) | Generation plant coal gasification power | |
JPH0216039Y2 (en) | ||
JPS61145322A (en) | Control device in combined cycle plant for producing coal gas | |
JPS63192919A (en) | Control device for coal gasification combined plant | |
JPH0565804A (en) | Control method for two-stage gas mixing type turbo-generator | |
JP2000248908A (en) | Coal gasification combined power generating plant and its operating method | |
JPS63230911A (en) | Control device for combined cycle power plant | |
JPS6291608A (en) | Control device for power plant | |
JPH02163402A (en) | Compound electric power plant and its operation | |
JPS6390606A (en) | Governor free control device for combined plant |