[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3716014B2 - Pressure control equipment for gasification plant - Google Patents

Pressure control equipment for gasification plant Download PDF

Info

Publication number
JP3716014B2
JP3716014B2 JP25633295A JP25633295A JP3716014B2 JP 3716014 B2 JP3716014 B2 JP 3716014B2 JP 25633295 A JP25633295 A JP 25633295A JP 25633295 A JP25633295 A JP 25633295A JP 3716014 B2 JP3716014 B2 JP 3716014B2
Authority
JP
Japan
Prior art keywords
booster
pressure
pressure control
gas turbine
gasifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25633295A
Other languages
Japanese (ja)
Other versions
JPH0996227A (en
Inventor
和文 草壁
誠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25633295A priority Critical patent/JP3716014B2/en
Publication of JPH0996227A publication Critical patent/JPH0996227A/en
Application granted granted Critical
Publication of JP3716014B2 publication Critical patent/JP3716014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Control Of Fluid Pressure (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガス化プラントの空気・ガス系圧力制御装置もしくは昇圧機制御装置に適用される制御アルゴリズムに関する。
【0002】
【従来の技術】
図4は石炭ガス化複合発電プラントの一例を示す概要図である。この図に示されるように、石炭ガス化複合発電プラントは、ガス化炉設備(100)、脱塵設備(110)、脱硫設備(120)、ガスタービン発電機(132)、(133)、排熱回収ボイラ(140)、蒸気タービン発電機(150)、(151)、空気昇圧機(161)、(162)、石炭供給装置(170)等から成る。石炭供給装置(170)から微粉炭を圧縮空気とともにガス化炉(101)内へ噴射して、ガス化剤(空気または酸素)で燃焼させることにより石炭をガス化する。
【0003】
ガス化炉(101)で生成した石炭ガスは、ガス化炉後方のガス冷却器(102)で冷却された後、チャー回収系(103)、脱塵設備(110)、脱硫設備(120)で石炭ガスを精製した後、ガスタービン燃焼器へ送られて発電を行なう。また、ガスタービン駆動の空気圧縮機(134)から取り出された抽気は、ガス化炉圧力調整のために空気昇圧機(161)、(162)で昇圧された後、搬送用および燃焼用として加圧状態のガス化炉に圧入される。
【0004】
石炭ガス化複合発電においては、ガス冷却器(102)で発生した主蒸気とガスタービン後流のガス処理装置付き排熱回収ボイラ(140)で発生した主蒸気を全量、蒸気タービン(150)で混圧結合し発電することができる程の蒸気発生となり、加圧燃焼の効果もあって、排熱回収LNG複合発電とはガスタービン/蒸気タービンの負荷配分が異なる。
【0005】
図5は従来の石炭ガス化炉圧力制御方式の一例を示す図である。この図に示すように、圧力設定器(30)による圧力設定に対して、ガス化炉出口圧力(31)と脱塵装置出口圧力信号(32)を比較してカスケードフィードバックを行ない、C1弁(ガス焼却炉入口圧力調節弁)開度指令(33)とともにC1弁に対する開度制御(34)を行なっている。このガス化炉出口圧力制御ブロック(35)によって構成されたガス化炉圧力制御指令(36)は、昇圧機吐出圧力設定器(37)に渡されて、昇圧機吐出圧力信号(40)と比較し、昇圧機吐出圧力制御装置(38)によって空気昇圧機入口案内ベーン開度(39)を操作する。
【0006】
また、制御モードがガス化炉負荷制御モード(42)からガス化炉圧力制御モード(43)に切り換えられた時には、ガス化炉負荷指令信号(44)の代わりにガス化炉圧力制御指令(36)がガス化炉入力指令(GID)信号(37)として燃料および空気流量の制御を行なうようになっている。
【0007】
上記のように、従来のガス化プラントの負荷・圧力・制御においては、ガス化炉入力要求に対して負荷・圧力制御の切り換えが採用され、またガスタービンリード、ガス化炉リード、協調制御が提案されたが、昇圧機吐出圧力は一定値制御されていた。また、それとは独立にガス化炉圧力に比して一定差圧だけ高くすることにより、昇圧機吐出圧力が必要以上に高くなることを防止する方法が提案されていた。
【0008】
【発明が解決しようとする課題】
前記従来の圧力制御方式には、次のような解決すべき課題があった。
【0009】
1)ガス化炉の圧力は、負荷変化等の外乱に対しても大きな変動をしないように制御を行なわないと、給炭系との差圧の変動のために燃料流量の脈動や逆流を引き起こす恐れがある。
【0010】
2)昇圧機の吐出圧力は、高負荷帯における制御性を考えて調整すると、低負荷帯における安定性が損なわれてハンチングを起こす恐れがある。
【0011】
3)昇圧機の吸込流量が低負荷帯で規定値よりも少なくなると、サージングを引き起こす恐れがある。
【0012】
4)昇圧機の吸気湿度が高い場合に過冷却を行なうと、ドレンが発生して昇圧機が液圧縮を起こしたり、初段にエロージョンを起こす恐れがある。
【0013】
【課題を解決するための手段】
本発明者は、前記従来の課題を解決するために、下記1)ないし7)に示されるガス化プラントの圧力制御装置を提案するものである。
【0014】
1)固体燃料または液体燃料をガス化するガス化炉と、そのガス化炉で発生したガスを燃焼させて発電するガスタービンと、そのガスタービンと同軸結合された空気圧縮機と、その空気圧縮機の抽気を昇圧して上記ガス化炉へ送給する昇圧機とを備え、ガスタービンデマンドの関数としてガス化炉圧力設定を構成し、ガスタービンガバナ弁開度指令およびガス化炉入力デマンドによる負荷制御およびガス化炉圧力制御に対してガスタービン出力偏差の修正とともにガス化炉圧力偏差の修正を行なう協調制御装置において、空気供給弁とガスタービンガバナ弁を制御するとともに上記昇圧機の吐出圧力を制御する手段を備え、その設定値を、ガス化炉圧力設定に対してガス化炉へ供給される空気量により定まる圧損分を上乗せして設定し、上記昇圧機吐出圧力制御手段の調節によって昇圧機の吐出圧力を制御することを特徴とするガス化プラントの圧力制御装置。
【0015】
2)上記要件に加えて、上記昇圧機の吐出圧力制御手段として昇圧機の入口案内ベーンを用いることを特徴とするガス化プラントの圧力制御装置。
【0016】
3)上記1)の要件に加えて、上記昇圧機の吐出圧力制御手段として昇圧機の回転数制御を用いることを特徴とするガス化プラントの圧力制御装置。
【0017】
4)上記1)の要件に加えて、上記昇圧機の吐出圧力制御手段として昇圧機上流に設置した入口弁を用いることを特徴とするガス化プラントの圧力制御装置。
【0018】
5)上記1)の要件に加えて、上記ガスタービン負荷指令の関数として制御器のゲインを定め、低負荷ほど小さく設定することを特徴とするガス化プラントの圧力制御装置。
【0019】
6)上記1)の要件に加えて、上記昇圧機の圧縮比の関数として定まるサージングライン以上の吸込流量を確保するように、再循環弁の開度を自動調節することを特徴とするガス化プラントの圧力制御装置。
【0020】
7)上記1)の要件に加えて、上記上乗せする圧損分ΔPを次式で定めることを特徴とするガス化プラントの圧力制御装置。
【0021】
ΔP=K(Po/P)(T/To)W2
ここに K:定格点での流調弁Cv値および配管等の圧損抵抗から定まる係数
Po、To:定格点での圧力、温度
P、T :運転状態での圧力、温度
W :空気流量
上記1)ないし4)のように制御すると、負荷変動による空気流量変化があったとしても、空気流調弁の開度を規定値+α%の範囲に抑えることができるので、一定差圧分上乗せする場合よりも、弁のレンジアビリティを広げ流量制御装置の感度を上げることができるとともに、全閉/全開までの裕度が増すので外乱に対する対応力/耐力を上げることができる。また負荷変化に対するガスタービンガバナ弁の動きによって発生するガス圧力の変動分を、圧力修正項によって打ち消すことができる。
【0022】
そして上記5)のように制御すると、昇圧機のQ/H特性の傾斜の急な低負荷帯ではループゲインを下げることによってゲイン余裕の減少を防止することができる。
【0023】
更に上記6)のように制御すると、昇圧機のサージマージンを常にある程度以上確保することができる。
【0024】
加えて上記7)のように制御すると上記1)ないし4)の空気圧力制御の精度を向上させることができる。
【0025】
【発明の実施の形態】
次に本発明の実施の形態を図面によって説明する。
【0026】
まず図1に示す空気・ガス系制御について説明する。ガスタービン出力偏差信号(1)およびガス化炉圧力偏差(2)を比例制御した信号(3)、(5)および比例積分制御した信号(4)、(6)を、ガスタービン出力指令(7)の関数として定まる信号(8)、(9)にそれぞれ加減算し、ガスタービンガバナ弁開度指令(10)およびガス化炉入力要求(11)として、燃料、空気、スプレイ先行制御を行なう。また、ガスタービンデマンドの関数として定まるガス化炉圧力設定(12)を2次空気流量指令信号(13)の関数および1次空気流量指令信号(14)の関数に加算して、それぞれの昇圧機の吐出圧力信号(15)、(16)と比較し(17)、(18)、比例・積分を行なった信号をそれぞれの昇圧機の入口案内ベーン開度を操作する信号(17′)、(18′)とする。
【0027】
次に図2に2次空気昇圧機制御を纏めて示すと、図1に述べた2次空気昇圧機入口案内ベーン開度制御に加えて、ガスタービン負荷指令(19)のゲインスケジュール関数を2次空気昇圧機吐出圧力偏差信号に乗ずることによるゲイン補正機能と、2次空気昇圧機吐出圧力(15)と吸込圧力(21)との比すなわち圧縮比(22)の関数としてのサージ流量(23)と2次空気昇圧機吸込流量(24)の差信号(25)の関数の時間遅れ信号によって、2次空気昇圧機再循環ベーン開度を操作する(27)機能とを付加することになる。1次空気に関してもほぼ同様である。
【0028】
これらの制御機能の基本構成を纏めて表現したものが図3である。
【0029】
本実施形態の基本的原理は、ガス化炉圧力の変動を最小限に抑制するために、下流側のガスタービンガバナ弁開度指令およびガス化炉入力指令に対して、適切なガスタービン出力偏差修正および圧力偏差修正を追加するとともに、ガス化炉に空気を送る昇圧機の吐出圧力の設定に際して、空気流量変化によって変わる昇圧機からガス化炉までの圧損分だけ上乗せするような設定値制御を行なって、昇圧機入口案内ベーン開度を操作するものである。更に、この昇圧機による空気系の圧力制御機能の安定性と信頼性を補助する手段として、第1に昇圧機吐出圧力制御器のゲインをガスタービン負荷指令の関数として定めて低負荷ほど小さく設定し、第2に圧縮比の関数として定まるサージングライン以上の吸込流量を確保するように再循環弁の開度を自動調節するものである。
【0030】
【発明の効果】
本発明においては、負荷要求指令に対してガスタービンに出された出力要求に応じて操作されるガスタービンガバナ弁および空気供給系により外乱を与えられるガス化炉圧力系に対して、空気流調弁裕度向上と制御器の感度向上およびガバナ弁による圧力偏差修正等の作用により、外乱による圧力の変動を小さく抑える効果がある。また上記の効果によって、派生的にガス化炉の燃焼状況にも好影響を与え、燃焼およびガス化特性を安定化させる効果がある。
【0031】
更に、空気供給弁開度の変化を小さく抑えるように昇圧機吐出圧力を制御することができ、負荷変動に対しても空気供給弁に過剰な絞りを加えることがないから、絞り損失を低減でき、また部分負荷での流量制御性を確保しつつ吐出圧力が過大とならないので、補機動力を削減することができる。この点は、ガス化炉圧力に一定値を上乗せして吐出圧力設定を行なう方式よりもすぐれている特徴的な効果である。
【0032】
本発明ではまた、どの負荷帯においても昇圧機吐出圧力制御の安定性が増し、ハンチングを防止できる。そして、どの負荷帯においても昇圧機のサージング発生を抑制でき、昇圧機制御の信頼性が増す。加えて昇圧機制御の精度が向上し、信頼性が増す。
【図面の簡単な説明】
【図1】図1は本発明の実施の一形態に係る空気・ガス系圧力制御装置を示す制御フロー図である。
【図2】図2は上記実施形態における2次空気昇圧機制御装置を示す制御フロー図である。
【図3】図3は上記実施形態の圧力制御基本構成を示す制御フロー図である。
【図4】図4は石炭ガス化複合発電プラントの一例を示す概要図である。
【図5】図5は従来の石炭ガス化炉圧力制御方式の一例を示す制御フロー図である。
【符号の説明】
(100) ガス化炉設備
(101) ガス化炉
(102) ガス冷却器
(103) チャー回収系
(110) 脱塵設備
(120) 脱硫設備
(130) ガスタービン入口弁
(131) ガスタービン燃焼器
(132) ガスタービン
(133) 発電機
(134) 空気圧縮機
(140) 排熱回収ボイラ
(150) 蒸気タービン
(151) 発電機
(161)、(162) 空気昇圧機
(163) 空気供給弁
(170) 石炭供給装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control algorithm applied to an air / gas system pressure control device or a booster control device of a gasification plant.
[0002]
[Prior art]
FIG. 4 is a schematic diagram showing an example of a combined coal gasification combined power plant. As shown in this figure, the coal gasification combined power plant includes a gasification furnace facility (100), a dust removal facility (110), a desulfurization facility (120), gas turbine generators (132), (133), an exhaust It consists of a heat recovery boiler (140), steam turbine generators (150) and (151), air boosters (161) and (162), a coal supply device (170) and the like. Coal is gasified by injecting pulverized coal into the gasification furnace (101) together with compressed air from the coal supply device (170) and burning it with a gasifying agent (air or oxygen).
[0003]
The coal gas generated in the gasification furnace (101) is cooled by the gas cooler (102) at the rear of the gasification furnace, and then the char recovery system (103), the dust removal equipment (110), and the desulfurization equipment (120). After refining coal gas, it is sent to a gas turbine combustor to generate electricity. In addition, the bleed air taken out from the gas turbine driven air compressor (134) is pressurized by the air boosters (161) and (162) to adjust the gasification furnace pressure, and then added for conveyance and combustion. Pressurized into a gasification furnace under pressure.
[0004]
In the combined coal gasification combined power generation, the main steam generated in the gas cooler (102) and the main steam generated in the exhaust heat recovery boiler (140) with the gas treatment device downstream of the gas turbine are all in the steam turbine (150). Steam generation to the extent that it is possible to generate power by mixed pressure coupling is possible, and there is also an effect of pressurized combustion, and the load distribution of the gas turbine / steam turbine is different from the exhaust heat recovery LNG combined power generation.
[0005]
FIG. 5 is a diagram showing an example of a conventional coal gasifier pressure control system. As shown in this figure, for the pressure setting by the pressure setting device (30), the gasification furnace outlet pressure (31) and the dedusting device outlet pressure signal (32) are compared to perform cascade feedback, and the C1 valve ( The opening control (34) for the C1 valve is performed together with the opening command (33) of the gas incinerator inlet pressure control valve). The gasifier pressure control command (36) constituted by the gasifier outlet pressure control block (35) is passed to the booster discharge pressure setting device (37) and compared with the booster discharge pressure signal (40). The air booster inlet guide vane opening (39) is operated by the booster discharge pressure control device (38).
[0006]
When the control mode is switched from the gasifier load control mode (42) to the gasifier pressure control mode (43), the gasifier pressure control command (36) is used instead of the gasifier load command signal (44). ) Controls the flow rate of fuel and air as a gasifier input command (GID) signal (37).
[0007]
As described above, in conventional gasification plant load / pressure / control, switching of load / pressure control is adopted in response to gasifier input requirements, and gas turbine leads, gasifier leads, and coordinated control are used. Although proposed, the booster discharge pressure was controlled at a constant value. Independently, a method for preventing the booster discharge pressure from becoming higher than necessary has been proposed by increasing it by a certain differential pressure as compared with the gasifier pressure.
[0008]
[Problems to be solved by the invention]
The conventional pressure control system has the following problems to be solved.
[0009]
1) If the pressure in the gasifier is not controlled so that it does not fluctuate greatly against disturbances such as load changes, fuel flow pulsation and backflow will occur due to fluctuations in the differential pressure with the coal supply system. There is a fear.
[0010]
2) If the discharge pressure of the booster is adjusted in consideration of controllability in the high load zone, the stability in the low load zone may be impaired and hunting may occur.
[0011]
3) If the suction flow rate of the booster is less than the specified value in the low load zone, surging may occur.
[0012]
4) If supercooling is performed when the intake air humidity of the booster is high, drainage may occur and the booster may cause liquid compression or erosion in the first stage.
[0013]
[Means for Solving the Problems]
In order to solve the conventional problems, the present inventor proposes a pressure control device for a gasification plant shown in the following 1) to 7).
[0014]
1) A gasification furnace that gasifies solid fuel or liquid fuel, a gas turbine that generates electricity by burning gas generated in the gasification furnace, an air compressor that is coaxially coupled to the gas turbine, and an air compression thereof A gas booster pressure setting as a function of the gas turbine demand, and depending on the gas turbine governor valve opening command and the gasifier input demand In a cooperative control device that corrects a gas turbine output deviation as well as a gas turbine output deviation with respect to load control and gasifier pressure control, and controls an air supply valve and a gas turbine governor valve and discharge pressure of the booster The set value is set by adding a pressure loss determined by the amount of air supplied to the gasifier with respect to the gasifier pressure setting, Intensifier discharge pressure pressure controller in the gasification plant, characterized by controlling the discharge pressure of the booster by adjustment of the control means.
[0015]
2) In addition to the above-mentioned requirements, a pressure control device for a gasification plant using an inlet guide vane of a booster as discharge pressure control means of the booster.
[0016]
3) In addition to the requirement of 1) above, a pressure control device for a gasification plant, wherein the booster rotation speed control is used as discharge pressure control means for the booster.
[0017]
4) In addition to the requirement of 1) above, a gas control plant pressure control apparatus using an inlet valve installed upstream of the booster as discharge pressure control means of the booster.
[0018]
5) In addition to the requirements of 1) above, a gas control plant pressure control apparatus is characterized in that a gain of a controller is determined as a function of the gas turbine load command and is set to be smaller as the load is lower.
[0019]
6) In addition to the requirements of 1) above, the gasification is characterized by automatically adjusting the opening of the recirculation valve so as to secure a suction flow rate equal to or higher than the surging line determined as a function of the compression ratio of the booster. Plant pressure control device.
[0020]
7) In addition to the requirement of 1) above, a pressure control device for a gasification plant, wherein the additional pressure loss ΔP is determined by the following equation.
[0021]
ΔP = K (Po / P) (T / To) W 2
Here, K: coefficient Po determined from the flow regulating valve Cv value at the rated point and pressure loss resistance of the piping, To: pressure at the rated point, temperature P, T: pressure at the operating state, temperature W: air flow rate 1 above If the control is performed as in (4) to (4), even if there is a change in the air flow rate due to load fluctuations, the opening of the air flow control valve can be kept within the specified value + α% range. In addition, the rangeability of the valve can be expanded and the sensitivity of the flow rate control device can be increased, and the tolerance to fully closed / fully opened increases, so the response / resistance to disturbance can be increased. Further, the fluctuation of the gas pressure generated by the movement of the gas turbine governor valve with respect to the load change can be canceled by the pressure correction term.
[0022]
When the control is performed as in 5) above, it is possible to prevent the gain margin from decreasing by lowering the loop gain in the low load zone where the Q / H characteristic of the booster is steep.
[0023]
Further, if the control is performed as in 6) above, it is possible to always ensure a surge margin of the booster to some extent.
[0024]
In addition, if the control is performed as in the above 7), the accuracy of the air pressure control in the above 1) to 4) can be improved.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0026]
First, the air / gas system control shown in FIG. 1 will be described. The gas turbine output deviation signal (1) and the gasifier pressure deviation (2) which are proportionally controlled (3) and (5) and the signals (4) and (6) which are proportionally integral controlled are converted into a gas turbine output command (7 ) Is added to or subtracted from the signals (8) and (9) determined as a function of the fuel gas, governor valve opening command (10) and gasifier input request (11), and fuel, air, and spray advance control are performed. Further, the gasifier pressure setting (12) determined as a function of the gas turbine demand is added to the function of the secondary air flow rate command signal (13) and the function of the primary air flow rate command signal (14), and each booster is added. Compared with the discharge pressure signals (15) and (16) of (16), (17) and (18), signals (17 ') and (17') for operating the inlet guide vane opening of each booster are obtained by performing proportional and integral signals. 18 ').
[0027]
Next, FIG. 2 summarizes the secondary air booster control. In addition to the secondary air booster inlet guide vane opening control described in FIG. 1, the gain schedule function of the gas turbine load command (19) is 2 The gain correction function by multiplying the secondary air booster discharge pressure deviation signal and the surge flow rate (23 as a function of the ratio of the secondary air booster discharge pressure (15) and the suction pressure (21), ie, the compression ratio (22). ) And a time delay signal that is a function of the difference signal (25) between the secondary air booster suction flow rate (24) and (27) a function of manipulating the secondary air booster recirculation vane opening. . The same applies to the primary air.
[0028]
FIG. 3 collectively shows the basic configuration of these control functions.
[0029]
The basic principle of this embodiment is that an appropriate gas turbine output deviation with respect to the downstream gas turbine governor valve opening command and gasifier input command in order to minimize fluctuations in the gasifier pressure. In addition to the correction and pressure deviation correction, when setting the discharge pressure of the booster that sends air to the gasification furnace, the set value control is added so as to add only the pressure loss from the booster to the gasification furnace that changes depending on the air flow rate change. In operation, the booster inlet guide vane opening is operated. Furthermore, as a means for assisting the stability and reliability of the pressure control function of the air system by the booster, firstly, the gain of the booster discharge pressure controller is determined as a function of the gas turbine load command, and is set smaller as the load becomes lower. Second, the opening degree of the recirculation valve is automatically adjusted so as to ensure a suction flow rate that is equal to or higher than the surging line determined as a function of the compression ratio.
[0030]
【The invention's effect】
In the present invention, air flow control is applied to a gas turbine governor valve operated in response to an output request issued to a gas turbine in response to a load request command and a gasifier pressure system that is disturbed by an air supply system. There is an effect of minimizing pressure fluctuations due to disturbances, by improving valve tolerance, improving controller sensitivity, and correcting pressure deviations with governor valves. In addition, the effect described above has an effect of deriving positively the combustion state of the gasification furnace and stabilizing the combustion and gasification characteristics.
[0031]
Furthermore, the booster discharge pressure can be controlled so as to keep the change in the air supply valve opening small, and the throttle loss can be reduced because an excessive throttle is not applied to the air supply valve even for load fluctuations. In addition, since the discharge pressure does not become excessive while ensuring the flow rate controllability at the partial load, the auxiliary machine power can be reduced. This is a characteristic effect that is superior to the method of setting the discharge pressure by adding a certain value to the gasifier pressure.
[0032]
In the present invention, the stability of the booster discharge pressure control is increased in any load zone, and hunting can be prevented. Further, the occurrence of surging of the booster can be suppressed in any load band, and the reliability of booster control is increased. In addition, the accuracy of booster control is improved and the reliability is increased.
[Brief description of the drawings]
FIG. 1 is a control flow diagram showing an air / gas system pressure control apparatus according to an embodiment of the present invention.
FIG. 2 is a control flow diagram showing a secondary air booster control device in the embodiment.
FIG. 3 is a control flow diagram showing a basic configuration of pressure control in the embodiment.
FIG. 4 is a schematic diagram showing an example of a combined coal gasification combined power plant.
FIG. 5 is a control flow diagram showing an example of a conventional coal gasifier pressure control system.
[Explanation of symbols]
(100) Gasification furnace equipment (101) Gasification furnace (102) Gas cooler (103) Char recovery system (110) Dedusting equipment (120) Desulfurization equipment (130) Gas turbine inlet valve (131) Gas turbine combustor (132) Gas turbine (133) Generator (134) Air compressor (140) Waste heat recovery boiler (150) Steam turbine (151) Generator (161), (162) Air booster (163) Air supply valve ( 170) Coal feeder

Claims (7)

固体燃料または液体燃料をガス化するガス化炉と、そのガス化炉で発生したガスを燃焼させて発電するガスタービンと、そのガスタービンと同軸結合された空気圧縮機と、その空気圧縮機の抽気を昇圧して上記ガス化炉へ送給する昇圧機とを備え、ガスタービンデマンドの関数としてガス化炉圧力設定を構成し、ガスタービンガバナ弁開度指令およびガス化炉入力デマンドによる負荷制御およびガス化炉圧力制御に対してガスタービン出力偏差の修正とともにガス化炉圧力偏差の修正を行なう協調制御装置において、空気供給弁とガスタービンガバナ弁を制御するとともに上記昇圧機の吐出圧力を制御する手段を備え、その設定値を、ガス化炉圧力設定に対してガス化炉へ供給される空気量により定まる圧損分を上乗せして設定し、上記昇圧機吐出圧力制御手段の調節によって昇圧機の吐出圧力を制御することを特徴とするガス化プラントの圧力制御装置。A gasification furnace that gasifies solid fuel or liquid fuel, a gas turbine that generates electricity by burning gas generated in the gasification furnace, an air compressor coaxially coupled to the gas turbine, and an air compressor A booster that boosts the bleed air and delivers it to the gasifier, configures gasifier pressure settings as a function of gas turbine demand, and controls load by gas turbine governor valve opening command and gasifier input demand In addition, in the cooperative control device that corrects the gas turbine output deviation and the gasifier pressure deviation with respect to the gasifier pressure control, the air supply valve and the gas turbine governor valve are controlled and the discharge pressure of the booster is controlled. The set value is set by adding a pressure loss determined by the amount of air supplied to the gasifier with respect to the gasifier pressure setting. Pressure controller in the gasification plant, characterized by controlling the discharge pressure of the booster by adjustment of the discharge pressure control means. 上記昇圧機の吐出圧力制御手段として昇圧機の入口案内ベーンを用いることを特徴とする請求項1記載のガス化プラントの圧力制御装置。The pressure control device for a gasification plant according to claim 1, wherein an inlet guide vane of the booster is used as the discharge pressure control means of the booster. 上記昇圧機の吐出圧力制御手段として昇圧機の回転数制御を用いることを特徴とする請求項1記載のガス化プラントの圧力制御装置。The pressure control device for a gasification plant according to claim 1, wherein the booster rotation speed control is used as the discharge pressure control means of the booster. 上記昇圧機の吐出圧力制御手段として昇圧機上流に設置した入口弁を用いることを特徴とする請求項1記載のガス化プラントの圧力制御装置。The pressure control apparatus for a gasification plant according to claim 1, wherein an inlet valve installed upstream of the booster is used as the discharge pressure control means of the booster. 上記ガスタービン負荷指令の関数として制御器のゲインを定め、低負荷ほど小さく設定することを特徴とする請求項1記載のガス化プラントの圧力制御装置。2. The pressure control device for a gasification plant according to claim 1, wherein a gain of the controller is determined as a function of the gas turbine load command, and is set to be smaller as the load is lower. 上記昇圧機の圧縮比の関数として定まるサージングライン以上の吸込流量を確保するように、再循環弁の開度を自動調節することを特徴とする請求項1記載のガス化プラントの圧力制御装置。2. The pressure control apparatus for a gasification plant according to claim 1, wherein the opening degree of the recirculation valve is automatically adjusted so as to secure a suction flow rate equal to or higher than a surging line determined as a function of the compression ratio of the booster. 上記上乗せする圧損分ΔPを次式で定めることを特徴とする請求項1記載のガス化プラントの圧力制御装置。
ΔP=K(Po/P)(T/To)W2
ここに K:定格点での流調弁Cv値および配管等の圧損抵抗から定まる係数
Po、To:定格点での圧力、温度
P、T :運転状態での圧力、温度
W :空気流量
The pressure control device for a gasification plant according to claim 1, wherein the pressure loss ΔP to be added is determined by the following equation.
ΔP = K (Po / P) (T / To) W 2
Here, K: coefficient Po determined from the flow regulating valve Cv value at the rated point and the pressure loss resistance of the piping, To: pressure at the rated point, temperature P, T: pressure at the operating state, temperature W: air flow rate
JP25633295A 1995-10-03 1995-10-03 Pressure control equipment for gasification plant Expired - Fee Related JP3716014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25633295A JP3716014B2 (en) 1995-10-03 1995-10-03 Pressure control equipment for gasification plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25633295A JP3716014B2 (en) 1995-10-03 1995-10-03 Pressure control equipment for gasification plant

Publications (2)

Publication Number Publication Date
JPH0996227A JPH0996227A (en) 1997-04-08
JP3716014B2 true JP3716014B2 (en) 2005-11-16

Family

ID=17291210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25633295A Expired - Fee Related JP3716014B2 (en) 1995-10-03 1995-10-03 Pressure control equipment for gasification plant

Country Status (1)

Country Link
JP (1) JP3716014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963323A (en) * 2020-07-29 2020-11-20 东方电气自动控制工程有限公司 Fuel control method in gas turbine speed-up process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118391A (en) 2004-10-20 2006-05-11 Mitsubishi Heavy Ind Ltd Control device for extracted air boosting facility in integrated gasification combined cycle plant
JP4745940B2 (en) 2006-11-09 2011-08-10 三菱重工業株式会社 Coal gasification combined power generation system and operation control method thereof
JP4929010B2 (en) 2007-03-30 2012-05-09 東京電力株式会社 Power generation system
JP5733906B2 (en) * 2010-04-05 2015-06-10 三菱重工業株式会社 Boiler equipment
KR101866651B1 (en) * 2016-08-16 2018-06-11 한국서부발전 주식회사 Control System for Integrated Gasification Combined Cycle Facility
CN114507550B (en) * 2022-02-23 2023-04-25 新奥科技发展有限公司 Pressure control system of voltage transformation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963323A (en) * 2020-07-29 2020-11-20 东方电气自动控制工程有限公司 Fuel control method in gas turbine speed-up process
CN111963323B (en) * 2020-07-29 2022-08-02 东方电气自动控制工程有限公司 Fuel control method in gas turbine speed-up process

Also Published As

Publication number Publication date
JPH0996227A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
JP3062207B2 (en) Integrated boost compressor / gas turbine controller
US5540045A (en) Steam injection system for a combustion turbine gas generator
US6519945B2 (en) Method for controlling nitrogen injection into gas turbine
JP4343427B2 (en) Steam power plant output adjustment method and its steam power plant
US20070193249A1 (en) Air pressure control device in integrated gasification combined cycle system
KR20140012042A (en) Oxy-fuel plant with flue gas compression and method
US20030167774A1 (en) Method for the primary control in a combined gas/steam turbine installation
JP3716014B2 (en) Pressure control equipment for gasification plant
JP4117517B2 (en) Coal gasification combined power plant and its operation control device.
JPH0216040Y2 (en)
JP2000266310A (en) Pressure fluidized bed boiler and control method thereof
JPH06288262A (en) Operation control method of coal gasification compound generator system
JPH0331895B2 (en)
JPS62223421A (en) Sliding pressure operation control method for coal gasification compound power generating plant
JPS5853643A (en) Control method of two-shaft gas turbine
JPS6291608A (en) Control device for power plant
JP3199893B2 (en) Pressurized fluidized bed combustion plant
JPH0216039Y2 (en)
JPS6149487B2 (en)
JPS61145322A (en) Control device in combined cycle plant for producing coal gas
JPH0343609A (en) Control of power generation plant
JP3061881B2 (en) Control device for coal gasification power plant
JPS6390606A (en) Governor free control device for combined plant
JP2001263087A (en) Gas turbine controller
JPS6325361B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees