JPS5912096B2 - Polycarbonate polycarbonate - Google Patents
Polycarbonate polycarbonateInfo
- Publication number
- JPS5912096B2 JPS5912096B2 JP13101275A JP13101275A JPS5912096B2 JP S5912096 B2 JPS5912096 B2 JP S5912096B2 JP 13101275 A JP13101275 A JP 13101275A JP 13101275 A JP13101275 A JP 13101275A JP S5912096 B2 JPS5912096 B2 JP S5912096B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- blowing
- containing gas
- reaction
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】
本発明は芳香族ポリカルボン酸の製造法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing aromatic polycarboxylic acids.
従来、少なくとも2個の脂肪族置換基を有する芳香族化
合物を低級脂肪族モノカルボン酸溶媒中で重金属を含む
触媒の存在下、液相に酸素含有ガスを吹込み酸化して芳
香族ポリカルボン酸を製造する方法は知られている。Conventionally, an aromatic compound having at least two aliphatic substituents is oxidized in a lower aliphatic monocarboxylic acid solvent by blowing an oxygen-containing gas into the liquid phase in the presence of a catalyst containing a heavy metal to produce an aromatic polycarboxylic acid. Methods of manufacturing are known.
この方法を工業的に実施する場合の問題の一つとして酸
素含有ガス吹込部の生成ポリカルボン酸5 の結晶付着
、部分閉塞がある。One of the problems when this method is carried out industrially is crystal deposition and partial blockage of the produced polycarboxylic acid 5 in the oxygen-containing gas injection section.
そしてこの現象は反応器として気泡塔を用いる場合殊に
問題である。すなわち、気泡塔ではガスを器内に均一に
吹込むために、吹込部は多数例えば30〜100個程度
の小孔(通常孔径1〜5%程度)を設けた形状10とす
るが、このガス吹込み部付近には芳香族ポリカルボン酸
の結晶が付着し、一部の小孔の閉塞などが生じる傾向が
ある。この結晶の付着、′卜仕の閉塞がおこると酸素含
有ガスの吹込み圧力が上昇し、また、ガスの分散が不均
一となり反応に悪影15響を与え、更に結晶の付着が著
しいと多数の吹込み口の全部が閉塞し、酸素含有ガスの
吹込み自体ができなくなる結果となる。この傾向は特に
、連続反応の開始時に著しいため良好なスタートができ
ず、工業的に大きな問題であつた。20これら欠点を改
善するための方法としては、例えば、予め加熱した空気
を吹込むことにより結晶の付着を防止する方法などが考
えられるが、この方法でもスタート時の著しい結晶の付
着に対しては十分満足できる結果は得られなかつた。This phenomenon is particularly problematic when a bubble column is used as the reactor. In other words, in a bubble column, in order to uniformly blow gas into the vessel, the blowing section has a shape 10 with a large number of small holes (usually about 1 to 5% in diameter), for example, about 30 to 100. There is a tendency for aromatic polycarboxylic acid crystals to adhere near the area, resulting in some small pores being blocked. When this crystal adhesion and blockage occur, the pressure of oxygen-containing gas blowing increases, gas dispersion becomes uneven, and the reaction is adversely affected, and if the crystal adhesion is significant, many As a result, all of the air inlet ports become clogged, making it impossible to inject the oxygen-containing gas. This tendency is particularly noticeable at the beginning of continuous reactions, making it difficult to get a good start and posing a major industrial problem. 20 Possible methods to improve these drawbacks include, for example, blowing preheated air to prevent crystal adhesion, but even this method can prevent significant crystal adhesion at the start. A fully satisfactory result could not be obtained.
そこで、25酸素含有ガスを〒定圧力で安定供給するた
めの方法が要望されていた。本発明者等は上記実情に鑑
み、芳香族ポリカルボン酸を気泡塔で連続的に製造する
場合の酸素含有ガスの吹込みを、長期間、安定して行な
う方法30につき種々検討した結果、吹込みガスにアル
カリを少量同伴させて吹込みを行うと良好な酸素含有ガ
スの供給ができることを見い出し本発明を完成した。Therefore, there has been a need for a method for stably supplying 25 oxygen-containing gas at a constant pressure. In view of the above circumstances, the present inventors conducted various studies on a method 30 for stably blowing oxygen-containing gas over a long period of time when aromatic polycarboxylic acids are continuously produced in a bubble column. The inventors discovered that a good supply of oxygen-containing gas could be achieved by blowing a small amount of alkali into the charged gas, and completed the present invention.
すなわち、本発明の要旨は、少なくとも2個の35脂肪
族置換基を有する芳香族化合物を低級脂肪族モノカルボ
ン酸の溶媒中で重金属を含む触媒の存在下、液相に酸素
含有ガスを吹込むことにより酸1ハ0−化して芳香族ポ
リカルボン酸を連続的に製造する方法において、酸素含
有ガス中に水酸化ナトリウム又は水酸化カリウムよりな
るアルカリ水溶液を同伴させて吹込むことを特徴とする
芳香族ポリカルボン酸の製造法に存する。That is, the gist of the present invention is to prepare an aromatic compound having at least two 35 aliphatic substituents in a solvent of a lower aliphatic monocarboxylic acid in the presence of a catalyst containing a heavy metal, and blow an oxygen-containing gas into the liquid phase. A method for continuously producing an aromatic polycarboxylic acid by converting an acid into a 0-carboxylic acid, characterized by blowing an alkaline aqueous solution of sodium hydroxide or potassium hydroxide into an oxygen-containing gas. It consists in a method for producing aromatic polycarboxylic acids.
本発明を詳細に説明するに、本発明で対象となる芳香族
ポリカルボン酸の製造法としては、少なくとも2個の置
換基を有する芳香族化合物を低級脂肪族モノカルボン酸
中、重金属を含む触媒の存在下、液相に酸素含有ガスを
吹込むことにより芳香族ポリカルボン酸を製造する方法
であればどのような方法でもよい。To explain the present invention in detail, the method for producing aromatic polycarboxylic acids, which is the object of the present invention, involves adding an aromatic compound having at least two substituents to a lower aliphatic monocarboxylic acid using a catalyst containing heavy metals. Any method may be used as long as it produces an aromatic polycarboxylic acid by blowing an oxygen-containing gas into a liquid phase in the presence of.
少なくとも2個の置換基を有する芳香族化合物としては
、例えば、パラキシレン、メタキシレンなど及びこれら
の反応中間体が代表的に挙げられる。Representative examples of the aromatic compound having at least two substituents include para-xylene, meta-xylene, and reaction intermediates thereof.
一方、溶媒として使用する低級脂肪族モノカルボン酸と
しては、例えば、酢酸、プロピオン酸などが挙げられ、
なかでも、酢酸が好ましい。この溶媒の使用量は通常、
被酸化物1重量部に対して0.5〜20重量部、好まし
くは1〜10重量部から選ばれる。また、触媒としては
例えば、コバルト、マンガンなどの周知の重金属触媒が
挙げられる。On the other hand, examples of lower aliphatic monocarboxylic acids used as solvents include acetic acid, propionic acid, etc.
Among them, acetic acid is preferred. The amount of this solvent used is typically
It is selected from 0.5 to 20 parts by weight, preferably 1 to 10 parts by weight, per 1 part by weight of the oxidizable material. Furthermore, examples of the catalyst include well-known heavy metal catalysts such as cobalt and manganese.
触媒の添加量は通常、溶媒に対して0.01〜10重量
%程度である。更に、本発明では臭素化合物又はアルデ
ヒド類、ケトン類、アルコール類、パラアルデヒド類な
どの有機促進剤を必要に応じて添加してもよい。反応は
通常100〜250℃、常圧〜200気圧、好ましくは
常圧〜100気圧で実施される。本発明では上述のよう
な芳香族化合物を溶媒及び触媒の存在下で反応器例えば
気泡塔の液相部に酸素含有ガスを吹込むことにより酸化
するが、この際に吹込む酸素含有ガスは、例えば、5〜
100容量%の酸素含有量のもので、通常、空気が利用
される。The amount of catalyst added is usually about 0.01 to 10% by weight based on the solvent. Furthermore, in the present invention, organic accelerators such as bromine compounds or aldehydes, ketones, alcohols, paraldehydes, etc. may be added as necessary. The reaction is usually carried out at 100 to 250°C and normal pressure to 200 atm, preferably normal pressure to 100 atm. In the present invention, the aromatic compound as described above is oxidized by blowing an oxygen-containing gas into the liquid phase of a reactor, such as a bubble column, in the presence of a solvent and a catalyst. For example, 5~
With an oxygen content of 100% by volume, air is usually used.
反応器内に供給する全酸素量は被酸化物1モル当り、1
〜100モル、好ましくは3〜100モルである。また
ガス吹込みに際してはとくに酸素含有ガスを予め、反応
温度と同程度かあるいは少し高い温度に加熱して吹込む
方法をとるのが好ましい。酸素含有ガスは、通常反応圧
力より1〜10kg/iの高い圧力で吹込まれる。The total amount of oxygen supplied into the reactor is 1 mole of oxidized material.
-100 mol, preferably 3-100 mol. Further, when blowing gas into the reactor, it is particularly preferable to heat the oxygen-containing gas in advance to a temperature similar to or slightly higher than the reaction temperature before blowing into the reactor. The oxygen-containing gas is normally blown in at a pressure 1 to 10 kg/i higher than the reaction pressure.
本発明はこの酸素含有ガス吹込み口付近への結晶付着な
いし小孔の閉塞を、ガス中にアルカリを同伴させて吹込
むことにより防止するものである。The present invention prevents the deposition of crystals near the oxygen-containing gas injection port or the clogging of small holes by blowing an alkali into the gas.
アルカリは定常的に一定期間添加してもよいが、通常は
吹込口の閉塞により吹込み圧力が上昇した時点、例えば
、3〜50%程度上昇した時点でアルカリを水溶液とし
て吹込み管内に添加すればよい。アルカリがガス吹込み
管内に添加されるとガスに同伴されて吹込口に作用し、
各吹込口に付着した結晶が溶解され吹込口が開孔される
。アルカリとしては水酸化ナトリウム、水酸化カリウム
、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム
、炭酸水素カリウム等が挙げられるが特に水酸化ナトリ
ウムが好ましい。Alkali may be added regularly for a certain period of time, but usually it is added as an aqueous solution into the injection pipe when the injection pressure increases due to blockage of the injection port, for example, when it increases by about 3 to 50%. Bye. When alkali is added into the gas injection pipe, it is entrained in the gas and acts on the injection port.
The crystals adhering to each inlet are dissolved and the inlets are opened. Examples of the alkali include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc., and sodium hydroxide is particularly preferred.
またアルカリ性を示し、結晶の付着を防止する効果を有
するものでも、例えば脂肪族アミンのような含窒素化合
物は製品に悪影響を及ぼすので避けた方が良い。Further, even if they are alkaline and have the effect of preventing crystal adhesion, nitrogen-containing compounds such as aliphatic amines have an adverse effect on the product and should be avoided.
これらアルカリは通常1〜30重量%の水溶液として添
加する。These alkalis are usually added as a 1 to 30% by weight aqueous solution.
1回に添加するアルカリ水溶液の量は、上昇した酸素含
有ガスの吹込み圧力を当初に設定した所定の圧力付近ま
でに低下させるのに必要な量で、なるべく少量の方が好
ましく、反応条件及び反応形態により多少異なるが、例
えば、20イ程度の反応槽の場合には、通常、上述した
種類及び濃度のアルカリにて、1〜301程度で十分で
ある。The amount of alkaline aqueous solution added at one time is the amount necessary to lower the increased blowing pressure of the oxygen-containing gas to around the predetermined pressure set at the beginning, and it is preferably as small as possible, depending on the reaction conditions and Although it varies somewhat depending on the reaction form, for example, in the case of a reaction tank of about 20 mm, an alkali of the above-mentioned type and concentration of about 1 to 30 mm is usually sufficient.
この添加は通常酸素含有ガスの吹込み圧力の土昇に応答
して行なわれるが、この応答の方法としては、予め、電
気回路で一定圧力まで上昇したらアルカリ水溶液の添加
力珀動弁により行なわれる方式でもよく、また、圧力計
を読み手動で添加する方式のいずれでもよい。This addition is normally done in response to an increase in the pressure of the oxygen-containing gas being blown into the gas, but the method for this response is to use an electric circuit to increase the pressure to a certain level and then use a valve to control the addition of the alkaline aqueous solution. Alternatively, it may be added manually by reading a pressure gauge.
次に、本発明を具体的に図によつて説明する。Next, the present invention will be specifically explained with reference to the drawings.
第1図に示すように、例えば、バラキシレンとコバルト
触媒とを酢酸溶媒に分散させた液を導管3を通して気泡
塔1内に連続的に供給し、気泡塔1の下部よりコンプレ
ツサ一4により圧縮された空気が導管9を通り吹込口2
より導入される。空気の導管9には圧力計5が設けられ
、圧力の上昇に応じて弁7が開口し6から導かれるアル
カリ水液液が空気とともに吹込まれる。アルカリ水溶液
の添加後、直ちに弁7は閉鎖され、再び6には一定量の
アルカリ水溶液がセツトされる。このように反応を連続
的に続け、反応生成物は導管10より系外に取り出され
タンク8に貯められる。以上、本発明によれば、非常に
簡単な方法でテレフタル酸などの芳香族ポリカルボン酸
を気泡塔で連続的に製造することができ、工業的に極め
て有利である。次に、本発明を実施例により更に詳細に
説明する。As shown in FIG. 1, for example, a liquid in which paraxylene and a cobalt catalyst are dispersed in an acetic acid solvent is continuously supplied into a bubble column 1 through a conduit 3, and compressed from the bottom of the bubble column 1 by a compressor 4. The air passes through the conduit 9 and enters the air inlet 2.
will be introduced. A pressure gauge 5 is provided in the air conduit 9, and as the pressure rises, a valve 7 opens and the alkaline aqueous liquid introduced from the 6 is blown in together with the air. Immediately after the addition of the alkaline aqueous solution, the valve 7 is closed and a certain amount of the alkaline aqueous solution is set in the valve 6 again. The reaction continues in this manner, and the reaction product is taken out of the system through the conduit 10 and stored in the tank 8. As described above, according to the present invention, aromatic polycarboxylic acids such as terephthalic acid can be continuously produced in a bubble column using a very simple method, which is extremely advantageous industrially. Next, the present invention will be explained in more detail with reference to Examples.
実施例中「部」とあるは「重量部」を示す。In the examples, "parts" indicate "parts by weight."
実施例直径8′の穴80ケを2図の如く配置した空気吹
込口を槽底に有する内容積23m3のチタン製耐圧反応
器1にパラキシレン100部、95%酢酸(5%水)3
00部、酸化触媒として酢酸コバルト4水塩0.14部
、酢酸マンガン4水塩0.29部、臭化ナトリウム0.
13部の割合で含む原料、溶媒、触媒の混合液を管3よ
り6000kg張り込み圧力24kg/c?・Gで温度
210℃まで加熱後管9より230℃に加熱した空気の
供給を開始して空気の供給量を7500Nm3/Hrま
で徐々に増加させる。Example 100 parts of paraxylene, 95% acetic acid (5% water) 3 were placed in a titanium pressure-resistant reactor 1 with an internal volume of 23 m3, which had an air inlet in the bottom of the tank with 80 holes with a diameter of 8' arranged as shown in Figure 2.
00 parts, 0.14 parts of cobalt acetate tetrahydrate as an oxidation catalyst, 0.29 parts of manganese acetate tetrahydrate, and 0.0 parts of sodium bromide.
6000 kg of a mixed solution of raw materials, solvent, and catalyst containing 13 parts was charged through tube 3 at a pressure of 24 kg/c? - After heating to 210°C with G, start supplying air heated to 230°C from tube 9 and gradually increase the air supply amount to 7500Nm3/Hr.
張り込んだパラキシレンの酸化反応終了時に上記原料混
合液を8400kg/Hrで管3より供給し始め反応槽
内の液量が所定量に達した時点で管10より反応液スラ
リーの抜出を開始し、反応槽内の液量を一定に保ち、連
続反応を行なつた。前記反応に於いて空気の供給は、流
量調節弁11により流量を一定に保持するように行ない
、空気吹込圧力計5が28k9/Crii−Gに達する
と弁7が開き2.51の5%水酸化ナトリウム水溶液が
瞬時に空気中に吹込まれ、直ちに弁7が閉じ再び2.5
1の5%水酸化ナトリウム水溶液が6にセツトされる装
置を空気吹込管に取り付けておいた。空気吹込管の圧力
は反応開始後空気供給量を7500Nm3/Hrにした
時点で26.5kg/Cd−Gであつたが、バツチ反応
終了時には27.5kg/Cd−Gに上昇し、さらに連
続反応に切替後約30分で28k9/詞・Gに上昇した
。この時点で流量調節弁は全開となり空気流量は750
0Nm3/Hrから低下しはじめたが、前記アルカリ送
入装置が作動し空気吹込管の圧力は26.8kg/Cd
−Gまで瞬時に降下した。その後再び圧力が上昇し約1
0分後アルカリ送入装置が作動し圧力は26.8k9/
Cd−Gとなりさらにその後約30分間に2回アルカリ
送入装置が作動した。それ以後はこの操作を繰り返しな
がら、2週間反応させたところ順調に反応が進行した。When the oxidation reaction of the charged paraxylene is completed, the raw material mixture is supplied from the tube 3 at 8400 kg/Hr, and when the liquid volume in the reaction tank reaches a predetermined amount, the reaction liquid slurry is started to be withdrawn from the tube 10. The amount of liquid in the reaction tank was kept constant and continuous reactions were carried out. In the reaction, air is supplied so as to keep the flow rate constant using the flow rate control valve 11. When the air blowing pressure gauge 5 reaches 28k9/Crii-G, the valve 7 opens and the 5% water of 2.51 is supplied. The sodium oxide aqueous solution is instantly blown into the air, and the valve 7 is immediately closed again.
A device in which 5% aqueous sodium hydroxide solution was set at 1:6 was attached to the air blowing pipe. The pressure in the air blowing tube was 26.5 kg/Cd-G when the air supply amount was increased to 7500 Nm3/Hr after the start of the reaction, but it rose to 27.5 kg/Cd-G at the end of the batch reaction, and continued to increase in the continuous reaction. Approximately 30 minutes after switching to , it rose to 28k9/G. At this point, the flow rate control valve is fully open and the air flow rate is 750.
It started to drop from 0Nm3/Hr, but the alkali feeder was activated and the pressure in the air blowing pipe was 26.8kg/Cd.
It descended instantly to -G. After that, the pressure increases again and about 1
After 0 minutes, the alkali feed device is activated and the pressure is 26.8k9/
After that, the alkali feeding device was operated twice in about 30 minutes. Thereafter, this operation was repeated to allow the reaction to proceed for two weeks, and the reaction progressed smoothly.
第1図は本発明方法を実施する際の一例のフローシート
であり1は気泡塔、2は吹込部を示す。FIG. 1 is a flow sheet of an example of carrying out the method of the present invention, where 1 indicates a bubble column and 2 indicates a blowing section.
Claims (1)
物を低級脂肪族モノカルボン酸溶媒中で重金属を含む触
媒の存在下、液相に酸素含有ガスを吹込むことにより酸
化して芳香族ポリカルボン酸を連続的に製造する方法に
おいて、前記酸素含有ガス中に水酸化ナトリウム又は水
酸化カリウムよりなるアルカリ水溶液を同伴させて吹込
むことを特徴とする芳香族ポリカルボン酸の製造法。1 An aromatic compound having at least two aliphatic substituents is oxidized in a lower aliphatic monocarboxylic acid solvent in the presence of a catalyst containing a heavy metal by blowing an oxygen-containing gas into the liquid phase to produce an aromatic polycarbonate. 1. A method for continuously producing an aromatic polycarboxylic acid, which comprises blowing an alkaline aqueous solution of sodium hydroxide or potassium hydroxide into the oxygen-containing gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13101275A JPS5912096B2 (en) | 1975-10-31 | 1975-10-31 | Polycarbonate polycarbonate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13101275A JPS5912096B2 (en) | 1975-10-31 | 1975-10-31 | Polycarbonate polycarbonate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5257134A JPS5257134A (en) | 1977-05-11 |
JPS5912096B2 true JPS5912096B2 (en) | 1984-03-21 |
Family
ID=15047904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13101275A Expired JPS5912096B2 (en) | 1975-10-31 | 1975-10-31 | Polycarbonate polycarbonate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5912096B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7683210B2 (en) * | 2004-09-02 | 2010-03-23 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7495125B2 (en) * | 2004-09-02 | 2009-02-24 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7399882B2 (en) * | 2004-09-02 | 2008-07-15 | Eastman Chemical Company | Optimized liquid-phase oxidation |
CN102698699B (en) * | 2004-09-02 | 2016-03-02 | 奇派特石化有限公司 | The liquid phase oxidation optimized |
WO2006028874A2 (en) * | 2004-09-02 | 2006-03-16 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7361784B2 (en) * | 2004-09-02 | 2008-04-22 | Eastman Chemical Company | Optimized liquid-phase oxidation |
LT1791800T (en) * | 2004-09-02 | 2018-01-25 | Grupo Petrotemex, S.A. De C.V. | Optimized liquid-phase oxidation |
US7504535B2 (en) * | 2004-09-02 | 2009-03-17 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US20060047153A1 (en) * | 2004-09-02 | 2006-03-02 | Wonders Alan G | Optimized liquid-phase oxidation |
US7572936B2 (en) * | 2004-09-02 | 2009-08-11 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7910769B2 (en) * | 2004-09-02 | 2011-03-22 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7572932B2 (en) * | 2004-09-02 | 2009-08-11 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7371894B2 (en) * | 2004-09-02 | 2008-05-13 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US9849434B2 (en) * | 2010-09-22 | 2017-12-26 | Grupo Petrotemex, S.A. De C.V. | Methods and apparatus for enhanced gas distribution |
-
1975
- 1975-10-31 JP JP13101275A patent/JPS5912096B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5257134A (en) | 1977-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6761860B2 (en) | Apparatus for the production of aromatic acids | |
JPS5912096B2 (en) | Polycarbonate polycarbonate | |
US2479067A (en) | Preparation of terephthalic acid | |
RU2374219C2 (en) | Stepped counterflow catalystic oxidation of disubstituted benzene | |
EP1073621B1 (en) | Preparation of organic acids | |
US2723994A (en) | Oxidation of xylene and toluic acid mixtures to phthalic acids | |
JPH09157214A (en) | Production of aromatic carboxylic acid | |
US3089907A (en) | Pressure controlled liquid phase oxidation process for aromatic acid production | |
JP2002522406A (en) | Improved method for producing pure carboxylic acid | |
JPS5931491B2 (en) | Method for replacing and separating mother liquor in terephthalic acid suspension | |
CA2345448C (en) | Improved process for producing highly pure aromatic carboxylic acids | |
US4835308A (en) | Process for producing trimellitic acid | |
KR980009210A (en) | Method for producing aromatic carboxylic acid | |
Hromec et al. | Oxidation of polyalkylaromatic hydrocarbons. 12. Technological aspects of p-xylene oxidation to terephthalic acid in water | |
US3030414A (en) | Process of preparing meta- and para-nitrobenzoic acids | |
JP2718346B2 (en) | Continuous production method for poorly soluble substances | |
US3069462A (en) | Oxidation of aromatic compounds | |
JP4148480B2 (en) | Method for producing 3-nitro-o-toluic acid | |
JP4981791B2 (en) | Method for producing trimellitic acid | |
JPS595569B2 (en) | Continuous production method of terephthalic acid | |
KR100543526B1 (en) | Method for synthesizing terephthalic acid using high temperature and pressure water | |
JPH0662495B2 (en) | Manufacturing method of high-purity terephthalic acid | |
JPH06345755A (en) | Production of epsilon-caprolactones | |
JPH1077243A (en) | Production of aromatic carboxylic acid | |
JPS6318931B2 (en) |