[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09157214A - Production of aromatic carboxylic acid - Google Patents

Production of aromatic carboxylic acid

Info

Publication number
JPH09157214A
JPH09157214A JP8261868A JP26186896A JPH09157214A JP H09157214 A JPH09157214 A JP H09157214A JP 8261868 A JP8261868 A JP 8261868A JP 26186896 A JP26186896 A JP 26186896A JP H09157214 A JPH09157214 A JP H09157214A
Authority
JP
Japan
Prior art keywords
carbonate
manganese
cobalt
catalyst
acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8261868A
Other languages
Japanese (ja)
Inventor
Tsukasa Kawahara
司 川原
Eiji Dejima
栄治 出島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8261868A priority Critical patent/JPH09157214A/en
Publication of JPH09157214A publication Critical patent/JPH09157214A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously recover a catalyst useful in producing an aromatic carboxylic acid in high recovery ratio and to reuse the catalyst. SOLUTION: In this method for producing an aromatic carboxlic acid by oxidizing an aromatic compound containing an alkyl-substituted group in a solvent of acetic acid in the presence of a catalyst comprising cobalt acetate, manganese acetate and a bromine compound in a liquid phase, (1) a residue containing cobalt acetate and manganese acetate is obtained from an oxidation reaction mixture, (2) water and an alkali hydroxide are added to the residue, (3) then the aqueous solution and an alkali carbonate are continuously added to a carbonating tank, a retention time is 20-200 minutes, a slurry containing cobalt carbonate and manganese carbonate is continuously or intermittently taken out from the carbonating tank, (4) cobalt carbonate and manganese carbonate are separated from the slurry and (5) are reacted with acetic acid, and (6) prepared cobalt acetate and manganese acetate are reused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルキル置換基また
は一部酸化したアルキル置換基を有する芳香族化合物、
液相酸化触媒の金属成分を連続的に効率よく回収するこ
とを特徴とする芳香族カルボン酸の製造方法に関する。
TECHNICAL FIELD The present invention relates to an aromatic compound having an alkyl substituent or a partially oxidized alkyl substituent,
The present invention relates to a method for producing an aromatic carboxylic acid, which comprises continuously and efficiently recovering a metal component of a liquid phase oxidation catalyst.

【0002】[0002]

【従来の技術】アルキル芳香族化合物、例えば、パラキ
シレンを酢酸溶媒中、コバルト、マンガン及び臭素化合
物より成る触媒の存在下、分子状酸素により液相酸化し
てテレフタル酸を製造する方法において、生成したテレ
フタル酸を分離した後の反応母液中には、酢酸溶媒のほ
か、触媒の金属成分が含有されているので、これを回収
して再使用することが望ましい。
BACKGROUND OF THE INVENTION Alkyl aromatic compounds, such as para-xylene, are produced in a process for producing terephthalic acid by liquid phase oxidation with molecular oxygen in the presence of a catalyst consisting of cobalt, manganese and bromine compounds in an acetic acid solvent. Since the reaction mother liquor after the separation of the terephthalic acid contains the acetic acid solvent and the metal component of the catalyst, it is desirable to recover and reuse it.

【0003】従来、酢酸溶媒は、反応母液をたき上げて
回収し、次いで、蒸留して水分を除去して再使用してい
る。一方、触媒の金属成分は、前記たき上げにて得られ
た残留物と水を混合し、金属成分を水に溶解させ水溶液
(以下、「触媒原液」という。)とし、これに炭酸アル
カリを加えて炭酸塩として沈殿させて回収している。こ
の炭酸塩として金属触媒を回収する好ましい方法とし
て、上記触媒原液及び炭酸アルカリを沈殿生成反応域
内滞留液のpHが7.6〜10の範囲内で実質的に一定
に保たれるような割合で連続的に導入し、該沈殿生成反
応域から沈殿を含む液を連続的に抜き出し回収する方法
(特公昭56−31139)、炭酸ナトリウムを上記
触媒原液のpHが6.5〜7.5の範囲に加えた時点で
少なくとも20分間の熟成処理の後、更に、pHが8.
5以上になるまで炭酸アルカリを添加する方法(特公昭
56−25195)等が知られている。
Conventionally, the acetic acid solvent is reused after raising the reaction mother liquor to recover it and then distilling it to remove water. On the other hand, for the metal component of the catalyst, the residue obtained by the above-mentioned pumping is mixed with water to dissolve the metal component in water to form an aqueous solution (hereinafter referred to as "catalyst stock solution"), to which alkali carbonate is added. Is recovered as a carbonate. As a preferred method for recovering the metal catalyst as the carbonate, the catalyst stock solution and the alkali carbonate are added at such a ratio that the pH of the retained liquid in the precipitation reaction zone is kept substantially constant within the range of 7.6 to 10. A method of continuously introducing and continuously withdrawing and collecting a liquid containing a precipitate from the precipitation generation reaction region (Japanese Patent Publication No. 56-31139), and sodium carbonate having a pH of the stock solution of 6.5 to 7.5. After the aging treatment for at least 20 minutes, the pH was further adjusted to 8.
There is known a method of adding alkali carbonate until the number becomes 5 or more (Japanese Patent Publication No. 56-25195).

【0004】[0004]

【発明が解決しようとする課題】上記の反応で添加する
炭酸アルカリは、触媒原液中の触媒金属の炭酸塩化のほ
かに有機酸の中和用にも多くが消費される。一般に炭酸
アルカリと有機酸との反応では炭酸ガスが発生するが、
反応液のpHが酸性領域では大半が系外に放出されるの
に対して、アルカリ性領域では大半が液中に溶解する。
液中に溶解した炭酸ガスは新たに炭酸アルカリと反応す
るため炭酸アルカリの消費量を増大させる要因となる。
特に、上記の特公昭56−311939のような連続方
法では、炭酸アルカリの消費量の増大は避けられず、経
済的には不利であり好ましい方法とはいえない。
Most of the alkali carbonate added in the above reaction is consumed not only for carbonation of the catalyst metal in the catalyst stock solution but also for neutralization of organic acids. Generally, carbon dioxide is generated in the reaction between an alkali carbonate and an organic acid,
Most of the pH of the reaction solution is released outside the system in the acidic range, whereas most of it is dissolved in the solution in the alkaline range.
The carbon dioxide gas dissolved in the liquid newly reacts with the alkali carbonate and becomes a factor to increase the consumption amount of the alkali carbonate.
Particularly, in the continuous method as described in Japanese Patent Publication No. 56-311939, an increase in consumption of alkali carbonate is unavoidable, which is economically disadvantageous and cannot be said to be a preferable method.

【0005】また、特公昭56−25195の方法は、
一段目の炭酸アルカリ添加でpHを中性領域に調整する
ことにより有機酸等の中和で発生した炭酸ガスの大半が
系外に放出されるため炭酸アルカリの節減効果がある
が、回分法のため工業的に大量の触媒原液を処理しよう
とすれば複数の反応槽が必要となり、更に、操作も煩雑
になりやすいという欠点がある。
The method of Japanese Patent Publication No. 56-25195 is
Most of the carbon dioxide gas generated by the neutralization of organic acids, etc. is released to the outside of the system by adjusting the pH to the neutral range by adding alkali carbonate in the first step, but there is an effect of saving alkali carbonate. Therefore, in order to industrially treat a large amount of stock solution of the catalyst, a plurality of reaction tanks are required, and further, the operation tends to be complicated.

【0006】[0006]

【課題を解決するための手段】本発明者等は上記実情に
鑑み、炭酸塩化反応を行った場合の炭酸塩生成に要する
炭酸アルカリを低減する方法につき種々検討した結果、
触媒原液中の有機酸の中和反応と触媒金属成分の炭酸塩
化反応を別にして二段法で行い、一段目の中和反応に水
酸化アルカリを用い、かつ、二段目の炭酸塩化反応を特
定の条件下で連続的に行うことにより、炭酸アルカリを
含む全アルカリの消費量が少なくなり経済的であると同
時に触媒成分の回収率が高いうえ、得られる炭酸塩粒子
の濾過分離性にも優れていることを見い出し、本発明に
到達した。
In view of the above circumstances, the inventors of the present invention have conducted various studies on a method for reducing the amount of alkali carbonate required for carbonate formation in the case of carrying out a carbonation reaction, and as a result,
The neutralization reaction of the organic acid in the catalyst stock solution and the carbonation reaction of the catalytic metal component are performed separately by a two-step method, the alkali hydroxide is used for the first-step neutralization reaction, and the second-step carbonation reaction is performed. By continuously performing the process under specific conditions, the consumption of total alkali including alkali carbonate is reduced, which is economical, and at the same time, the recovery rate of the catalyst component is high, and the separation and separation of the obtained carbonate particles is improved. Has been found to be excellent, and has reached the present invention.

【0007】すなわち、本発明の要旨は、アルキル置換
基または一部酸化したアルキル置換基を有する芳香族化
合物を、酢酸溶媒中、酢酸コバルト、酢酸マンガン及び
臭素化合物から成る触媒の存在下、分子状酸素により液
相酸化して芳香族カルボン酸を製造する方法において、
該触媒を回収再使用する際に、(1)酸化反応混合物か
ら芳香族カルボン酸と酢酸溶媒を除去して酢酸コバル
ト、酢酸マンガンを含む残留物を得、(2)該残留物に
水と水酸化アルカリを添加混合し、そのpHが4.0〜
6.5の水溶液を得、(3)次いで、該水溶液と炭酸ア
ルカリを、炭酸塩化槽に、該炭酸塩化槽内液のpHが
8.0〜9.5の範囲内で実質的に一定に保たれるよう
な割合で連続的にに供給し、滞留時間20〜200分間
とし、該炭酸塩化槽からコバルト及びマンガンの炭酸塩
を含むスラリーを連続的又は間欠的に抜き出し、(4)
該スラリーよりコバルト及びマンガンの炭酸塩を分離
し、(5)分離したコバルト及びマンガンの炭酸塩と酢
酸とを反応させ、(6)得られた酢酸コバルト及び酢酸
マンガンを前記触媒成分として再使用すること、を特徴
とする芳香族カルボン酸の製造方法に存する。
That is, the gist of the present invention is to obtain an aromatic compound having an alkyl substituent or a partially oxidized alkyl substituent in an acetic acid solvent in the presence of a catalyst consisting of cobalt acetate, manganese acetate and a bromine compound. In the method for producing an aromatic carboxylic acid by liquid phase oxidation with oxygen,
When the catalyst is recovered and reused, (1) the aromatic carboxylic acid and acetic acid solvent are removed from the oxidation reaction mixture to obtain a residue containing cobalt acetate and manganese acetate, and (2) water and water are added to the residue. Add and mix alkali oxide and its pH is 4.0-
An aqueous solution of 6.5 is obtained, and (3) the aqueous solution and the alkali carbonate are then made substantially constant in a carbonation tank within a pH range of 8.0 to 9.5. It is continuously supplied at a rate such that it is maintained, the residence time is set to 20 to 200 minutes, and the slurry containing cobalt and manganese carbonate is continuously or intermittently withdrawn from the carbonation tank, (4)
Cobalt and manganese carbonates are separated from the slurry, (5) the separated cobalt and manganese carbonates are reacted with acetic acid, and (6) the obtained cobalt acetate and manganese acetate are reused as the catalyst component. And a method for producing an aromatic carboxylic acid.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明においては、原料としてアルキル置換基または一
部酸化したアルキル置換基を有する芳香族化合物が用い
られる。アルキル置換基としては、炭素数が通常1〜8
程度のものが用いられるが、好ましくはメチル基、エチ
ル基、n-プロピル基、i-プロピル基などの炭素数1〜3
のアルキル基が挙げられる。また、一部酸化したアルキ
ル基も炭素数が通常1〜8程度のものが用いられ、例え
ばホルミル基、カルボキシル基、ヒドロキシアルキル基
等が挙げられる。これら置換基は1つに限られるもので
はなく、2つ以上置換していてもよい。また、複数の置
換基を有する場合は各々の置換基は同一でも異なるもの
でもよい。芳香核にはベンゼン環の様な単環のみなら
ず、ナフタレン環のような多環式芳香核も含まれる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, an aromatic compound having an alkyl substituent or a partially oxidized alkyl substituent is used as a raw material. The alkyl substituent has usually 1 to 8 carbon atoms.
Although those having a degree of about 1 to 3 are used, those having 1 to 3 carbon atoms such as methyl group, ethyl group, n-propyl group and i-propyl group are preferable.
Alkyl group. The partially oxidized alkyl group having a carbon number of about 1 to 8 is usually used, and examples thereof include a formyl group, a carboxyl group and a hydroxyalkyl group. The number of these substituents is not limited to one, and two or more may be substituted. Further, in the case of having a plurality of substituents, each substituent may be the same or different. The aromatic nucleus includes not only a single ring such as a benzene ring but also a polycyclic aromatic nucleus such as a naphthalene ring.

【0009】以上のアルキル置換基または一部酸化した
アルキル置換基を含有する芳香族化合物としては、トル
エン、エチレン、イソプロピルベンゼン、4,4’−ジ
メチルビフェニル、o−,m−またはp−キシレン、o
−,m−またはp−ジイソプロピルベンゼン、プソイド
キュメン(1,2,4−トリメチルベンゼン)、2,6
−ジメチルナフタレン、2,6−ジイソプロピルナフタ
レン等のアルキル基の置換した芳香族化合物;ベンスア
ルデヒド、o−,m−またはp−トルアルデヒド、2,
4−ジメチルベンズアルデヒド、2,4,5−トリメチ
ルベンズアルデヒド等のホルミル基の置換した芳香族化
合物;ベンジルアルコール等のヒドロキシアルキル基の
置換した芳香族化合物;o−,m−またはp−トルイル
酸、o−,m−またはp−カルボキシベンズアルデヒ
ド、2,6−ナフタレンジカルバルデヒド、1−ナフタ
レンジカルバルデヒド等のカルボキシル基の置換した化
合物あるいはこれらの混合物などが挙げられるが、これ
らに限定されるものではない。
The aromatic compounds containing the above alkyl substituents or partially oxidized alkyl substituents include toluene, ethylene, isopropylbenzene, 4,4'-dimethylbiphenyl, o-, m- or p-xylene. o
-, M- or p-diisopropylbenzene, pseudocumene (1,2,4-trimethylbenzene), 2,6
-Aromatic compounds substituted with an alkyl group such as dimethylnaphthalene and 2,6-diisopropylnaphthalene; benzaldehyde, o-, m- or p-tolualdehyde, 2,
Formyl group-substituted aromatic compounds such as 4-dimethylbenzaldehyde and 2,4,5-trimethylbenzaldehyde; Hydroxyalkyl group-substituted aromatic compounds such as benzyl alcohol; o-, m- or p-toluic acid, o Examples thereof include compounds substituted with a carboxyl group such as-, m- or p-carboxybenzaldehyde, 2,6-naphthalenedicarbaldehyde and 1-naphthalenedicarbaldehyde, and mixtures thereof, but are not limited thereto. Absent.

【0010】本発明で対象となる芳香族カルボン酸の製
造法として最も代表的な例としてはパラキシレンを液相
酸化してテレフタル酸を製造する場合が挙げられる。以
下はこのテレフタル酸の製造の場合について特に説明す
るが、他の原料化合物を用い、芳香族カルボン酸を製造
する場合についても、反応条件を適宜最適条件に設定す
る以外は本発明の液相酸化触媒の回収方法をそのまま適
用することができる。
The most typical example of the method for producing an aromatic carboxylic acid, which is the subject of the present invention, is the case where liquid phase oxidation of paraxylene is used to produce terephthalic acid. The case of producing this terephthalic acid will be particularly described below, but also in the case of producing an aromatic carboxylic acid by using other raw material compounds, the liquid phase oxidation of the present invention is performed except that the reaction conditions are appropriately set to optimum conditions. The catalyst recovery method can be applied as it is.

【0011】パラキシレンを酢酸溶媒中、酢酸コバル
ト、酢酸マンガン及び臭素化合物から成る触媒の存在
下、分子状酸素により液相酸化する場合、使用される臭
素化合物としては臭化水素、臭化ナトリウム等が挙げら
れる。触媒の添加量としては、酢酸コバルト、酢酸マン
ガンは、溶媒に対する各々の金属として、通常10〜5
000ppm、また、臭素化合物は、溶媒に対する臭素
として、通常30〜10000ppmである。原料パラ
キシレンは、通常、酢酸溶媒に対して1〜50重量%の
割合で用いられる。また、酢酸中には約30重量%まで
の水分を含んでいてよい。また、酸化反応器に供給する
分子状酸素は純酸素、空気、純酸素と不活性ガスとの混
合物等が用いられ、通常、パラキシレン1モルに対して
酸素として3〜20モルの割合となるようする。反応条
件としては、通常、反応温度150〜260℃、反応圧
力2〜50kg/cm2、滞留時間10〜200分の範
囲で行う。酸化反応によって生成した目的とする芳香族
カルボン酸のテレフタル酸は、酸化反応混合物から、通
常、晶析、遠心分離等により固液分離される。
When para-xylene is subjected to liquid phase oxidation with molecular oxygen in the presence of a catalyst consisting of cobalt acetate, manganese acetate and a bromine compound in an acetic acid solvent, the bromine compound used is hydrogen bromide, sodium bromide or the like. Is mentioned. As the amount of the catalyst added, cobalt acetate and manganese acetate are usually 10 to 5 as each metal in the solvent.
000 ppm, and the bromine compound is usually 30 to 10,000 ppm as bromine with respect to the solvent. The raw material paraxylene is usually used in a proportion of 1 to 50% by weight with respect to the acetic acid solvent. Also, acetic acid may contain up to about 30% by weight of water. As the molecular oxygen supplied to the oxidation reactor, pure oxygen, air, a mixture of pure oxygen and an inert gas, or the like is used, and the ratio of oxygen is usually 3 to 20 mol with respect to 1 mol of paraxylene. To do. The reaction conditions are usually a reaction temperature of 150 to 260 ° C., a reaction pressure of 2 to 50 kg / cm 2 , and a residence time of 10 to 200 minutes. The desired aromatic carboxylic acid, terephthalic acid, produced by the oxidation reaction is usually solid-liquid separated from the oxidation reaction mixture by crystallization, centrifugation or the like.

【0012】テレフタル酸分離後の反応母液の主成分は
酢酸であるので、反応母液の一部はそのまま反応系に戻
して再使用することができるが、通常、大部分又は全量
についてたき上げ処理を行い、酢酸溶媒、水分を蒸発分
離する。たき上げられた含水酢酸は蒸留塔にて水分をあ
る程度除去した後に再使用される。一方、たき上げ後の
残留物は、通常、残留物に対して1〜10重量倍の水を
加えて、残留物中の触媒の金属成分を溶解させ水溶液と
する。この際、該残留物に含まれていた微量のテレフタ
ル酸やその他反応副生物が固形分として析出する場合
は、これを分離しておく方が好ましい。得られた水溶液
(以下「原液」という)は、触媒成分として、通常、酢
酸コバルト20〜10000ppm、酢酸マンガン20
〜10000ppmを含有するほかに、残存酢酸1〜8
%、及びテレフタル酸、安息香酸、オルトフタル酸、イ
ソフタル酸等の酸性副生物を含み、pHが3以下の酸性
液である。
Since the main component of the reaction mother liquor after the separation of terephthalic acid is acetic acid, a part of the reaction mother liquor can be directly returned to the reaction system and reused. The acetic acid solvent and water are evaporated and separated. The hydrous acetic acid thus pumped up is reused after removing some water in the distillation column. On the other hand, the residue after the lifting is usually made into an aqueous solution by adding 1 to 10 times by weight of water to the residue to dissolve the metal component of the catalyst in the residue. At this time, when a small amount of terephthalic acid or other reaction by-products contained in the residue is precipitated as a solid content, it is preferable to separate it. The obtained aqueous solution (hereinafter referred to as "stock solution") usually contains 20 to 10000 ppm of cobalt acetate and 20 of manganese acetate as catalyst components.
In addition to containing 10000ppm, residual acetic acid 1-8
%, And acidic by-products such as terephthalic acid, benzoic acid, orthophthalic acid, and isophthalic acid, and having an pH of 3 or less.

【0013】この触媒原液中のコバルト、及びマンガン
成分は、通常、炭酸アルカリと反応させて、炭酸塩粒子
とした後に分離、回収される。本発明における炭酸塩化
反応は二段階で行うことに特徴がある。一段目の反応で
は、上記触媒原液に水酸化アルカリを添加混合すること
により、pHを4.0〜6.5、好ましくは5.0〜
6.3に調整する。また、所望のpH範囲に調整できる
ことが経験的に容易であるならば、上記残留物に水酸化
アルカリと水、あるい水酸化アルカリ水溶液を直接添加
混合し、必要に応じてpHの微調整を行ってもよく、か
かる方法も本発明の態様である。ここでのpHが4.0
未満では酢酸を主成分とする有機酸の中和が不十分なた
め、次の炭酸塩化反応時に発生する炭酸ガスの溶解量が
増えるため炭酸アルカリの消費量が増加するので好まし
くない。逆に、pHが6.5を越えると、金属成分の水
酸化物が生成し、後の酢酸化工程の際における未溶解物
が増加したり、次の炭酸塩化反応で生成する炭酸塩の粒
径が小さく、その分離における濾過性が低下するので好
ましくない。
The cobalt and manganese components in the catalyst stock solution are usually separated and recovered after reacting with alkali carbonate to form carbonate particles. The carbonation reaction in the present invention is characterized by being carried out in two steps. In the first-step reaction, the pH of the stock solution is adjusted to 4.0 to 6.5, preferably 5.0 to 5.0 by adding and mixing an alkali hydroxide to the catalyst stock solution.
Adjust to 6.3. Further, if it is empirically easy to adjust to a desired pH range, alkali hydroxide and water or an alkali hydroxide aqueous solution is directly added and mixed to the above residue, and fine adjustment of pH is performed if necessary. May be performed and such methods are also an aspect of the invention. PH here is 4.0
If the amount is less than 1, the neutralization of the organic acid containing acetic acid as a main component is insufficient, so that the amount of dissolved carbon dioxide gas generated in the next carbonation reaction increases, and the consumption of alkali carbonate increases, which is not preferable. On the other hand, if the pH exceeds 6.5, the hydroxide of the metal component is generated, the amount of undissolved substances in the subsequent acetic acid step is increased, and the particles of carbonate generated in the next carbonation reaction are added. It is not preferable because the diameter is small and the filterability in the separation is lowered.

【0014】以上において使用される水酸化アルカリと
しては、水酸化ナトリウム、水酸化カリウム等が挙げら
れるが、有機酸との反応による炭酸ガスの発生が少な
く、アルカリ力価が高く、かつ安価である水酸化ナトリ
ウムが好ましい。水酸化アルカリは、固形状でも水溶液
状でも使用され得るが、5〜20重量%の水溶液として
使用するのが好ましい。
Examples of the alkali hydroxide used in the above include sodium hydroxide, potassium hydroxide and the like, but the generation of carbon dioxide gas due to the reaction with an organic acid is small, the alkali potency is high, and the price is low. Sodium hydroxide is preferred. The alkali hydroxide may be used in the form of a solid or an aqueous solution, but it is preferably used as an aqueous solution of 5 to 20% by weight.

【0015】触媒原液と水酸化アルカリ水溶液の混合は
中和槽に供給する前の配管内で行なってもよいが、炭酸
ガスの発生があるため通常は攪拌機を有する中和槽内で
行なうのが好ましく、中和槽に仕込んだ触媒原液にアル
カリ水溶液を添加して目標のpHに調整する回分法、ま
たは、目標のpHを一定に維持するような割合でそれぞ
れを連続的に供給する方法で行われる。なお、中和槽内
あるいは中和が行われる配管内の温度は通常40〜70
℃、好ましく50〜60℃に設定される。また、中和槽
の攪拌速度や滞留時間は中和液が均一混合される状態に
あれば特に限定されない。
The catalyst stock solution and the aqueous alkali hydroxide solution may be mixed in a pipe before being supplied to the neutralization tank, but since carbon dioxide is generated, it is usually carried out in a neutralization tank having a stirrer. Preferably, it is carried out by a batch method in which an alkaline aqueous solution is added to the catalyst stock solution charged in the neutralization tank to adjust the target pH, or a method in which each is continuously supplied at a rate such that the target pH is maintained constant. Be seen. The temperature in the neutralization tank or in the pipe for neutralization is usually 40 to 70.
C., preferably 50 to 60.degree. Further, the stirring speed and the residence time of the neutralization tank are not particularly limited as long as the neutralization liquid is uniformly mixed.

【0016】以上のように目標のpHの4.0〜6.5
に調整された触媒原液水溶液には、次いで、炭酸アルカ
リを連続的に添加混合し、該混合液のpHを8.0〜
9.5、好ましくは8.0〜9.0とし、一定時間保持
することにより、コバルト及びマンガンの炭酸塩を含む
スラリ−化させる。即ち、本願では、炭酸アルカリと触
媒原液水溶液とは上記pHの範囲内において混合され
る。pHが8未満では、炭酸アルカリの使用量は少なく
なるが、炭酸塩化の反応率が低くなり、未反応のまま分
離廃液とともに排出される触媒成分が増加して、回収率
が低くなるたるため好ましくない。逆にpHが9.5を
越えると、アルカリ消費量が増えるため経済的に不利で
あるばかりか、触媒金属成分が水酸化物や酸化物を形成
しやすくなり、次の酢酸化工程で酢酸への溶解率が低下
する原因となるので好ましくない。
As described above, the target pH of 4.0 to 6.5 is obtained.
Then, an alkali carbonate is continuously added to and mixed with the catalyst stock solution aqueous solution adjusted to pH 7.0 to adjust the pH of the mixed solution to 8.0.
The slurry containing the carbonates of cobalt and manganese is made into slurry by holding it at 9.5, preferably 8.0 to 9.0 for a certain period of time. That is, in the present application, the alkali carbonate and the catalyst stock solution are mixed within the above pH range. If the pH is less than 8, the amount of alkali carbonate used will be small, but the reaction rate of carbonation will be low, and the catalyst components discharged together with the separation waste liquid without reaction will be increased, and the recovery rate will be low, which is not preferable. . On the other hand, if the pH exceeds 9.5, not only is it economically disadvantageous because the alkali consumption increases, but also the catalytic metal component easily forms hydroxides and oxides, and it becomes acetic acid in the next acetic acid process. Is not preferable because it causes a decrease in the dissolution rate.

【0017】添加する炭酸アルカリとしては、炭酸リチ
ウム、炭酸ナトリウム、炭酸カリウム等があるが、炭酸
ナトリウムが一般的である。炭酸アルカリは、固形状で
も水溶液状でも使用されるが、5〜30重量%の水溶液
で使用するのが好ましい。具体的には、炭酸塩化槽を設
けておき、中和された触媒原液水溶液と炭酸アルカリ水
溶液は、各別々のノズルから該炭酸塩化槽に、pHが
8.0〜9.5の範囲内で実質的に一定に保たれるよう
な割合でそれぞれを連続的に供給することが望ましい。
触媒原液と炭酸アルカリを反応槽に供給する前の配管内
で混合させると、炭酸塩の結晶析出による配管の閉塞が
発生することがあるため好ましくないからである。
The alkali carbonate to be added includes lithium carbonate, sodium carbonate, potassium carbonate and the like, and sodium carbonate is generally used. The alkali carbonate may be used in the form of a solid or an aqueous solution, but it is preferably used in an aqueous solution of 5 to 30% by weight. Specifically, a carbonation tank is provided, and the neutralized catalyst stock solution aqueous solution and the alkali carbonate aqueous solution are supplied to the carbonation tank from separate nozzles within a pH range of 8.0 to 9.5. It is desirable to continuously feed each at a rate such that it remains substantially constant.
This is because if the catalyst stock solution and the alkali carbonate are mixed in the pipe before being supplied to the reaction tank, the pipe may be clogged due to precipitation of carbonate crystals, which is not preferable.

【0018】なお、炭酸塩化槽内液のpH測定器として
は、通常、投げ込み型、潜漬型、流通型等を用いるが、
反応で析出する炭酸塩がセンサ−に付着して、正常な指
示を示さなくなることがあるため、薬液洗浄方式、超音
波洗浄方式、ジェット洗浄方式、ブラシ洗浄方式等の洗
浄機能付きpH測定器を用いるのが好ましい。炭酸塩化
槽内の温度は、反応速度を高めることができる点、ある
いは生成する炭酸塩の粒径を大きくできる点から見れば
できるだけ高い方が有利ではあるが、温度を上げ過ぎる
と炭酸塩の熱変質等が起こりやすくなるため、通常45
〜65℃、好ましくは50〜60℃である。
As the pH measuring device for the liquid in the carbonation tank, a throwing type, a submersion type, a circulation type or the like is usually used.
Since the carbonate that precipitates during the reaction may adhere to the sensor and not give a normal indication, use a pH meter with a cleaning function such as a chemical cleaning method, an ultrasonic cleaning method, a jet cleaning method, or a brush cleaning method. It is preferably used. It is advantageous that the temperature in the carbonation tank is as high as possible from the viewpoint of increasing the reaction rate or increasing the particle size of the carbonate produced, but if the temperature is raised too high, the heat of the carbonate will increase. Since alteration is likely to occur, it is usually 45
~ 65 ° C, preferably 50 ~ 60 ° C.

【0019】また、反応で生成した炭酸塩粒子は、真比
重が大きく反応槽の下部に沈降しやすいため、そのスラ
リーを均一に分散するのに十分な攪拌を行なう必要があ
る。攪拌羽根としてはタ−ビン型、パドル型、プロペラ
型、かい型等の一般的に知られているものが、特に限定
されずに使用できる。また、炭酸塩スラリーを抜き出し
て次工程へ移送するポンプによる循環混合を併用するの
も分散のためには有効な手段の一つである。更に、炭酸
塩化槽内液の保持時間(連続的に実施する場合において
は滞留時間)が20〜200分、好ましくは30〜18
0分であり、これより短い場合には未反応物が増え触媒
成分のロスの原因となる。逆にこれより長くすること
は、大きな炭酸塩化槽を必要とすると共に、pHの応答
が鈍く反応pHを一定にコントロ−ルするのが困難にな
ったり、炭酸塩の変質で酢酸への溶解性が悪くなるため
に実用的ではない。
Since the carbonate particles produced by the reaction have a large true specific gravity and tend to settle in the lower part of the reaction tank, it is necessary to stir the slurry sufficiently to uniformly disperse the slurry. As the stirring blade, generally known blades such as a turbine type, paddle type, propeller type and paddle type can be used without particular limitation. Further, it is also one of the effective means for dispersion to use the circulation mixing with a pump for extracting the carbonate slurry and transferring it to the next step. Further, the retention time of the liquid in the carbonation tank (residence time when continuously carried out) is 20 to 200 minutes, preferably 30 to 18 minutes.
It is 0 minutes, and if it is shorter than this, unreacted substances increase and cause loss of catalyst components. On the other hand, if the length is longer than this, a large carbonation tank is required, the pH response becomes dull, and it becomes difficult to control the reaction pH at a constant level. Is not practical because it gets worse.

【0020】炭酸塩化反応で生成したコバルト及びマン
ガンの炭酸塩を含むスラリーは、固液分離工程に送ら
れ、コバルト及びマンガンの炭酸塩を分離する。特に連
続的に炭酸塩化反応を実施する場合においては、炭酸塩
化槽内液量が常に実質的に一定、またはそれに近い状態
に保たれるように連続的又は間欠的に抜き出し、そのま
ま固液分離工程に送り、コバルト及びマンガンの炭酸塩
を分離する。固液分離は、沈降分離機、加圧濾過機、減
圧濾過機、及び遠心分離機等のいずれを用いても行うこ
とができるが、濾過、濾過ケーキの洗浄、ケーキの排
出、フィルター洗浄等の一連の操作を連続的に、かつ効
率よく進めるためにはキャンドル式加圧濾過機を用いる
のが効果的である。
The slurry containing the carbonates of cobalt and manganese produced by the carbonation reaction is sent to the solid-liquid separation step to separate the carbonates of cobalt and manganese. Especially when carrying out the carbonation reaction continuously, the solid-liquid separation step is carried out continuously or intermittently so that the liquid amount in the carbonation tank is always kept substantially constant or close to it. And separate the cobalt and manganese carbonates. Solid-liquid separation can be carried out using any of a sedimentation separator, a pressure filter, a vacuum filter, a centrifuge, etc., such as filtration, filter cake washing, cake discharge, and filter washing. It is effective to use a candle type pressure filter in order to carry out a series of operations continuously and efficiently.

【0021】キャンドル式加圧濾過機に供給するための
スラリーは、一旦貯槽に受け入れられるが、その貯槽を
炭酸塩化反応帯域で未反応状態にあった触媒金属の反応
を完結させるための熟成槽として兼ねることもできる。
貯槽での滞留時間は一連の濾過操作をスムーズに行うた
めに通常30〜120分、好ましくは60〜90分に設
定される。該濾過機での濾過圧力は通常0.1〜5kg
/cm2、濾過面積は処理スラリーの流量1m3/hrあ
たりで通常0.3〜23m2であるが、これらは所望の
タイムサイクルで処理ができるように適宜決定される。
The slurry to be supplied to the candle-type pressure filter is once received in a storage tank, and the storage tank is used as an aging tank for completing the reaction of the unreacted catalytic metal in the carbonation reaction zone. You can also combine.
The residence time in the storage tank is usually set to 30 to 120 minutes, preferably 60 to 90 minutes in order to smoothly perform a series of filtration operations. The filtration pressure in the filter is usually 0.1 to 5 kg.
/ Cm 2 , and the filtration area is usually 0.3 to 23 m 2 per 1 m 3 / hr of the flow rate of the treated slurry, but these are appropriately determined so that the treatment can be performed in a desired time cycle.

【0022】濾過のための濾布の材質は、ポリプロピレ
ン系、ポリエステル系、ポリアミド系、アラミッド系、
フッ素系等があるが、通常は価格的に汎用的なポリプロ
ピレン製で十分である。濾布の目開きは炭酸塩粒子の目
洩れによるロスを考慮して、通常3〜40μmの範囲か
ら選定される。しかし、濾過機にスラリ−を供給して、
濾過が開始された初期に濾布面にケーキ層が形成されて
粒子の目洩れがなくなるまで、濾液を貯槽に戻す循環操
作をとる場合には、必要以上に目開きを小さくする必要
はなく、3μm未満の目開きの濾布を用いると、繰り返
し使用する時の目詰まりのため濾過抵抗が大きくなり、
スム−ズなスラリ−処理ができなくなるので好ましくな
い。分離された炭酸塩ケーキの濾布面への付着厚さは、
ケーキ剥離性を考慮して通常5〜50mm、好ましくは
10〜20mmである。濾過ケーキに付着している炭酸
アルカリや鉄などの触媒成分以外の金属成分、及び有機
不純物等の水溶性不純物は、ケ−キ層に水を流通させて
洗浄、除去されるが、使用する水の量は容積比で炭酸塩
ケーキ量の通常2〜50倍、好ましくは5〜20倍であ
る。
The material of the filter cloth for filtration is polypropylene type, polyester type, polyamide type, aramid type,
Fluorine-based materials are available, but generally polypropylene, which is a versatile material, is sufficient in terms of price. The mesh size of the filter cloth is usually selected from the range of 3 to 40 μm in consideration of loss due to leakage of carbonate particles. However, supplying the slurry to the filter,
When the circulation operation for returning the filtrate to the storage tank is carried out until the cake layer is formed on the surface of the filter cloth and the leakage of particles is eliminated in the initial stage of the filtration, it is not necessary to reduce the opening more than necessary. If a filter cloth with an opening of less than 3 μm is used, the filtration resistance increases due to clogging when repeatedly used,
It is not preferable because smooth slurry treatment cannot be performed. The adhered thickness of the separated carbonate cake on the filter cloth surface is
In consideration of cake releasability, it is usually 5 to 50 mm, preferably 10 to 20 mm. Metal components other than catalyst components such as alkali carbonate and iron attached to the filter cake, and water-soluble impurities such as organic impurities are washed and removed by circulating water through the cake layer. Is usually 2 to 50 times, preferably 5 to 20 times the volume of the carbonate cake by volume.

【0023】上記で分離したコバルト及びマンガンの炭
酸塩の塩ケーキは濾布面から剥離させた後、通常、スラ
リー化槽などで水を加えて炭酸塩の濃度が通常5〜50
重量%、好ましくは10〜30重量%になるように再度
スラリ−化される。該スラリ−は次に酢酸への溶解工程
へ送られて、炭酸塩に対し2倍量以上の酢酸を加えて酢
酸化反応により、酢酸コバルト、酢酸マンガンを生成さ
せて溶解したのちに触媒の金属成分の溶液として再使用
される。酢酸化反応は、攪拌しながら通常100〜15
0℃、好ましくは酢酸の沸点近くの温度とし、反応時間
を通常30〜300分、好ましくは60〜180分とす
る。
The salt cake of the cobalt and manganese carbonates separated above is peeled from the surface of the filter cloth, and then water is usually added in a slurry tank or the like so that the carbonate concentration is usually 5 to 50.
It is re-slurried to a weight percent, preferably 10 to 30 weight percent. The slurry is then sent to a step of dissolving in acetic acid, and by adding acetic acid in an amount not less than twice the amount of carbonate to produce acetic acid, cobalt acetate and manganese acetate are produced and dissolved, and then the metal of the catalyst is dissolved. Reused as a solution of ingredients. The acetic acid reaction is usually 100 to 15 with stirring.
The temperature is 0 ° C., preferably near the boiling point of acetic acid, and the reaction time is usually 30 to 300 minutes, preferably 60 to 180 minutes.

【0024】[0024]

【実施例】以下、本発明を実施例により具体的に説明す
る。実施例、及び比較例において、全Na消費量とは、
中和で要したナトリウム量(kg/hr)と炭酸塩化反
応で要したナトリウム量(kg/hr)の合計量を示
し、反応pHとは、炭酸塩化反応槽内液のpHを示す。
炭酸塩の平均粒径は、炭酸塩化反応で得られた炭酸塩
粒子の大きさをレ−ザ−回折法により測定した平均粒径
を表し、さらに、回収率とは、炭酸塩化反応での触媒成
分の反応率と酢酸化での酢酸に溶解した触媒成分の溶解
率を乗じて表す。
The present invention will be described below in more detail with reference to examples. In Examples and Comparative Examples, the total Na consumption is
The total amount of sodium required for neutralization (kg / hr) and the amount of sodium required for carbonation reaction (kg / hr) is shown, and the reaction pH is the pH of the solution in the carbonation reaction tank.
The average particle size of the carbonate represents the average particle size of the carbonate particles obtained by the carbonation reaction measured by a laser diffraction method, and the recovery rate means the catalyst in the carbonation reaction. It is expressed by multiplying the reaction rate of the component and the dissolution rate of the catalyst component dissolved in acetic acid in the acetic acid.

【0025】実施例1 溶媒に対してCo原子として300ppmの酢酸コバル
ト、Mn原子として200ppmの酢酸マンガン及びB
r原子として1000ppmの臭化水素酸を含有する含
水酢酸(含水量;20重量%)を溶媒とし、溶媒/パラ
キシレン重量比3で反応温度210℃、圧力25kg/
cm2、滞留時間120分でチタン製反応容器にてパラ
キシレンを連続的に酸化した。次いで得られた反応混合
物からテレフタル酸粒子を減圧濾過機を用いて分離し、
分離液を蒸発器に導入し溶媒をたき上げた。得られた残
渣1重量部に水約2重量部を加えて水スラリ−とし、こ
れを濾別することによって、触媒水溶液(Co;286
0ppm、Mn;1860ppm、酢酸;3.9%、安
息香酸;8120ppm、オルトフタル酸;4450p
pm、イソフタル酸;890ppm、その他;1000
ppm以下、pH=3.0)を得た。
Example 1 300 ppm of cobalt acetate as a Co atom, 200 ppm of manganese acetate as a Mn atom and B with respect to a solvent
Hydrous acetic acid containing 1000 ppm of hydrobromic acid as an r atom (water content; 20% by weight) was used as a solvent, the solvent / paraxylene weight ratio was 3, the reaction temperature was 210 ° C., the pressure was 25 kg /
The para-xylene was continuously oxidized in a titanium reaction vessel at cm 2 and a residence time of 120 minutes. Then, the terephthalic acid particles were separated from the obtained reaction mixture using a vacuum filter,
The separated liquid was introduced into the evaporator to lift up the solvent. About 1 part by weight of the obtained residue was added with about 2 parts by weight of water to form a water slurry, which was filtered to obtain an aqueous catalyst solution (Co; 286
0ppm, Mn; 1860ppm, acetic acid; 3.9%, benzoic acid; 8120ppm, orthophthalic acid; 4450p
pm, isophthalic acid; 890 ppm, others; 1000
ppm or less, pH = 3.0) was obtained.

【0026】この水溶液2500kg/hrと15重量
%カセイソ−ダ水溶液とをカセイソ−ダ水溶液の流量を
pHが5になるように中和槽(バッフル、攪拌翼、pH
メ−タ−を備えたもの)に導入し、55℃で連続的に中
和を行った。このときのカセイソ−ダ水溶液の流量は4
20kg/hrであった。中和槽から液を抜き出し、こ
の液と20重量%炭酸ソ−ダ水溶液を、別々の導入路か
ら連続的に炭酸塩化槽(バッフル、攪拌翼、pHメ−タ
−を備えたもの)に導入した。このときの炭酸塩化槽内
液のpHは8.7であった。この際の温度は55℃に維
持し、滞留時間60分とした。このときの炭酸ソ−ダ水
溶液の流量は560kg/hrであった。
A neutralization tank (baffle, stirring blade, pH) of 2500 kg / hr of this aqueous solution and a 15% by weight aqueous solution of caseiso-da was added so that the flow rate of the aqueous solution of caseiso-da would be 5.
(Equipped with a meter) and continuously neutralized at 55 ° C. At this time, the flow rate of the aqueous caseiso-da solution is 4
It was 20 kg / hr. The liquid is extracted from the neutralization tank, and this liquid and a 20 wt% sodium carbonate aqueous solution are continuously introduced into the carbonation tank (equipped with baffles, stirring blades, and pH meters) from separate introduction paths. did. The pH of the solution in the carbonation tank at this time was 8.7. The temperature at this time was maintained at 55 ° C., and the residence time was 60 minutes. The flow rate of the soda carbonate aqueous solution at this time was 560 kg / hr.

【0027】次に、炭酸塩化槽から連続的に排出するス
ラリ−を濾過分離するため、一旦、貯槽に抜き出した
(温度55℃、滞留時間60分)。このスラリ−の液中
には10ppmのコバルトが溶解しており、反応率は9
9.5%であった。又、炭酸塩粒子の平均粒径は28μ
mであった。この貯槽からスラリ−を回分的に抜き出し
て、長さ2500mmで濾過面積0.6m2の同型フィ
ルタ−5本を備えたキャンドル式加圧濾過機(合計濾過
面積3m2、濾布ポリプロピレン、目開き30μm)に
供給した。得られた炭酸塩ケ−キに容量で5倍の水を流
通させて洗浄後、水と混合して濃度約20重量%のスラ
リ−とした。このスラリ−を酢酸溶解槽に供給し、温度
105℃で180分間溶解させた。酢酸化後の組成は、
Co4.2%、Mn2.8%、酢酸26%であり、酢酸
溶解槽に供給した炭酸塩ケ−キ量に対する溶解率は9
9.9重量%であった。このときの触媒回収系における
触媒成分の回収率は、上記反応率と酢酸溶解率とから9
9.4重量%であった。
Next, in order to filter and separate the slurry continuously discharged from the carbonation tank, it was once taken out to a storage tank (temperature 55 ° C., residence time 60 minutes). 10 ppm of cobalt was dissolved in the liquid of this slurry, and the reaction rate was 9
It was 9.5%. The average particle size of carbonate particles is 28μ.
m. A slurry is extracted from this storage tank in batches, and a candle-type pressure filter equipped with five same-type filters having a length of 2500 mm and a filtration area of 0.6 m 2 (total filtration area 3 m 2 , filter cloth polypropylene, opening) 30 μm). Five times the volume of water was circulated through the obtained carbonate cake to wash it, and then mixed with water to obtain a slurry having a concentration of about 20% by weight. This slurry was supplied to an acetic acid dissolution tank and dissolved at a temperature of 105 ° C for 180 minutes. The composition after acetic acid is
Co 4.2%, Mn 2.8%, acetic acid 26%, and the dissolution rate was 9 with respect to the amount of carbonate cake supplied to the acetic acid dissolution tank.
It was 9.9% by weight. At this time, the recovery rate of the catalyst component in the catalyst recovery system was 9 based on the above reaction rate and acetic acid dissolution rate.
It was 9.4% by weight.

【0028】実施例2〜3 実施例1において、中和槽でのpHを変更した以外は実
施例1と同様にして、中和及び炭酸塩化反応に要した全
Na消費量、炭酸塩の平均粒径、及び、触媒成分の回収
率を求めた。結果を表−1に示す。 実施例4〜5 実施例1において、炭酸塩化槽での反応時間を変更とし
たこと以外は実施例1と同様にして、中和及び炭酸塩化
反応に要した全Na消費量、炭酸塩の平均粒径、及び触
媒成分の回収率を求めた。結果を表−1に示す。
Examples 2 to 3 In the same manner as in Example 1 except that the pH in the neutralization tank was changed, the total amount of Na consumed for the neutralization and the carbonation reaction and the average of carbonates were changed. The particle size and the recovery rate of the catalyst component were obtained. The results are shown in Table 1. Examples 4 to 5 In the same manner as in Example 1 except that the reaction time in the carbonation tank was changed, the total amount of Na consumed for the neutralization and the carbonation reaction and the average of carbonates were changed. The particle size and the recovery rate of the catalyst component were determined. The results are shown in Table 1.

【0029】比較例1 中和槽での中和を行わなかった以外は実施例1と同様に
して、炭酸塩化反応に要した全Na消費量、炭酸塩の平
均粒径、及び触媒成分の回収率を求めた。結果を表−1
に示す。 比較例2〜3 炭酸塩化槽での反応時間を変更した以外は実施例1と同
様にして、中和及び炭酸塩化反応に要した全Na消費
量、炭酸塩の平均粒径、及び触媒成分の回収率を求め
た。結果を表−1に示す。比較例4 中和槽でのpHを
7としたこと以外は実施例1と同様にして、中和及び炭
酸塩化反応に要した全Na消費量、炭酸塩の平均粒径、
及び触媒成分の回収率を求めた。結果を表−1に示す。
Comparative Example 1 In the same manner as in Example 1 except that neutralization was not performed in the neutralization tank, the total amount of Na consumed for the carbonation reaction, the average particle size of the carbonate, and the recovery of the catalyst component were carried out. I asked for the rate. Table 1 shows the results.
Shown in Comparative Examples 2-3 In the same manner as in Example 1 except that the reaction time in the carbonation tank was changed, the total amount of Na consumed for the neutralization and the carbonation reaction, the average particle size of the carbonate, and the catalyst components The recovery rate was calculated. The results are shown in Table 1. Comparative Example 4 In the same manner as in Example 1 except that the pH in the neutralization tank was 7, the total amount of Na consumed for the neutralization and the carbonation reaction, the average particle size of carbonate,
And the recovery rate of the catalyst component were determined. The results are shown in Table 1.

【0030】比較例5〜6 炭酸塩化槽内液のpHを変更した以外は実施例1と同様
にして、中和及び炭酸塩化反応に要した全Na消費量、
炭酸塩の平均粒径、及び触媒成分の回収率を求めた。結
果を表−1に示す。
Comparative Examples 5 to 6 The total amount of Na consumed for the neutralization and carbonation reaction was the same as in Example 1 except that the pH of the solution in the carbonation tank was changed.
The average particle size of the carbonate and the recovery rate of the catalyst component were determined. The results are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明によれば、アルキル置換基または
一部酸化したアルキル置換基を有する芳香族化合物を液
相酸化して芳香族カルボン酸を製造する際に用いる触媒
の酢酸コバルト及び酢酸マンガンを、アルカリ消費量が
少なく、かつ、高回収率で連続的に回収、再使用するこ
とができるので工業的利用価値が大である。
INDUSTRIAL APPLICABILITY According to the present invention, cobalt acetate and manganese acetate which are catalysts used in the liquid phase oxidation of an aromatic compound having an alkyl substituent or a partially oxidized alkyl substituent to produce an aromatic carboxylic acid. Since it has a low alkali consumption and can be continuously recovered and reused at a high recovery rate, it has a great industrial utility value.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location // C07B 61/00 300 C07B 61/00 300

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルキル置換基または一部酸化したアル
キル置換基を有する芳香族化合物を、酢酸溶媒中、酢酸
コバルト、酢酸マンガン及び臭素化合物から成る触媒の
存在下、分子状酸素により液相酸化して芳香族カルボン
酸を製造する方法において、該触媒を回収再使用する際
に、(1)酸化反応混合物から芳香族カルボン酸と酢酸
溶媒を除去して酢酸コバルト、酢酸マンガンを含む残留
物を得、(2)該残留物に水と水酸化アルカリを添加混
合し、そのpHが4.0〜6.5の水溶液を得、(3)
次いで、該水溶液と炭酸アルカリを、炭酸塩化槽に、該
炭酸塩化槽内液のpHが8.0〜9.5の範囲内で実質
的に一定に保たれるような割合で連続的にに供給し、滞
留時間20〜200分間とし、該炭酸塩化槽からコバル
ト及びマンガンの炭酸塩を含むスラリーを連続的又は間
欠的に抜き出し、(4)該スラリーよりコバルト及びマ
ンガンの炭酸塩を分離し、(5)分離したコバルト及び
マンガンの炭酸塩と酢酸とを反応させ、(6)得られた
酢酸コバルト及び酢酸マンガンを前記触媒成分として再
使用すること、を特徴とする芳香族カルボン酸の製造方
法。
1. A liquid phase oxidation of an aromatic compound having an alkyl substituent or a partially oxidized alkyl substituent with molecular oxygen in the presence of a catalyst composed of cobalt acetate, manganese acetate and a bromine compound in an acetic acid solvent. In the method of producing an aromatic carboxylic acid by the method, (1) when the catalyst is recovered and reused, the aromatic carboxylic acid and the acetic acid solvent are removed from the oxidation reaction mixture to obtain a residue containing cobalt acetate and manganese acetate. (2) Water and alkali hydroxide are added to the residue and mixed to obtain an aqueous solution having a pH of 4.0 to 6.5, (3)
Then, the aqueous solution and the alkali carbonate are continuously added to a carbonation tank at such a ratio that the pH of the solution in the carbonation tank is kept substantially constant within the range of 8.0 to 9.5. The slurry containing cobalt and manganese carbonate is continuously or intermittently withdrawn from the carbonation tank, and the residence time is 20 to 200 minutes, and (4) cobalt and manganese carbonate is separated from the slurry, (5) A method for producing an aromatic carboxylic acid, characterized in that the separated cobalt and manganese carbonates are reacted with acetic acid, and (6) the obtained cobalt acetate and manganese acetate are reused as the catalyst component. .
【請求項2】 スラリ−からコバルト及びマンガンの炭
酸塩を分離するに際して、キャンドル式加圧分離機を用
いることを特徴とする請求項1の方法。
2. The method according to claim 1, wherein a candle pressure separator is used for separating cobalt and manganese carbonates from the slurry.
【請求項3】 パラキシレンを液相酸化してテレフタル
酸を製造することを特徴とする請求項1又は2の方法。
3. The method according to claim 1, wherein para-xylene is liquid-phase oxidized to produce terephthalic acid.
JP8261868A 1995-10-05 1996-10-02 Production of aromatic carboxylic acid Pending JPH09157214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8261868A JPH09157214A (en) 1995-10-05 1996-10-02 Production of aromatic carboxylic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25860895 1995-10-05
JP7-258608 1995-10-05
JP8261868A JPH09157214A (en) 1995-10-05 1996-10-02 Production of aromatic carboxylic acid

Publications (1)

Publication Number Publication Date
JPH09157214A true JPH09157214A (en) 1997-06-17

Family

ID=26543756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8261868A Pending JPH09157214A (en) 1995-10-05 1996-10-02 Production of aromatic carboxylic acid

Country Status (1)

Country Link
JP (1) JPH09157214A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312166A (en) * 2005-04-08 2006-11-16 Mitsui Chemicals Inc Recovery method of oxidation catalyst
US7273559B2 (en) 2004-10-28 2007-09-25 Eastman Chemical Company Process for removal of impurities from an oxidizer purge stream
US7282151B2 (en) 2003-06-05 2007-10-16 Eastman Chemical Company Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration
US7291270B2 (en) 2004-10-28 2007-11-06 Eastman Chemical Company Process for removal of impurities from an oxidizer purge stream
US7326807B2 (en) 2006-03-01 2008-02-05 Eastman Chemical Company Polycarboxylic acid production system with enhanced heating for oxidative digestion
US7326808B2 (en) 2006-03-01 2008-02-05 Eastman Chemical Company Polycarboxylic acid production system employing cooled mother liquor from oxidative digestion as feed to impurity purge system
US7351396B2 (en) 2003-06-05 2008-04-01 Eastman Chemical Company Extraction process for removal of impurities from an aqueous mixture
US7381386B2 (en) 2003-06-05 2008-06-03 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US7402694B2 (en) 2005-08-11 2008-07-22 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
US7410632B2 (en) 2003-06-05 2008-08-12 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US7420082B2 (en) 2006-03-01 2008-09-02 Eastman Chemical Company Polycarboxylic acid production system employing hot liquor removal downstream of oxidative digestion
US7452522B2 (en) 2003-06-05 2008-11-18 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7494641B2 (en) 2003-06-05 2009-02-24 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7501537B2 (en) 2006-03-01 2009-03-10 Eastman Chemical Company Polycarboxylic acid production system employing oxidative digestion with reduced or eliminated upstream liquor exchange
US7556784B2 (en) 2004-09-02 2009-07-07 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7569722B2 (en) 2005-08-11 2009-08-04 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
US7759516B2 (en) 2006-03-01 2010-07-20 Eastman Chemical Company Versatile oxidation byproduct purge process
US7829037B2 (en) 2006-03-01 2010-11-09 Eastman Chemical Company Oxidation system with sidedraw secondary reactor
US7863481B2 (en) 2006-03-01 2011-01-04 Eastman Chemical Company Versatile oxidation byproduct purge process
US7880032B2 (en) 2006-03-01 2011-02-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7888530B2 (en) 2004-09-02 2011-02-15 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7897810B2 (en) 2004-09-02 2011-03-01 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7897808B2 (en) 2006-03-01 2011-03-01 Eastman Chemical Company Versatile oxidation byproduct purge process
WO2017117227A1 (en) * 2015-12-31 2017-07-06 Bp Corporation North America Inc. Process for recovering heavy metal ions

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7410632B2 (en) 2003-06-05 2008-08-12 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US7351396B2 (en) 2003-06-05 2008-04-01 Eastman Chemical Company Extraction process for removal of impurities from an aqueous mixture
US7282151B2 (en) 2003-06-05 2007-10-16 Eastman Chemical Company Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration
US7494641B2 (en) 2003-06-05 2009-02-24 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7381386B2 (en) 2003-06-05 2008-06-03 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US7470370B2 (en) 2003-06-05 2008-12-30 Eastman Chemical Company Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration
US7452522B2 (en) 2003-06-05 2008-11-18 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7959879B2 (en) 2004-09-02 2011-06-14 Grupo Petrotemex, S.A. De C.V. Optimized production of aromatic dicarboxylic acids
US7556784B2 (en) 2004-09-02 2009-07-07 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7888530B2 (en) 2004-09-02 2011-02-15 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7897810B2 (en) 2004-09-02 2011-03-01 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7273559B2 (en) 2004-10-28 2007-09-25 Eastman Chemical Company Process for removal of impurities from an oxidizer purge stream
US7291270B2 (en) 2004-10-28 2007-11-06 Eastman Chemical Company Process for removal of impurities from an oxidizer purge stream
JP2006312166A (en) * 2005-04-08 2006-11-16 Mitsui Chemicals Inc Recovery method of oxidation catalyst
US7569722B2 (en) 2005-08-11 2009-08-04 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
US7402694B2 (en) 2005-08-11 2008-07-22 Eastman Chemical Company Process for removal of benzoic acid from an oxidizer purge stream
US7897808B2 (en) 2006-03-01 2011-03-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7326808B2 (en) 2006-03-01 2008-02-05 Eastman Chemical Company Polycarboxylic acid production system employing cooled mother liquor from oxidative digestion as feed to impurity purge system
US7829037B2 (en) 2006-03-01 2010-11-09 Eastman Chemical Company Oxidation system with sidedraw secondary reactor
US7863481B2 (en) 2006-03-01 2011-01-04 Eastman Chemical Company Versatile oxidation byproduct purge process
US7902395B2 (en) 2006-03-01 2011-03-08 Eastman Chemical Company Versatile oxidation byproduct purge process
US7420082B2 (en) 2006-03-01 2008-09-02 Eastman Chemical Company Polycarboxylic acid production system employing hot liquor removal downstream of oxidative digestion
US7759516B2 (en) 2006-03-01 2010-07-20 Eastman Chemical Company Versatile oxidation byproduct purge process
US7501537B2 (en) 2006-03-01 2009-03-10 Eastman Chemical Company Polycarboxylic acid production system employing oxidative digestion with reduced or eliminated upstream liquor exchange
US7880032B2 (en) 2006-03-01 2011-02-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7956215B2 (en) 2006-03-01 2011-06-07 Grupo Petrotemex, S.A. De C.V. Versatile oxidation byproduct purge process
US7326807B2 (en) 2006-03-01 2008-02-05 Eastman Chemical Company Polycarboxylic acid production system with enhanced heating for oxidative digestion
EP2574606A1 (en) 2006-03-01 2013-04-03 Grupo Petrotemex, S.A. De C.V. Polycarboxylic acid production system employing cooled mother liquor from oxidative digestion as feed to impurity purge system
WO2017117227A1 (en) * 2015-12-31 2017-07-06 Bp Corporation North America Inc. Process for recovering heavy metal ions
US20170190594A1 (en) * 2015-12-31 2017-07-06 Bp Corporation North America Inc. Process for recovering heavy metal ions
CN108367942A (en) * 2015-12-31 2018-08-03 Bp北美公司 The method for recycling heavy metal ion
US10723633B2 (en) 2015-12-31 2020-07-28 Bp Corporation North America Inc. Process for recovering heavy metal ions

Similar Documents

Publication Publication Date Title
JPH09157214A (en) Production of aromatic carboxylic acid
KR970000136B1 (en) Process for producing highly purified benzenedicarboxylic acid isomers
EP0111784B1 (en) Process for producing terephthalic acid suitable for use in direct polymerization
JP2886685B2 (en) Extraction method for removing impurities from terephthalic acid filtrate
KR100463612B1 (en) Production of Aromatic Polycarboxylic Acide
JPH078821B2 (en) Method for producing aromatic carboxylic acid
NL8201046A (en) METHOD FOR PREPARING TERFHTALIC ACID.
US3956175A (en) Method for recovering a liquid-phase oxidation catalyst for preparation of terephthalic acid
US4241220A (en) Process for producing terephthalic acid
KR100318701B1 (en) Production Method of Aromatic Carboxylic Acid
JP2557578B2 (en) Method for recovering liquid phase oxidation catalyst for paraxylene
RU2397158C2 (en) Method of producing dialkyl ether of naphthalene dicarboxylic acid (versions)
JP2893860B2 (en) Production method of high purity isophthalic acid
RU2458038C2 (en) Method of producing crude aromatic dicarboxylic acid for hydrogenation purification
WO2005115956A1 (en) Process for producing high-purity terephthalic acid
US6888023B2 (en) Process for producing pyromellitic acid
EP1052239B1 (en) Process for producing pyromellitic acid
JPH11165079A (en) Method for recovering acetic acid in liquid-phase air oxidation reaction and method for recovering catalyst
JP2004321889A (en) Method for recovering catalyst from slurry and method for producing aromatic carboxylic acid
JPH0665143A (en) Production of naphthalendicarboxylic acid
US20220340519A1 (en) A process for purifying 4,4'-dichlorodiphenyl sulfone
WO2022034401A1 (en) Recovery of metal catalysts from oxidizer purge streams
JP2006008671A (en) Method for producing high-purity terephthalic acid
JPH0748314A (en) Continuous production of naphthalenedicarboxylic acid
JPH06293697A (en) Production of naphthalenedicarboxylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411