JPS589879A - Manufacture of anisotropic carbon formed body - Google Patents
Manufacture of anisotropic carbon formed bodyInfo
- Publication number
- JPS589879A JPS589879A JP57106973A JP10697382A JPS589879A JP S589879 A JPS589879 A JP S589879A JP 57106973 A JP57106973 A JP 57106973A JP 10697382 A JP10697382 A JP 10697382A JP S589879 A JPS589879 A JP S589879A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- heating
- compact
- molded body
- softening point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/528—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は付加的結合剤なしの炭素成形体の製法に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon shaped bodies without additional binders.
このような炭素成形体は工業的にクロルアルカリ電解の
陽極、アル(=ラム製造用陽極ブロック、製鋼用アーク
炉の電極ならびに機械、装置構造および電子工業の成!
部材として使用される。Such carbon compacts are used industrially as anodes for chlor-alkali electrolysis, anode blocks for aluminum (lamb production), electrodes for arc furnaces for steelmaking, and for construction of machinery, equipment structures, and the electronics industry.
Used as a component.
炭素成形体の品質特徴は真密度、見掛密度、強度、耐熱
性、導電性、熱膨張、多孔性、建クロ構造、痕跡元素含
量″r!あシ、使用目的に応じて重点が異なる@
このような成形体は現在常用の技術にょシコークスおよ
び結合剤から混合、成形、焼成によって製造される。コ
ークスは一般にカ焼した石油コークスまたは部分力焼し
九ピッチコークス?ある◇結合剤として軟化・点的10
0’cの石油ピッチおよびコールタールピッチが使用さ
れる。The quality characteristics of carbon molded bodies are true density, apparent density, strength, heat resistance, electrical conductivity, thermal expansion, porosity, black structure, trace element content, and emphasis differs depending on the purpose of use. Such compacts are manufactured by mixing, forming and sintering from coke and a binder using conventional techniques.The coke is generally calcined petroleum coke or partially calcined nine-pitch coke. Point 10
0'c petroleum pitch and coal tar pitch are used.
成形体は高密度を得るため、使用目的に応じて3Ut”
l’含浸し、その最終寸法に加工する前に仕上焼成しな
妙ればならない◎
文献に拡酸形体を結合剤添加なしに製造する方法も記載
されている@
西独公開411FF公報菖2035395号によれば成
形体製造の前段階として揮発分8〜1o−の炭化可能材
料が推奨される。この程度の残留揮発分を有する炭化可
能材料は一般に500’C近くの温度で製造した生コー
クスである。In order to obtain a high density, the molded product may be 3 Ut” depending on the purpose of use.
It must be impregnated and finished fired before being processed to its final size. ◎ The literature also describes a method for manufacturing acid-expanded forms without the addition of a binder. According to the above, a carbonizable material with a volatile content of 8 to 1 o is recommended as a preliminary step to the production of a molded body. Carbonizable materials with this level of residual volatile content are typically green coke produced at temperatures near 500'C.
生コークスは冷間粉砕され、次に適轟な回層性の温度範
囲とくに350−450’Cおよびl−養・10/々−
ルの圧力で圧縮される。The raw coke is cold-milled and then heated to a suitable temperature range, particularly 350-450'C and 10/min.
compressed under pressure of 1.
型抜後1000℃を超える温度1炭化が行われるO
多量のガスが発生する300−500 ℃および600
〜800℃の範囲では成形体のクラック形成を避叶る九
め小さい温度勾配を選ばなければならない。コークスが
黒鉛に変る2500−3000’C。Temperature exceeding 1000℃ after mold removal 1 Carbonization occurs O 300-500℃ and 600℃ generates a large amount of gas
In the range from 800 DEG C. to 800 DEG C., the ninth smallest temperature gradient must be chosen to avoid the formation of cracks in the compact. 2500-3000'C where coke turns into graphite.
の黒鉛化の後、成形体はもっとも好ましい場合的26−
の多孔度を有する◎この多孔度社成形体の密度とともK
ll!な品質特徴である。After graphitization, the compact is in the most preferred case 26-
It has a porosity of ◎The density of this porous molded body is K
ll! It is a quality feature.
ピッチエキストラクトを主成分とする成形体の同様の製
法が英lil特許明細書第1416573’号に記載さ
れる。中間相(M@5ophase )含量9.6〜2
5−の熱的に前処理したピッチはキノリン、ピリジンま
た紘タール油のような有機溶剤によ〕分散した中′間相
球力(8ph巌ro11t )からなる黒鉛化可能相と
黒鉛化不可能のピッチ相に分離される・中間相球力は直
径が1〜100μvn14→、なお約10−の等方性ピ
ッチによって被覆される〇ピッチの徹底分離によシ炭化
後粉末状のコークス材料が得られ、この材料は適轟な結
合剤によシさらに準等方性成形体に加工することが1き
る・ピッチ含量−高い場合、成形体の製造は付加的結合
剤なし1も、残留ピッチがこの目的に役立つの1、直接
に可能″5+Toる・達成しうる成□形体密度は1.3
4〜1.’12117dt″?ある。A similar method for producing molded bodies based on pitch extract is described in British Lil Patent Specification No. 1,416,573'. Mesophase (M@5ophase) content 9.6~2
5- Thermally pretreated pitch has a graphitizable phase and a non-graphitizable phase consisting of a mesophase (8 ph ro 11 t) dispersed in an organic solvent such as quinoline, pyridine or tar oil. The intermediate phase is separated into a pitch phase with a diameter of 1 to 100 μvn14 → and is covered by an isotropic pitch of about 10 − By thorough separation of the pitch, a powdered coke material is obtained after carbonization. The material can be further processed into quasi-isotropic molded bodies with a suitable binder. Pitch content - If high, the molded body can be produced without additional binder or with residual pitch. To serve this purpose, it is directly possible to achieve a density of 1.3.
4-1. '12117dt''? Yes.
これまfに記載した2つの方法は使用′材料のために高
価な前処理過程を必要とし、量産法の経済的実施が不−
利になる・
ピッチ状炭化水素物質からなる炭素成形体を付加的結合
剤を使用せずに製造する簡単な方法は日本の雑誌“炭素
“、1968年籐52l1!13〜17ページに記載さ
れる。The two methods just described require expensive pretreatment steps for the materials used, making it impractical to economically implement mass production methods.
A simple method for producing carbon compacts made of pitch-like hydrocarbon materials without the use of additional binders is described in the Japanese magazine "Carbon", 1968, Rattan 52l1, pages 13-17. .
これによれば170℃を超える軟化点の、変性硬質、ピ
ッチが6〜6倍量の水−エチルアルコール混合物と一−
ルンル内でスラッジに粉砕および混合される@このスラ
ッジをあらかじめ製造したセラコラ屋へ陶器工業から公
知の同じ方法によシ注屋する・水はセラコラに吸収され
、!I11シの微細に分散したピッチからなる最大厚さ
6■の層が臘から剥離する〇
生成形体の安定化前にこれを圧縮処理す、ることが?き
、それによって最終コークス成形体の密度が上昇し、そ
の多孔度が減少する0“生“のピッチ成形体の安定化線
たとえばオゾン雰囲気中1軟化点近くの温度において溶
融不可能にすることによって行われる。引続く炭化の4
150〜9016の多孔度および1.45〜0.75&
/C1lの成形体密度を有する成形体が得られる。According to this, a modified hard pitch with a softening point exceeding 170°C is mixed with a water-ethyl alcohol mixture of 6 to 6 times the amount.
The sludge is crushed and mixed into a sludge in the runle and then poured into the ceracola that previously produced it by the same method known from the pottery industry.The water is absorbed by the sludge and is poured into the sludge by the same method known from the pottery industry. A layer with a maximum thickness of 6 mm consisting of finely dispersed pitch of I11 peels off from the base. Is it possible to compress this before stabilizing the formed body? The stabilization line of the "green" pitch compact thereby increases the density of the final coke compact and reduces its porosity, for example by making it unmeltable at temperatures close to the softening point in an ozone atmosphere. It will be done. Subsequent carbonization 4
Porosity of 150-9016 and 1.45-0.75&
A molded body having a molded body density of /C1l is obtained.
この方法の場合も個々の粒子が焼結する間、高い脱ガス
速度にょゐ成形体の変形を避けるため、低い温度上昇が
望まれる・この方法e#!造し丸底形体のミクロ構造線
等方性11、その他の物理的性質は変性し九硬質ピッチ
の製法たとえば蒸留または空気吹込法に非常に大きく関
係する。In this method as well, a low temperature rise is desired during the sintering of the individual particles to avoid deformation of the compact due to the high degassing rate. The microstructural line, isotropy, and other physical properties of the round-bottomed shape are very closely related to the modified hard pitch production method, such as distillation or air blowing.
本発明の目的唸石炭また線鉱油源の高い炭化残渣を有す
る高沸点芳香族炭化水素フラクションかも中間工程を避
けて、直接大形の異方性炭素成形体を高圧の使用なしく
簡単に製造すること7f!ある。Objective of the present invention: To easily produce large-sized anisotropic carbon compacts directly from high-boiling aromatic hydrocarbon fractions with high carbonization residues derived from coal or mineral oil sources, avoiding intermediate steps and without using high pressure. That's 7f! be.
この目的は本発明にょj)40’Cを超える軟化点(ク
レーマー・デルノー法KB>を有する炭化水素フラクシ
ョンを液体状態ま九紘摩砕し丸状−で瓢へ充てんし、落
l工程1完全に生コークスに変換するまで最高550’
CK加熱し、次に第2工程1はば成形体の直@(1(+
a)K応じて1−2 ・at K/day
の加熱速度で直線的に約aoo”ctで加熱し、このよ
うに製造した成形体を場合にょルピッチ11〜数回含浸
した後、最低850℃で焼成し、層液し、黒鉛化するこ
とによって解決される。The purpose of the present invention is to grind a hydrocarbon fraction having a softening point exceeding 40'C (Kramer-Dernault method KB) to a liquid state, fill it into a gourd in a round shape, and complete the dropping step 1. Up to 550' until converted to raw coke
CK heating, and then in the second step 1, the molded body was heated directly @(1(+
a) Heating linearly at a heating rate of 1 to 2 K/day depending on K at about aoo"ct, and the molded body thus produced is impregnated with a pitch of 11 to several times in some cases, and then heated to a minimum of 850 °C. Solved by firing, layering, and graphitizing.
原料としてとくに中ノリ/不溶性成分の含量1−以下の
炭化水素フラクションが使用され、これ紘石炭タールを
処理する際tiは鉱油フラクション蒸気分解の高沸点芳
香族残渣を処理する際の蒸留残渣として得られる。とく
に100℃を超える軟化点(K8)を有する硬質ピッチ
が使用される。In particular, a hydrocarbon fraction with a content of medium/insoluble components of less than 1 is used as a raw material, and when treating coal tar, Ti is obtained as a distillation residue when treating high-boiling aromatic residues from steam cracking of a mineral oil fraction. It will be done. In particular, hard pitches with a softening point (K8) above 100° C. are used.
成形体の寸法安定性を保証するため5−の収縮率を考慮
しなければならない。第1加熱工程は2段を含む。第1
R”?’濃へ充てんした硬質ピッチ祉中間相形成開#
!ま1加熱される。A shrinkage factor of 5- has to be taken into account to ensure the dimensional stability of the molded body. The first heating step includes two stages. 1st
R"?'Deeply filled hard pitch interphase formation open#
! It will be heated.
続く第2段7さらに加熱する際、分子間力の丸め等方性
ピッチ融液から異方性の変形しうる液晶いわゆる中間相
が発生する。次の急速な温度上昇の際中間相a凝固して
生コークスになる・中間相から生コークスへ炭化する間
、縮合反応の結果として離脱生成物が発生し、この生成
物はガスま九社蒸気泡として次縞に凝固する異方性中間
相を通って逃げる。上昇する気泡によシ中間相との相境
界にシャ応力が発生し、ζめ応力によシ中間相に必然的
に上昇する気泡の方向の針状組織が形成する。この形成
力は加熱したがって脱ガスが早いはど大きくなる。喬直
に立つ円筒形の臘の場合この力線軸方向?ある0黒鉛化
後との配向方向に最高の強度値および最大の導電率が達
成される。凝固した中間相は成形体全体にわたってほば
同じ配向゛を有するの1、熱負荷の際成形体の軸方向に
内部応力が発生しない。During further heating in the subsequent second stage 7, an anisotropically deformable liquid crystal, a so-called mesophase, is generated from the isotropic pitch melt due to the rounding of intermolecular forces. During the subsequent rapid temperature rise, the interphase a solidifies into raw coke.During carbonization from the interphase to raw coke, separation products are generated as a result of the condensation reaction, and this product As bubbles escape through the anisotropic mesophase which then solidifies into stripes. The rising bubbles generate a shear stress at the phase boundary with the intermediate phase, and the ζ stress inevitably forms an acicular structure in the direction of the rising bubbles in the intermediate phase. This forming force increases the faster the heating and therefore the degassing. In the case of a cylindrical stand that stands upright, is the line of force in the axial direction? The highest strength values and the highest electrical conductivity are achieved in the orientation direction with a certain zero graphitization. Since the solidified mesophase has approximately the same orientation throughout the molded body, no internal stress occurs in the axial direction of the molded body when subjected to thermal loading.
成形体を盤から取出す前に所望によシ含浸を実施するこ
とが1きる。含浸は本発明の方法によれば1つまた社多
数の工11″e行われる0そのために含浸ピッチがとく
に屋内で凝固した多孔性コークス成形体の表11iK、
あらぶじめその温度が300〜420℃に降下した後に
充てんされ&含浸に有利な温度範囲は使用する含浸ピッ
チに応じてたとえば300〜370℃1ある。含浸ピッ
チ紘重力により最初の炭化の際形成されたーいた細孔に
よって形成される毛管系へ容AK侵入する0含浸した成
形体紘次に最低860℃で焼成し、j1抜し、黒鉛化さ
れる@
=−クス成形体の屋抜紘本発明の方法によればコークス
成形体が収縮する温度まで加熱して行われる。収縮は約
800℃で最大に達する・それゆえこの温度は発生する
収縮応力が最大張力を超えて上昇しないように非常に注
意深く制御しなければならない。加熱が早過「ると、成
形体を電極として使用し得ない半径方向クラックが発生
する・本発明による炭素成形体を製造するためには前記
のように2つの部分からなる加熱曲線が必要である・約
660℃まで達する加熱曲線の第1部分く第1段および
第2段)1生コークス形成が終結する・
加熱曲線はT=a−yn(Tは温度℃、τ線時間h〕の
場合、主として原料の差によシaまたはnは 50<a
<150 とくに80〜1000.30<n<0.7
0とくに0.5〜0.6の範囲が有利fある・
これと異表る加熱曲線も可能1ある。しかし加熱が早過
「ると成形体の多孔度が不所望に大きくなシ、加熱が遅
過「ると明らかな結晶整列が発生しない。If desired, impregnation can be carried out before the shaped body is removed from the disk. The impregnation is carried out according to the method of the invention in a number of steps, so that the impregnation pitch is particularly high for porous coke compacts solidified indoors.
The preferred temperature range for filling and impregnation is, for example, 300-370° C.1, depending on the impregnation pitch used, after the temperature has initially fallen to 300-420° C. The impregnated pitch penetrates into the capillary system formed by the pores formed during the initial carbonization due to gravity. According to the method of the present invention, the coke molded product is heated to a temperature at which it shrinks. Shrinkage reaches a maximum at about 800°C; therefore this temperature must be controlled very carefully so that the shrinkage stress that occurs does not rise above the maximum tension. If the heating is carried out too quickly, radial cracks will occur that will prevent the compact from being used as an electrode.In order to produce the carbon compact according to the present invention, a heating curve consisting of two parts as described above is required. - The first part of the heating curve reaches about 660 °C (first stage and second stage) 1 Green coke formation is completed. The heating curve is T = a-yn (T is temperature °C, In the case, the shear a or n is mainly due to the difference in raw materials. 50<a
<150 especially 80-1000.30<n<0.7
0 is particularly advantageous in the range of 0.5 to 0.6. Heating curves that differ from this are also possible. However, if the heating is too early, the porosity of the molded body becomes undesirably large, and if the heating is too slow, no obvious crystal alignment occurs.
加熱曲線の第2部分はf!F!直線的に経過する。The second part of the heating curve is f! F! It passes in a straight line.
加熱直IIIAの上昇は成形体の直径のみに依存し、は
ば次の大きさを有する:
6−Q、l @ −+ Fミ120℃/dd−0,21
1L−41≧ 50℃/dd=0.4講→I2: 8℃
/d
6 = Q、 8m→#ζ 2℃/d
2つの加熱曲線の間に発生する不連続部は有利に移行曲
線によって平滑化される0
所要の加熱速度から製造時間が得られ、この時開拡成形
体の寸法が大きい場合常用法の時間と同楊度である0成
形体の寸法が小さい場合。The rise in heating temperature IIIA depends only on the diameter of the compact and has the following magnitude: 6-Q,l @ -+ Fmi 120 °C/dd-0,21
1L-41≧ 50℃/dd=0.4 lectures → I2: 8℃
/d 6 = Q, 8 m → #ζ 2 °C / d The discontinuity that occurs between the two heating curves is advantageously smoothed out by the transition curve 0 From the required heating rate the production time is obtained, and then If the dimensions of the expanded molded body are large, the dimensions of the molded body with the same degree of expansion as in the conventional method are small.
本発明の方法によシ短い焼、・成時間が可能−eある。The method of the invention allows short baking times.
次に本発明を例によシ説明する・
例1;
平滑内面を有する直径120sawの円筒形金属容器に
粗製ベンジン蒸気分解の熱分解残渣から蒸留によって得
た次の特性値を有するピッチを充てんする:
mp(Is):120℃
QI :0.31G
’I’l :22−
灰分 : −
加熱一線唸次のとおシ1ある:
20〜660℃ 18時間 中間相結晶の軸方向針状組
織が発生する炭化期
560〜630℃ 20時間
630〜830℃ 60時間収縮率は511″I!1あ
る。Next, the present invention will be explained by way of an example. Example 1: A cylindrical metal container with a diameter of 120 saws and a smooth inner surface is filled with pitch having the following characteristic values obtained by distillation from the pyrolysis residue of crude benzene vapor decomposition. : mp(Is): 120°C QI: 0.31G 'I'l: 22- Ash content: - There is one step after heating: 20-660°C for 18 hours Axial acicular structure of mesophase crystals occurs. The carbonization period is 560~630°C for 20 hours and 630~830°C for 60 hours.The shrinkage rate is 511''I!1.
冷 却 26時間
110時間1簡単に盤を転倒することによって取出しう
るクラックのないコークス成形体が発生する。炭素収率
は8811”1’ある。多孔性状32−1ある。軸方向
針状組織紘顕著1ある。Cooling: 26 hours 110 hours 1 A crack-free coke molded body is generated that can be taken out by simply overturning the plate. The carbon yield is 8811"1'. The porosity is 32-1. The axial needle-like structure is 1.
コークス成形体は常用法で黒鉛化するーことが ゛
できる。略号のIF([8)は軟化点(クレーマー・ザ
ルノー法)、QI絋鉱ノリンネ溶性、TIはトルオール
不溶性を表わす@
例2:
直径400■の金属鑞に分離した石炭タールピッチから
蒸留した硬質ピッチ(1!P160℃)を充てんする。Coke compacts can be graphitized using conventional methods. The abbreviations IF ([8) represent the softening point (Kramer-Zarnow method), QI shows the solubility of minerals, and TI represents the insolubility of toluene. Example 2: Hard pitch distilled from coal tar pitch separated into metal solder with a diameter of 400 mm. (1! P160℃).
加熱曲線は次のとおシ1ある:
20〜650℃ 18時間 =−クス成形体は熱処理後
36−の多孔度を有する0
550〜400’C10時間 冷却
400℃ 6時間 蒸留硬質ピッチ(EP160℃)を
脱ガス上面へ添加することによって成形体の多孔度が低
下する。The heating curve is as follows: 20-650°C 18 hours = - The compact has a porosity of 36 after heat treatment 550-400'C 10 hours Cooling 400°C 6 hours Distilled hard pitch (EP 160°C) The porosity of the compact is reduced by adding to the degassed top surface.
400−550℃10時間 添加し九含浸ピッチ紘炭化
され、1次炭化材料と同じ軸方向結晶構造を示す@
660〜630℃ 60時間
630〜830℃360時間
830〜20℃100時間
554時間を転倒によって屋抜しうる直径375■のク
ラックのないコークス成形体が発生する。400-550℃ 10 hours Added and nine impregnated pitch carbonized, showing the same axial crystal structure as the primary carbonized material @ 660-630℃ 60 hours 630-830℃ 360 hours 830-20℃ 100 hours 554 hours Tipping A crack-free coke molded body with a diameter of 375 cm, which can be opened indoors, is produced.
焼成した成形体の多孔度は161G−?ある。The porosity of the fired compact is 161G-? be.
成形体は常用法で黒鉛化することができる。The shaped bodies can be graphitized in a conventional manner.
例3=
直径630mの円筒形金属層にろ過した石炭タール標準
ピッチとエチレン熱分解からの残渣油を1=1の比で充
てんする(BP約40℃)0加熱曲線紘次のとおシであ
る:
20〜630℃24時間
630〜360℃16時間
360℃10時間 ろ過した石炭タール標準ピッチ(I
iiP72℃)による第1含浸350〜630℃16時
間
630〜360℃16時間 ろ過した石炭タール標準ピ
ッチによる第2含浸
360℃ 10時間
360〜530℃ 18時間
630〜630℃ 120時間
630〜830℃ 1900時間
830〜20℃ 200時間
2327時間で直11600簡のコークス成形体が発生
する。Example 3 = A 630 m diameter cylindrical metal bed is filled with filtered coal tar standard pitch and residual oil from ethylene pyrolysis in a ratio of 1=1 (BP approx. 40°C) 0 heating curve Hiroji's Toshi : 20-630℃ 24 hours 630-360℃ 16 hours 360℃ 10 hours Filtered coal tar standard pitch (I
1st impregnation with filtered coal tar standard pitch 360°C 10 hours 360-530°C 18 hours 630-630°C 120 hours 630-830°C 1900 11,600 pieces of coke molded body are generated in 200 hours and 2327 hours at 830 to 20°C.
多孔度は13s″eある〇
成形体は常用法で黒鉛化される◎
次の表は常用法に対する本発明の方法の利点を電極製造
の例1示す〇
方法比較
常 用 法 本発明の方法The porosity is 13s''e〇 The molded body is graphitized by the conventional method ◎ The following table shows the advantages of the method of the invention over the conventional method in Example 1 of electrode production 〇 Method comparison Conventional method Method of the invention
Claims (1)
る高沸点芳香族炭化水素フラクションから付加的結合剤
および高圧を使用せずに異方性炭素成形体を製造する方
法において、40℃を超える軟化点(クレーマー・ザル
ノー法)を有する膨化水素フラクションを液体状態壕九
社摩砕した状態で盤へ充てんし、籐lJR”t!完全に
生コークスに変換するまで最^660℃に加熱し1次に
第2段で成形体直径d(s*)に依存する 1.2・djlk/乙y の加熱速度’t’800℃ま1直線的に加熱し、得られ
九成形体を最低850℃f焼成し、層液し。 晶鉛化することを特徴とする異方性炭素成形体の製法・ 2 炭化水素フラクションとして石炭タール処理の際の
蒸留残渣また紘鉱油フラクション蒸気分解の際の^沸点
芳香族熱分解残渣を使用すゐ特許請求の範囲第1項記載
の製法O& 蒸留残渣が100℃を超える軟化点(クレ
ーi−・ずルノー法)を有し、呼ノリン不溶成分を1慢
以下含む特許請求の範m菖2項記載の製法・ 先 収縮率約5囁の成形体を製造する特許請求の範囲第
1項〜第6項の1つに記載の製法Ob S数T=a・i
nによる加熱白線〔Tは温度℃、τ社時間りを表わし、
定数aa50〜150、指数nは0.3〜0.7の範囲
内にある0〕に従って加熱する特許請求の範囲第1項〜
第6項の1つに記載の製法。 6、成形体を300〜420℃1軟化点(クレーマー・
ザルノー法)120〜170℃のピッチで含浸し、その
際加熱し良液体ピッチを履の上の開放部へ流しζみ1重
力の作用のみ1成形体へ侵入させる特許請求の範囲第1
項〜第6項の1つに記載の製法0[Claims] 1. Producing anisotropic carbon compacts from a high-boiling aromatic hydrocarbon fraction with a high carbonized residue obtained from coal or expanded mineral oil without the use of additional binders and high pressure. In the method, a expanded hydrogen fraction with a softening point exceeding 40°C (Kramer-Zarnault method) is ground in a liquid state and filled into a plate, and heated until it is completely converted into raw coke. ^ Heated to 660°C, then linearly heated in the second stage to 800°C at a heating rate of 1.2 djlk/oty, which depends on the diameter d (s*) of the compact. A method for producing an anisotropic carbon compact characterized by firing the compact at a minimum of 850°C and forming a layer liquid. The manufacturing method according to claim 1 which uses the boiling point aromatic pyrolysis residue during steam decomposition & the distillation residue has a softening point of over 100°C (clay i-zu Renault process) and has a The manufacturing method according to claim 2, which contains a Norin-insoluble component of less than 1%. Ob S number T=a・i
Heating white line by n [T represents temperature °C, τ company time,
Heating according to the constant aa of 50 to 150 and the index n of 0 within the range of 0.3 to 0.7.
A method according to one of clauses 6. 6. The molded body has a softening point of 300-420℃ (Kramer,
(Zarnow method) Impregnating with pitch at 120 to 170°C, heating at that time, flowing good liquid pitch to the opening on the shoe, and penetrating into the molded body only by the action of gravity.Claim 1
Manufacturing method 0 according to one of items 6 to 6
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19813125609 DE3125609A1 (en) | 1981-06-30 | 1981-06-30 | METHOD FOR PRODUCING CARBON MOLDED BODIES |
DE3125609.0 | 1981-06-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS589879A true JPS589879A (en) | 1983-01-20 |
JPH0240628B2 JPH0240628B2 (en) | 1990-09-12 |
Family
ID=6135677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57106973A Granted JPS589879A (en) | 1981-06-30 | 1982-06-23 | Manufacture of anisotropic carbon formed body |
Country Status (4)
Country | Link |
---|---|
US (1) | US4534949A (en) |
EP (1) | EP0068519B1 (en) |
JP (1) | JPS589879A (en) |
DE (2) | DE3125609A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653895U (en) * | 1991-12-25 | 1994-07-22 | アライ実業株式会社 | Flexible duct |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0156051B1 (en) * | 1984-03-23 | 1987-06-10 | Kawasaki Steel Corporation | Method for producing carbon powders |
JPS60200816A (en) * | 1984-03-26 | 1985-10-11 | Kawasaki Steel Corp | Production of carbonaceous material |
US4929404A (en) * | 1984-09-25 | 1990-05-29 | Mitsubishi Petrochemical Company Limited | Graphitic or carbonaceous moldings and processes for producing the same |
DE3609348A1 (en) * | 1986-03-20 | 1987-09-24 | Ruetgerswerke Ag | METHOD FOR CONTINUOUS COOKING OF PECHES AND USE OF THE COOK RECOVED |
US4863814A (en) * | 1986-03-27 | 1989-09-05 | Sharp Kabushiki Kaisha | Electrode and a battery with the same |
DE3907156A1 (en) * | 1989-03-06 | 1990-09-13 | Sigri Gmbh | METHOD FOR INHIBITING THE PUFFING OF COCKS MADE FROM CARBON TECH |
DE3907158C1 (en) * | 1989-03-06 | 1990-04-19 | Sigri Gmbh, 8901 Meitingen, De | |
US6039791A (en) * | 1997-10-23 | 2000-03-21 | Kazeef; Michael G. | Fused calcined petroleum coke and method of formation |
KR101079666B1 (en) | 2009-06-23 | 2011-11-03 | 극동씰테크 주식회사 | Producing method of Graphene-pitch composits and Carbon block |
DE102011007074A1 (en) * | 2011-04-08 | 2012-10-11 | Sgl Carbon Se | Slip, process for its preparation and carbon moldings |
US11060033B2 (en) * | 2017-06-23 | 2021-07-13 | The United States Of America, As Represented By The Secretary Of Agriculture | Compositions and methods for producing calcined coke from biorenewable sources |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3309437A (en) * | 1961-08-28 | 1967-03-14 | Great Lakes Carbon Corp | Method of producing bodies from raw petroleum coke |
JPS5112474B1 (en) * | 1967-02-03 | 1976-04-20 | ||
US4115527A (en) * | 1969-03-31 | 1978-09-19 | Kureha Kagaku Kogyo Kabushiki Kaisha | Production of carbon fibers having high anisotropy |
US4016247A (en) * | 1969-03-31 | 1977-04-05 | Kureha Kagaku Kogyo Kabushiki Kaisha | Production of carbon shaped articles having high anisotropy |
FR2052124A5 (en) * | 1969-07-18 | 1971-04-09 | Charbonnages De France | |
US3956436A (en) * | 1972-06-29 | 1976-05-11 | Director-General Of The Agency Of Industrial Science And Technology | Process for producing micro-beads and product containing the same |
US4032430A (en) * | 1973-12-11 | 1977-06-28 | Union Carbide Corporation | Process for producing carbon fibers from mesophase pitch |
US4071604A (en) * | 1974-12-03 | 1978-01-31 | Advanced Technology Center, Inc. | Method of producing homogeneous carbon and graphite bodies |
US4184942A (en) * | 1978-05-05 | 1980-01-22 | Exxon Research & Engineering Co. | Neomesophase formation |
US4190637A (en) * | 1978-07-18 | 1980-02-26 | The United States Of America As Represented By The United States Department Of Energy | Graphite having improved thermal stress resistance and method of preparation |
US4219404A (en) * | 1979-06-14 | 1980-08-26 | Exxon Research & Engineering Co. | Vacuum or steam stripping aromatic oils from petroleum pitch |
DE3024423C2 (en) * | 1980-06-28 | 1982-09-23 | Rütgerswerke AG, 6000 Frankfurt | Use of pitch fractions that can be piqued for the production of anisotropic carbon |
-
1981
- 1981-06-30 DE DE19813125609 patent/DE3125609A1/en not_active Withdrawn
-
1982
- 1982-04-01 DE DE8282200407T patent/DE3264744D1/en not_active Expired
- 1982-04-01 EP EP82200407A patent/EP0068519B1/en not_active Expired
- 1982-06-23 JP JP57106973A patent/JPS589879A/en active Granted
-
1984
- 1984-06-29 US US06/626,091 patent/US4534949A/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653895U (en) * | 1991-12-25 | 1994-07-22 | アライ実業株式会社 | Flexible duct |
Also Published As
Publication number | Publication date |
---|---|
US4534949A (en) | 1985-08-13 |
DE3264744D1 (en) | 1985-08-22 |
JPH0240628B2 (en) | 1990-09-12 |
EP0068519A3 (en) | 1983-03-09 |
EP0068519B1 (en) | 1985-07-17 |
DE3125609A1 (en) | 1983-01-13 |
EP0068519A2 (en) | 1983-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5705139A (en) | Method of producing high quality, high purity, isotropic graphite from coal | |
US3787541A (en) | Graphitization of mesophase pitch fibers | |
JPS589879A (en) | Manufacture of anisotropic carbon formed body | |
CN108610049B (en) | Isotropic graphite material, method for the production thereof and use thereof | |
US3250832A (en) | Process for making refractory articles | |
US7658903B2 (en) | High purity nuclear graphite | |
KR101916392B1 (en) | A method of preparing impregnating pitch from petroleum material and impregnating pitch prepared using the same | |
US5283045A (en) | Sinterable carbon powder and method of its production | |
JPS61122110A (en) | Production of high-density carbon material | |
JPS62138361A (en) | Manufacture of high density formed body from carbon material | |
JPH06102530B2 (en) | Method for manufacturing graphite molded body | |
JP3038489B2 (en) | Method for producing metal composite carbon material | |
KR102696761B1 (en) | Petroleum-based impregnated pitch manufacturing method and petroleum-based impregnated pitch manufactured using the same | |
US9546113B2 (en) | High porosity/low permeability graphite bodies and process for the production thereof | |
US2493383A (en) | Production of useful articles from coal | |
RU2134656C1 (en) | Composition and method for preparing charge for production of carbon material | |
JPH0597549A (en) | Graphite crucible for metal evaporation | |
JPH0158125B2 (en) | ||
JPH0151441B2 (en) | ||
KR970008693B1 (en) | Process for the preparation of carbon composite material | |
JPH09208314A (en) | Production of carbonaceous material | |
JP2697482B2 (en) | Method for producing pitch-based material and method for producing carbon material using the same as raw material | |
JPH0269357A (en) | Production of isotropic graphite material having high density and high strength | |
KR20230005502A (en) | Method for manufacturing hetero-phase binder pitch and hetero-phase binder pitch manufactured therefrom | |
JPS62187167A (en) | Manufacture of graphite formed body |