JPH0158125B2 - - Google Patents
Info
- Publication number
- JPH0158125B2 JPH0158125B2 JP59166220A JP16622084A JPH0158125B2 JP H0158125 B2 JPH0158125 B2 JP H0158125B2 JP 59166220 A JP59166220 A JP 59166220A JP 16622084 A JP16622084 A JP 16622084A JP H0158125 B2 JPH0158125 B2 JP H0158125B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- density
- raw material
- molding
- heated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002994 raw material Substances 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 20
- 239000003575 carbonaceous material Substances 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 238000010304 firing Methods 0.000 claims description 12
- 238000000465 moulding Methods 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000010298 pulverizing process Methods 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 9
- 239000011148 porous material Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000007833 carbon precursor Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Description
〔産業上の利用分野〕
本発明は、特定の炭素質を原料とする高強度・
高密度炭素材の製造方法に関する。
〔従来の技術〕
炭素材料の中でも、高強度・高密度炭素材は、
各種電極、原子力黒鉛材ルツボ、ヒーター、メカ
ニカルシール材、摺動材、集電材、ホツトプレス
用ダイス等多分野にわたつて使用されている。
このような、高強度・高密度炭素材の製造方法
は、従来、コークスあるいは黒鉛等を粒径10μm
以下に微粉砕し、これにコールタールピツチ等の
バインダーを加え熱間混練したのち、再び粉砕
し、成型、焼成、さらにタールピツチ等の含浸、
再焼成をくり返して嵩密度1.8程度の炭素材とし
て製造されるもので、工程が極めて複雑で手間の
かかるものであつた。さらにコークスあるいは黒
鉛等の骨材とバインダーの収縮率の違いによる微
小クラツクの発生、骨材の持つ気孔の焼成後の残
存、バインダーに含まれる揮発物のガス化による
気孔の発生、あるいはバインダーの酸化による部
分的な難黒鉛化性の発現等種々の問題があり、高
強度・高密度炭素材の製造は難しくその価格は高
価なものであつた。従つて、より安価で、高品位
の高強度・高密度炭素材を得るために従来から
種々検討されている。たとえば、(1)特公昭53−
18359号公報においては水素と炭素の原子比、キ
ノリン可溶分、熱変形収縮率、炭化率等で規定し
た特定の原料を平均粒径10μm以下に微粉砕し、
成形後焼成炭化および黒鉛化して得る高密度・高
強度炭素成形材料の製造方法を提案しており、さ
らに、(2)特開昭56−22615号公報においては、石
油系重質油またはコールタールピツチを熱処理
し、生成する光学異方性小球体を溶剤分別法にて
単離することにより、高密度炭素材の製造に適し
た炭素材原料を製造する方法を提案している。
〔発明が解決しようとする問題点〕
これらの方法はいずれも原料粉自身が骨材とバ
インダー性の両性質を兼ね、自己焼結性を持たせ
てクラツクの発生あるいは気孔の発生を防ぎ高強
度・高密度炭素材を製造する試みである。
しかし、(1)の方法は、ポーラス状でかつ組織と
して光学的に異方性を示す流れ模様構造、および
球晶構造が混在しているコークス状の炭素前駆体
物質を機械的に粉砕して高密度・高強度炭素材料
を製造するというもので、平均粒径10μm以下に
微粉砕するには特殊な粉砕機を必要とし、しかも
多大な運転費と時間がかかる。さらに微粉化によ
り成型時に内包する空気の抜けが悪く成型速度が
上げられず、焼成過程で発生するガスの抜ける気
孔も小さくなり成型体内部にガス圧がかかり、焼
成体に割れが発生し易い。
また、(2)の方法では、溶剤分離された光学異方
性小球体内部に溶剤で抽出されて生じたクラツク
を有し、この光学異方性小球体を成型、焼成した
炭素材にもこの内部クラツクが残り高強度・高密
度品は得難い。
本発明は、前記従来の問題点を解決し、自己焼
結性を有し(バインダーを使用しないで成型焼結
が可能)、粒子内クラツクの発生がなく、従つて
平均粒径10〜40μmの比較的粗い粒度の原料から
高強度・高密度炭素材を製造する方法を提供する
ことを目的としている。
〔問題点を解決するための手段〕
前記問題点を解決するために、本発明は、ピツ
チを10〜70Torrの減圧下で、または400〜600℃
の加熱スチームを吹き込みながら昇温し、400〜
530℃まで加熱するとともに低分子成分および分
解油分の除去を行い、炭素含有率92重量%以上、
900℃までの揮発分が7〜13重量%、500℃まで加
熱したときの成型体の線収縮率が6%以下の原料
を、平均粒径10μmを超え40μm以下に粉砕した
後、成型し焼成する手段を採つている。
〔作用〕
本発明者は、炭素材原料の品質と、その加熱過
程における成型体の収縮挙動および粒子内のクラ
ツク発生挙動との相関を追求したところ、次の知
見を得た。
炭素含有率が92%(以下成分量については全て
重量%を単に%として示す。)以上で、900℃まで
の揮発分が7〜13%、500℃まで加熱した時の線
収縮率が6%以下の性状の原料は焼成過程で次の
ような特徴を有する。
(イ) 易黒鉛化性で高密度化が容易である。
(ロ) 自己融着性を有すとともに、内部発泡をきた
さない。
(ハ) 内部クラツクが生じない。
したがつて上述した性状を有する平均粒径10〜
40μmの比較的粗粒の原料を成型焼成することに
より高強度・高密度炭素材が得られる。
〔発明の具体例〕
さらに本発明を詳述する。
前述のような炭素質原料を得るには、コールタ
ールやピツチを単に350〜550℃で加熱する方法
や、さらに熱処理後に溶剤により抽出して原料を
改質する方法では不充分で、本発明の特性を有す
る原料は、ピツチを10〜70Torrの減圧下で、ま
たは400〜600℃の加熱スチームを吹き込みながら
昇温し400〜530℃まで加熱するとともに低分子成
分および分解油分の除去を行うことにより得られ
る。
ここで減圧を10〜70Torrとしたのは、400〜
530℃の加熱と同時に70Torr以下に減圧すること
により、低分子成分および分解油分の除去効率を
上げ、炭素含有率の増加を促進するためである。
また、10Torr未満の減圧は分解ガスの発生によ
り到達困難であり、品質的にも10〜70Torrの減
圧の場合と大差ないことから減圧力を必要以上に
上げる必要はない。
また、加熱スチームの温度を400〜600℃とした
のは、400℃よりも低い温度の場合、本発明が元
来目的とする400〜530℃という熱処理温度範囲の
下限温度を当然に達成できず、本発明の特性を示
す原料が得られない。また、600℃を超える場合
はスチーム吹き込みにより熱処理が進み過ぎ、揮
発分が著しく低下し本発明の特性を示す原料が得
られない。
さらに、加熱温度を400〜530℃としたのは、
400℃未満の場合は重縮合が不充分で、炭素含有
率の増加や揮発分の減少が進まず、一方530℃を
超える場合には、重縮合が進み過ぎて揮発分が著
しく低下するため本発明の特性を示す原料が得ら
れない。
本発明に係る炭素質原料の炭素含有率は92%以
上が必要であり、炭素質原料が92%未満の場合は
炭素以外の原子が焼成過程で分解、ガス化し重量
減少量が増加するとともに、炭素以外の原子が黒
鉛化性を阻害し高密度化が困難となる。
また900℃までの揮発分は、7〜13%の範囲が
適しており、揮発分が7%未満であると焼成過程
で粒子同志の融着、合体が起こらず自己焼結性が
不足し固化しない。他方、13%を超えると、焼成
過程で成型体の軟化融着が進み過ぎ、粒子間の気
孔が閉塞すると共に成型体内部から発生する多量
揮発分により発泡し高密度化を達成できない。
また、500℃まで加熱した時の成型体の線収縮
率は6%以下が要求される。この値は通常2t/cm2
以上の加圧成型で作られた成型体から試片を採取
して測定した値である。この線収縮率が6%を越
える場合は、成型体内の気孔の収縮が大きいため
500℃までに発生する揮発分が気孔を通つて抜け
にくくなり、成型体内部に圧力がかかり、割れの
原因となる。第1図に500℃まで加熱した時の成
型体の線収縮率が4%の原料(後記実施例1)お
よび第2図に10%原料(後記比較例2)をそれぞ
れ100μmに粉砕し1000℃で焼成して得られた炭
素粉の偏光顕微鏡写真観察図を示す。第1図では
粒子内部で割れが生じておらず、第2図では粒子
内の割れが発生していることが判る。
かかる性状を有する炭素質原料を平均粒径10〜
40μm(10μmを含まず)、好ましくは12〜30μm
になるように粉砕する。平均粒径10μm以下で
は、成型時に内包する空気の抜けが悪く成型速度
を上げられないばかりでなく、焼成過程で発生す
るガスの抜ける気孔も小さくなり、成型体内部に
発生ガスの圧力がかかり割れの発生を起こしやす
いばかりでなく、特殊な粉砕機を要し、多大の労
力および運転費を必要とする。
また平均粒径が40μmを超えると、加圧成型し
ても成型密度が上がらず、高密度化し難い。
粉砕方法は、振動ボールミル、ロータリーミ
ル、ハンマーミル等のいずれの方法でもよく限定
するものではない。
さらに、上記した性状および粒径の原料を型込
め成型、または、油脂等を加えて流動性を与え押
し出し成型等の方法で成型した後、非酸化性雰囲
気中で炭化および黒鉛化のための焼成を行う。
〔実施例および比較例〕
コールタールおよび石油系生コークスを第1表
左欄に示す条件で処理し、第1表右欄に示す性状
の炭素質原料を得た。本発明で規定する性状特性
を満足するものを実施例、満足しないものを比較
例として示す。
[Industrial Application Field] The present invention is directed to high strength and
This invention relates to a method for producing high-density carbon material. [Conventional technology] Among carbon materials, high strength and high density carbon materials are
It is used in a wide variety of fields, including various electrodes, nuclear graphite crucibles, heaters, mechanical sealing materials, sliding materials, current collector materials, and hot press dies. Conventionally, the manufacturing method of high-strength, high-density carbon materials has been to use coke, graphite, etc. with a particle size of 10 μm.
After finely pulverizing the powder, adding a binder such as coal tar pitch, and hot kneading, pulverizing again, molding, firing, and further impregnating with tar pitch, etc.
Carbon material with a bulk density of about 1.8 is produced by repeated re-firing, and the process is extremely complicated and time-consuming. Furthermore, the occurrence of microcracks due to the difference in shrinkage rate between aggregates such as coke or graphite and the binder, pores in the aggregate remaining after firing, generation of pores due to gasification of volatiles contained in the binder, or oxidation of the binder. There have been various problems such as partial development of non-graphitizable properties due to carbon dioxide, making it difficult and expensive to produce high-strength, high-density carbon materials. Therefore, various studies have been made in the past in order to obtain cheaper, high-grade, high-strength, high-density carbon materials. For example, (1) Tokuko Sho 53-
In Publication No. 18359, specific raw materials specified by the atomic ratio of hydrogen and carbon, quinoline soluble content, thermal deformation shrinkage rate, carbonization rate, etc. are finely pulverized to an average particle size of 10 μm or less,
They have proposed a method for producing a high-density, high-strength carbon molding material obtained by calcination carbonization and graphitization after molding. We are proposing a method for producing carbon material raw materials suitable for producing high-density carbon materials by heat-treating pitch and isolating the optically anisotropic spherules produced using a solvent fractionation method. [Problems to be solved by the invention] In all of these methods, the raw material powder itself has both aggregate and binder properties, and has self-sintering properties to prevent the generation of cracks and pores and to achieve high strength.・This is an attempt to manufacture high-density carbon material. However, method (1) involves mechanically crushing a coke-like carbon precursor material that has a porous, optically anisotropic flow pattern structure and a spherulite structure. The purpose is to manufacture high-density, high-strength carbon materials, which requires a special pulverizer to pulverize to an average particle size of 10 μm or less, and requires a large amount of operating cost and time. Furthermore, due to pulverization, it is difficult for the air contained in the product to escape during molding, making it impossible to increase the molding speed, and the pores through which gas generated during the firing process can escape become smaller, resulting in gas pressure being applied to the inside of the molded product, which tends to cause cracks in the fired product. In addition, in method (2), cracks that are extracted by the solvent are present inside the optically anisotropic small spheres that have been separated by the solvent, and the carbon material that has been molded and fired from the optically anisotropic small spheres also contains cracks. Internal cracks remain, making it difficult to obtain high-strength, high-density products. The present invention solves the above conventional problems, has self-sintering properties (can be molded and sintered without using a binder), does not generate intraparticle cracks, and has an average particle size of 10 to 40 μm. The purpose of this invention is to provide a method for producing high-strength, high-density carbon materials from relatively coarse-grained raw materials. [Means for Solving the Problems] In order to solve the above problems, the present invention provides that pitches are heated under a reduced pressure of 10 to 70 Torr or at 400 to 600°C.
Raise the temperature while blowing heated steam to 400~
By heating to 530℃ and removing low molecular components and decomposed oil, the carbon content is 92% by weight or more.
A raw material with a volatile content of 7 to 13% by weight up to 900℃ and a linear shrinkage rate of 6% or less when heated to 500℃ is crushed to an average particle size of more than 10μm and less than 40μm, then molded and fired. We are taking measures to do so. [Function] The present inventor investigated the correlation between the quality of the carbon material raw material, the shrinkage behavior of the molded body during the heating process, and the crack generation behavior within the particles, and obtained the following knowledge. The carbon content is 92% or more (all component amounts below are expressed simply as %), the volatile content up to 900℃ is 7 to 13%, and the linear shrinkage rate when heated to 500℃ is 6%. Raw materials with the following properties have the following characteristics during the firing process. (a) It is easily graphitized and can be easily increased in density. (b) It has self-bonding properties and does not cause internal foaming. (c) Internal cracks do not occur. Therefore, the average particle size with the above properties is 10~
A high-strength, high-density carbon material can be obtained by molding and firing raw materials with relatively coarse grains of 40 μm. [Specific Examples of the Invention] The present invention will be further explained in detail. In order to obtain the above-mentioned carbonaceous raw material, it is insufficient to simply heat coal tar or pitch at 350 to 550°C, or to modify the raw material by extracting it with a solvent after heat treatment. Raw materials with special characteristics can be produced by heating pitch to 400 to 530 degrees Celsius under reduced pressure of 10 to 70 Torr or while blowing heated steam at 400 to 600 degrees Celsius, and removing low molecular components and cracked oil components. can get. The decompression here is 10 to 70Torr, which means 400 to 70Torr.
By simultaneously heating to 530°C and reducing the pressure to 70 Torr or less, the removal efficiency of low molecular components and cracked oil components is increased, and the increase in carbon content is promoted.
Furthermore, it is difficult to achieve a reduced pressure of less than 10 Torr due to the generation of cracked gas, and there is no need to increase the reduced pressure more than necessary since there is no significant difference in quality from a reduced pressure of 10 to 70 Torr. In addition, the temperature of the heating steam was set at 400 to 600°C because if the temperature is lower than 400°C, the lower limit temperature of the heat treatment temperature range of 400 to 530°C, which is the original objective of the present invention, cannot be achieved. , a raw material exhibiting the characteristics of the present invention cannot be obtained. If the temperature exceeds 600°C, the heat treatment by steam blowing will proceed too much, and the volatile content will drop significantly, making it impossible to obtain a raw material exhibiting the characteristics of the present invention. Furthermore, the heating temperature was set at 400 to 530℃.
If the temperature is less than 400℃, the polycondensation will be insufficient, and the increase in carbon content and decrease in volatile content will not progress. On the other hand, if the temperature exceeds 530℃, polycondensation will proceed too much and the volatile content will decrease significantly. Raw materials exhibiting the characteristics of the invention cannot be obtained. The carbon content of the carbonaceous raw material according to the present invention must be 92% or more, and if the carbonaceous raw material is less than 92%, atoms other than carbon will decompose and gasify during the firing process, resulting in an increase in weight loss. Atoms other than carbon inhibit graphitization, making it difficult to achieve high density. In addition, a range of 7 to 13% is suitable for the volatile content up to 900℃; if the volatile content is less than 7%, particles will not fuse or coalesce during the firing process, resulting in insufficient self-sintering properties and solidification. do not. On the other hand, if it exceeds 13%, the molded body undergoes too much softening and fusion during the firing process, the pores between the particles are closed, and a large amount of volatile matter generated from inside the molded body causes foaming, making it impossible to achieve high density. Furthermore, the linear shrinkage rate of the molded product when heated to 500°C is required to be 6% or less. This value is usually 2t/cm 2
This value was measured by taking a sample from the molded body made by the above pressure molding. If this linear shrinkage rate exceeds 6%, it is because the shrinkage of the pores in the molded object is large.
Volatile matter generated up to 500°C becomes difficult to escape through the pores, creating pressure inside the molded body and causing cracks. Figure 1 shows a raw material with a linear shrinkage rate of 4% when heated to 500°C (Example 1 below), and Figure 2 shows a 10% raw material (Comparative Example 2 below), each pulverized to 100 μm and heated to 1000°C. A polarized light microscope photograph of carbon powder obtained by firing is shown. In FIG. 1, it can be seen that no cracks have occurred inside the particles, and in FIG. 2, it can be seen that cracks have occurred inside the particles. Carbonaceous raw materials with such properties have an average particle size of 10~
40μm (excluding 10μm), preferably 12-30μm
Grind it until it becomes. If the average particle size is less than 10 μm, not only will it be difficult for the contained air to escape during molding, making it impossible to increase the molding speed, but the pores through which gas generated during the firing process can escape will also become smaller, causing the pressure of the gas generated inside the molded body to crack. Not only is this easy to cause, but also a special crusher is required, which requires a lot of labor and operating costs. Moreover, if the average particle size exceeds 40 μm, the molding density will not increase even if pressure molded, and it will be difficult to increase the density. The pulverization method may be any method such as a vibrating ball mill, rotary mill, or hammer mill, but is not limited to any particular method. Furthermore, after molding the raw materials with the properties and particle size described above by a method such as injection molding or extrusion molding by adding oil or the like to give fluidity, the raw materials are fired for carbonization and graphitization in a non-oxidizing atmosphere. I do. [Examples and Comparative Examples] Coal tar and petroleum-based raw coke were treated under the conditions shown in the left column of Table 1 to obtain carbonaceous raw materials having the properties shown in the right column of Table 1. Examples are shown that satisfy the physical properties specified in the present invention, and comparative examples are shown that do not.
【表】【table】
【表】
合物を遠心分離機にかけ不溶分を分離・回収
次に、第1表右欄性状の炭素質原料を、ハンマ
ーミルで平均粒径10μm〜40μmの範囲内に粉砕
し、2t/cm2の圧力で90×50×50mmの直方体に成型
した後、粉コークスを詰めた容器内で、窒素雰囲
気中で12℃/Hrの速度で1000℃まで昇温し炭化
した後、アルゴン雰囲気中で10℃/minで2500℃
まで昇温し、黒鉛化物を得た。その結果を第2表
に示す。
また、第1表の実施例1の炭素質原料を用い平
均粒径を変えて上記と同様の方法で得た炭化物、
黒鉛化物の性状を第3表に示す。[Table] The mixture was centrifuged to separate and collect the insoluble matter. Next, the carbonaceous raw material with the properties in the right column of Table 1 was ground with a hammer mill to an average particle size of 10 μm to 40 μm, and 2 t/cm After molding into a rectangular parallelepiped of 90 x 50 x 50 mm at a pressure of 2 , it was heated to 1000 °C at a rate of 12 °C/Hr in a nitrogen atmosphere in a container filled with coke powder, and then carbonized, and then in an argon atmosphere. 2500℃ at 10℃/min
A graphitized product was obtained. The results are shown in Table 2. In addition, carbide obtained in the same manner as above using the carbonaceous raw material of Example 1 in Table 1 and changing the average particle size,
Table 3 shows the properties of the graphitized product.
【表】【table】
【表】【table】
【表】
(考察)
第2表で明らかなように、本発明方法の実施例
で得られた炭化物および黒鉛化物の性状は、嵩密
度、シヨアー硬度、曲げ強度とも比較例に比べて
大きく、電気比抵抗は低くなつており、目的とす
る高強度・高密度炭素材を得ることができる。
また第3表で明らかなように、平均粒径も本発
明で規定した10〜40μmより大きくても小さくて
も良い結果が得られない。
〔発明の効果〕
以上のように本発明で規定した特定の炭素質原
料を使用すると、特別な粉砕機によつて微粉砕し
なくとも、比較的粗粒の原料によつて、自己焼結
性を有し、粒子内クラツクの発生のない高強度・
高密度炭素材を容易に得ることができる。[Table] (Discussion) As is clear from Table 2, the properties of the carbide and graphitide obtained in the example of the method of the present invention are larger than those of the comparative example in terms of bulk density, shore hardness, and bending strength. The specific resistance is low, making it possible to obtain the desired high-strength, high-density carbon material. Further, as is clear from Table 3, good results cannot be obtained even if the average particle diameter is larger or smaller than the 10 to 40 μm specified in the present invention. [Effects of the Invention] As described above, when the specific carbonaceous raw material specified in the present invention is used, self-sintering properties can be achieved with relatively coarse grained raw material without pulverizing it with a special pulverizer. with high strength and no intra-particle cracks.
High-density carbon material can be easily obtained.
第1図は実施例1の原料を用いて得た炭素粉の
偏光顕微鏡写真、第2図は比較例2の原料を用い
て得た炭素粉の偏光顕微鏡写真である。
FIG. 1 is a polarized light micrograph of carbon powder obtained using the raw material of Example 1, and FIG. 2 is a polarized light micrograph of carbon powder obtained using the raw material of Comparative Example 2.
Claims (1)
〜600℃の加熱スチームを吹き込みながら昇温し
400〜530℃まで加熱するとともに低分子成分およ
び分解油分の除去を行い、炭素含有率92重量%以
上、900℃までの揮発分が7〜13重量%、500℃ま
で加熱したときの成型体の線収縮率が6%以下の
原料を、平均粒径10μmを超え40μm以下に粉砕
した後、成型し焼成することを特徴とする高強
度・高密度炭素材の製造方法。1 Pitch under reduced pressure of 10 to 70 Torr or 400 Torr
The temperature is raised while blowing heated steam at ~600℃.
When heated to 400-530℃, low-molecular components and decomposed oil are removed, and the molded product has a carbon content of 92% by weight or more, a volatile content of 7-13% by weight up to 900℃, and a molded product when heated to 500℃. A method for producing a high-strength, high-density carbon material, which comprises pulverizing a raw material with a linear shrinkage rate of 6% or less to an average particle size of more than 10 μm and less than 40 μm, followed by molding and firing.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59166220A JPS6144704A (en) | 1984-08-07 | 1984-08-07 | Production of high-strength and high-density carbonaceous material |
GB08519749A GB2163143B (en) | 1984-08-07 | 1985-08-06 | Method of manufacturing carbon materials |
US06/762,842 US4671907A (en) | 1984-08-07 | 1985-08-06 | Method of manufacturing carbon materials |
DE19853528185 DE3528185A1 (en) | 1984-08-07 | 1985-08-06 | METHOD FOR PRODUCING CARBON MATERIALS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59166220A JPS6144704A (en) | 1984-08-07 | 1984-08-07 | Production of high-strength and high-density carbonaceous material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6144704A JPS6144704A (en) | 1986-03-04 |
JPH0158125B2 true JPH0158125B2 (en) | 1989-12-08 |
Family
ID=15827337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59166220A Granted JPS6144704A (en) | 1984-08-07 | 1984-08-07 | Production of high-strength and high-density carbonaceous material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6144704A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0353927Y2 (en) * | 1987-02-10 | 1991-11-27 | ||
JP5277487B2 (en) * | 2008-03-31 | 2013-08-28 | イビデン株式会社 | Graphite elastic body and method for producing the same |
JP5757797B2 (en) * | 2011-06-21 | 2015-07-29 | 株式会社日本セラテック | Carbon jig |
JP6940444B2 (en) * | 2017-09-22 | 2021-09-29 | 太平洋セメント株式会社 | Manufacturing method for heating element, heating device and silicon carbide |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5098491A (en) * | 1974-01-07 | 1975-08-05 | ||
JPS56109807A (en) * | 1980-01-25 | 1981-08-31 | Exxon Research Engineering Co | Improved manufacture of supply raw material for carbon product manufacture |
JPS5778487A (en) * | 1980-11-05 | 1982-05-17 | Koa Sekiyu Kk | Preparation of mesocarbon microbead of uniform particle size |
-
1984
- 1984-08-07 JP JP59166220A patent/JPS6144704A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5098491A (en) * | 1974-01-07 | 1975-08-05 | ||
JPS56109807A (en) * | 1980-01-25 | 1981-08-31 | Exxon Research Engineering Co | Improved manufacture of supply raw material for carbon product manufacture |
JPS5778487A (en) * | 1980-11-05 | 1982-05-17 | Koa Sekiyu Kk | Preparation of mesocarbon microbead of uniform particle size |
Also Published As
Publication number | Publication date |
---|---|
JPS6144704A (en) | 1986-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ragan et al. | Science and technology of graphite manufacture | |
JPS589879A (en) | Manufacture of anisotropic carbon formed body | |
JPH0826709A (en) | Production of carbon material | |
JPH0158125B2 (en) | ||
Bhatia et al. | Effect of sintering temperature on the characteristics of carbons based on mesocarbon microbeads | |
US5283045A (en) | Sinterable carbon powder and method of its production | |
JPH0132162B2 (en) | ||
JPS5978914A (en) | Manufacture of special carbonaceous material | |
EP0156051B1 (en) | Method for producing carbon powders | |
JPH0151441B2 (en) | ||
JP2989295B2 (en) | Method for producing coke for isotropic high-density carbon material | |
SU973509A1 (en) | Process for producing antifriction products | |
KR960008619B1 (en) | Process for the preparation of high density carbon material | |
JPS6213284B2 (en) | ||
JPS61251504A (en) | Production of formed graphite | |
KR970008693B1 (en) | Process for the preparation of carbon composite material | |
JPH05229810A (en) | Production of isotropic high density graphite material | |
JPS6124326B2 (en) | ||
US9751764B2 (en) | Carbon material production method and carbon material | |
KR100879332B1 (en) | Method of preparing carbonaceous material by using cokes dust | |
JPS60103011A (en) | Manufacture of easily-graphitizable high-density carbonaceous material | |
JPH01308815A (en) | Production of raw material of carbon material | |
JPH0665577A (en) | Production of formed coke having uniform quality, high strength, and few cracks | |
CN117024146A (en) | Preparation method of isotropic nuclear graphite | |
JPS63334A (en) | Production of resin-bonded carbon molding |