[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5896782A - Light-emitting element - Google Patents

Light-emitting element

Info

Publication number
JPS5896782A
JPS5896782A JP56195203A JP19520381A JPS5896782A JP S5896782 A JPS5896782 A JP S5896782A JP 56195203 A JP56195203 A JP 56195203A JP 19520381 A JP19520381 A JP 19520381A JP S5896782 A JPS5896782 A JP S5896782A
Authority
JP
Japan
Prior art keywords
light
electrode
light emitting
junction
transparent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56195203A
Other languages
Japanese (ja)
Inventor
Nobuhide Matsuda
松田 信英
Michio Matsuki
松木 美知夫
Masafumi Hashimoto
雅文 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56195203A priority Critical patent/JPS5896782A/en
Publication of JPS5896782A publication Critical patent/JPS5896782A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the contrast of the light-emitting part of the titled element by a method wherein a transparent film, which is thinner than an electrode in thickness, coated on a P-N junction and on the whole surface or on the part excluding the light-emitting part consisting of the P-N junction of the semiconductor substrate, whereon an electrode for application of a current is formed, thereby enabling to reduce scattering beams of light. CONSTITUTION:A P-N junction 3 is formed on the surface layer part of a semiconductor substrate 1, and one of annular electrode 2 is provided in such a manner that it comes in contact with the circumference of the P-N junction 3. Then a transparent film 5, which is thinner than the electrode 2 in thickness, is coated on the whole surface including electrode 2 and the junction 3, and other electrode 4 is installed on the entire back side of the substrate 1. According to this constitution, when the wavelength of an emitted light is considered to be lambda and the reflective index of the transparent film 5 is n, the thickness l of the film 5 is prescribed as l=(lambda/2n)(p+1/2). At this point, p is set at 0, 1, 2 and the like. Also, the film 5 may not be existed on the P-N junction 3, but anyhow the reflected beams of light are reduced, thereby enabling the light-emitting part to have a high contrast.

Description

【発明の詳細な説明】 本発明は選択的な発光部をもつ発光素子に関するもので
、散乱光を低減し、発光部のコントラストを向上させる
ことを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light emitting element having a selective light emitting section, and aims to reduce scattered light and improve the contrast of the light emitting section.

発光ダイオードは、その高輝度、長寿命という特徴のた
め、単にランプとしての応用のみでなく情報処理機器に
おける情報の読み出し、書き込みの光源として用いるこ
とができる。このとき、発光部を特定の形状にし、レン
ズ系を用いて、結像することによシ、特定の形状での光
スポラトラ得ることができ、そのスポットでの情報の読
み出し、書き込みが可能となる。ところで、このような
特定の形状の発光部は、発光ダイオード基板に選択的に
、発光部となるpn接合部を構成することによシ可能で
あシ、情報処理機器の光源として用いる場合に要求され
る条件としては、高輝度と光スポツト形状の高コントラ
スト化という点があげられる。GaAsPを発光ダイオ
ード材料として用いた場合の光源の構成例を第1図に示
す。第1図でaは千面図、bは断面図である。GaAs
P基板1上に、発光部々なるP型頭域3が選択的に形成
され、Aで電極2により外部への取シ出し電極が構成さ
れる。4はn側電極である。斜線で示したP型頭域3が
発光形状であり、この形が発光スポットとなる。ところ
が、レンズ系等の光学系において、種々の散乱光が生じ
るだめ、発光ダイオードチップの表面で反射が起るよう
になる。特に電極2はAlであるため反射率は大きく、
発光ダイオード自身の発光以外に、チップ表面での反射
光が生じて、発光スポットのコントラストの低下をもた
らす結果となる。これが、情報処理機器においては、解
像力の低下となり、改善が要求されている。
Due to their high brightness and long life, light emitting diodes can be used not only as lamps but also as light sources for reading and writing information in information processing equipment. At this time, by making the light emitting part a specific shape and using a lens system to form an image, it is possible to obtain a light sporatra in a specific shape, making it possible to read and write information at that spot. . By the way, such a specific shape of the light emitting part can be achieved by selectively forming a pn junction which becomes the light emitting part on the light emitting diode substrate, which is required when used as a light source of information processing equipment. The conditions for this include high brightness and high contrast in the shape of the light spot. FIG. 1 shows an example of the configuration of a light source using GaAsP as a light emitting diode material. In FIG. 1, a is a thousand-sided view and b is a sectional view. GaAs
A P-type head area 3, which is a light emitting part, is selectively formed on a P substrate 1, and an electrode 2 at A constitutes an electrode for taking out the light to the outside. 4 is an n-side electrode. The P-shaped head region 3 indicated by diagonal lines is a light emitting shape, and this shape becomes a light emitting spot. However, in an optical system such as a lens system, various types of scattered light occur, and reflection occurs on the surface of the light emitting diode chip. In particular, since electrode 2 is made of Al, its reflectance is high;
In addition to the light emitted by the light emitting diode itself, reflected light from the chip surface occurs, resulting in a reduction in the contrast of the light emitting spot. This results in a decrease in resolution in information processing equipment, and improvements are required.

一方、上記のようなチップ表面での反射をなくし、かつ
発光効率を上げるものとして、第2図に示すように、ス
テム10上に発光ダイオードチップ11を載置し、その
上にレンズ状に透明樹脂12をコートしたものが知られ
ている。この場合、発光ダイオードチップ11より出た
光は、樹脂121との界面で、その相対的な屈折率が小
さくなるため、全反射角が小さくなシ、よシ多くの発光
が樹脂12内部に取シ込まれ、さらに、樹脂12の表面
は球状であるため、表面での全反射は起らないため、樹
脂12内部の光はすべて外部に取り出され、発光効率が
向上する。ところが、この例の場合は、樹脂12はレン
ズ状になっているため発光部の形状を直接利用する情報
処理機器のだめの光源等の場合には、樹脂レンズを利用
することができない。このだめ、従来は情報処理機器用
光源としては、第1図に示すように発光ダイオードチッ
プを裸のまま使用するか、表面に透明保護膜を形成した
ものを発光コントラストが低いまま使用していた。
On the other hand, in order to eliminate the above-mentioned reflection on the chip surface and increase luminous efficiency, as shown in FIG. One coated with resin 12 is known. In this case, the light emitted from the light emitting diode chip 11 has a smaller relative refractive index at the interface with the resin 121, so if the angle of total reflection is small, more light is emitted inside the resin 12. Further, since the surface of the resin 12 is spherical, total reflection does not occur on the surface, so all the light inside the resin 12 is taken out to the outside, improving luminous efficiency. However, in this example, since the resin 12 has a lens shape, the resin lens cannot be used as a light source for information processing equipment that directly utilizes the shape of the light emitting part. To avoid this, conventional light sources for information processing equipment have used bare light-emitting diode chips, as shown in Figure 1, or those with transparent protective films formed on their surfaces, with low luminous contrast. .

本発明はこのような欠点を解消するもので、発光ダイオ
ードチップの表面に透明膜を形成し、この透明膜と電極
の厚さの関係を特定することにより、光源としてのコン
トラストを向上させて情報処理機器用の光源として好適
な発光素子を提供するものである。以下本発明の一実施
例について図面を用いて詳細に説明する。
The present invention solves these drawbacks by forming a transparent film on the surface of a light emitting diode chip, and by specifying the relationship between the thickness of this transparent film and the electrode, it improves the contrast as a light source and provides information. The present invention provides a light emitting element suitable as a light source for processing equipment. An embodiment of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の原理説明図で、半導体基板に透明膜を
コートした場合の入射光と反射光の光路を示す。1は半
導体基板、5は透明膜である。透明膜5の屈折率をn1
人射角をθ、屈折角をψ、透明膜の厚さを4とすると、
反射光の光路差Δは第2図を参照して次式で示される。
FIG. 3 is a diagram explaining the principle of the present invention, showing the optical paths of incident light and reflected light when a transparent film is coated on a semiconductor substrate. 1 is a semiconductor substrate, and 5 is a transparent film. The refractive index of the transparent film 5 is n1
If the angle of human radiation is θ, the angle of refraction is ψ, and the thickness of the transparent film is 4, then
The optical path difference Δ of the reflected light is expressed by the following equation with reference to FIG.

Δ=nPQR−PS n21   21sinθsin ψ ωSψ     cosψ 屈折の関係式 sinθ−yl sinψ を代入する
と、Δ−2n l cosψ ・・・・・・・・・・・
・・・・・・・(1)   となるΔが適当々値のとき
に、反射光は互いに干渉を生じ、光の波長をλとすると のときに、反射光は最小と々る。入射光は垂直方向が主
成分と考えると、ψ−0であるから、(1)。
Δ=nPQR-PS n21 21sinθsin ψ ωSψ cosψ Substituting the relational expression of refraction sinθ-yl sinψ, Δ-2n l cosψ ・・・・・・・・・・・・
(1) When Δ is an appropriate value, the reflected lights interfere with each other, and when the wavelength of the light is λ, the reflected lights reach a minimum. If we consider that the main component of the incident light is in the vertical direction, then ψ-0, so (1).

(2)式より 透明膜5の厚さ4が(3)式を満すとき、反射光は最小
となる。すなわち発光ダイオード光源において、前記の
透明膜5を半導体基板1上にコートすることにより反射
光を減少させ、コントラストを向上させることができる
ことになる。
From equation (2), when the thickness 4 of the transparent film 5 satisfies equation (3), the reflected light becomes minimum. That is, in the light emitting diode light source, by coating the semiconductor substrate 1 with the transparent film 5, reflected light can be reduced and contrast can be improved.

ところで、この透明膜5のコートは、発光部であるpn
接合部以外に施せばよいのであるが、発光部にもコート
することによ9次のような効果が生じる。第4図は発光
部にも透明膜5をコートした様子を示すが、基板1上の
発光部3で生じた発光の光路Aは、透明膜5がない場合
には人の入射角が浅いと、Bのように内部に全反射し、
基板1に吸収されて、外部へ出ることはない。しかし、
透明膜5がコートされていると、全反射角は小さくなっ
て、光路Aは透明膜5中に導かれる。その後、全反射に
より直接外部に出ることはないが、透明膜5中を伝播し
端部に達しだところで、Ag電極2によシ反射され、外
部に放出されるのである。したがって、ここで、重要な
ことは、透明膜5と、A4電極2の厚さの関係であり、
Al電極2が薄いと、前記の光放出の効果は極めて小さ
くなるので、電極2の厚さが、透明膜6の厚さより厚い
ことが必要である。したがって、透明膜5の厚さは、(
3)式を満たし、かつAd等の電極2の厚さより厚くな
るように設定する。A/等の電極の厚さは通常2,00
0〜3.○ooAに形成されるので、例えば6600人
の赤色発光ダイオードの場合は透明膜5の厚さとしテ(
3)式、J:ps3ooA、99ooAが最適である。
By the way, the coat of this transparent film 5 is the pn which is the light emitting part.
Although it is sufficient to apply the coating to areas other than the joints, the following 9th-order effect is produced by coating the light emitting areas as well. FIG. 4 shows that the light emitting part is also coated with the transparent film 5, but the optical path A of the light emitted from the light emitting part 3 on the substrate 1 would be such that if there was no transparent film 5, the incident angle of the person would be shallow. , total internal reflection as shown in B,
It is absorbed by the substrate 1 and does not go outside. but,
When the transparent film 5 is coated, the total reflection angle becomes small and the optical path A is guided into the transparent film 5. Thereafter, the light does not directly go outside due to total reflection, but when it propagates through the transparent film 5 and reaches the end, it is reflected by the Ag electrode 2 and emitted to the outside. Therefore, what is important here is the relationship between the thickness of the transparent film 5 and the A4 electrode 2,
If the Al electrode 2 is thin, the light emission effect described above will be extremely small, so the thickness of the electrode 2 needs to be thicker than the thickness of the transparent film 6. Therefore, the thickness of the transparent film 5 is (
3) It is set so that it satisfies the formula and is thicker than the thickness of the electrode 2 made of Ad or the like. The thickness of the electrode such as A/ is usually 2,000
0-3. For example, in the case of 6,600 red light emitting diodes, the thickness of the transparent film 5 is
3) Formula, J: ps3ooA, 99ooA is optimal.

なお、第1図の発光ダイオードチップの表面に透明保護
膜を形成した例もあるが、この場合の透明保護膜の厚さ
は、電極の厚さ2,000〜3,000λよりずっと厚
く形成されておシ、したがって前述した第4図の光路A
のような光は外部にとり出されることがなく、コントラ
スト向上効果はない。
There is also an example in which a transparent protective film is formed on the surface of the light emitting diode chip shown in Figure 1, but the thickness of the transparent protective film in this case is much thicker than the thickness of the electrode, which is 2,000 to 3,000λ. Therefore, the optical path A in FIG.
Such light is not extracted to the outside and has no effect of improving contrast.

第5図および第6図は本発明を複数の発光ダイオードを
線状に配列した線状光源に応用した場合の実施例を示す
断面図及び平面図である。発光ダイオード光源の応用例
の一つとして、発光部を同一基板上に多く並べ、数字表
示素子、あるいは、線状の光源として、光プリンターの
光源に利用される。このとき、複数個の発光部が隣接し
て配置されるだめ隣同士の光の干渉によって発光コント
ラストの低下が生じる。また、表面に電極よシ厚い膜厚
の透明保護膜をコートした場合、膜を通して発光が面方
向に伝搬し、コントラストの低下はさらに大きくなる。
5 and 6 are a sectional view and a plan view showing an embodiment in which the present invention is applied to a linear light source in which a plurality of light emitting diodes are arranged in a linear manner. As one application example of a light emitting diode light source, many light emitting parts are arranged on the same substrate and used as a numeric display element or a linear light source for an optical printer. At this time, since a plurality of light emitting parts are arranged adjacent to each other, light emission contrast deteriorates due to interference of light between adjacent light emitting parts. Furthermore, if the surface is coated with a transparent protective film that is thicker than the electrode, the light emitted will propagate in the surface direction through the film, resulting in an even greater reduction in contrast.

従って、複数個の発光部を有する場合本発明の効果はよ
シ有効である。第5図および第6図において、第3図と
同一部分には同一符号を付す。
Therefore, the effects of the present invention are even more effective when a plurality of light emitting parts are provided. In FIGS. 5 and 6, the same parts as in FIG. 3 are given the same reference numerals.

図よシ明らかなように、各発光部30間に電極2を構成
し、この厚さが、透明膜5よシも厚いだめ、1つの発光
部白身の発光は電極2部で反射され、より強くなる一方
、隣の発光部からの光は、遮断されるだめに、コントラ
ストの低下は生じない。第6図の平面図よシわかるよう
に電極の形状としては、発光部自身の光を自身の領域に
とじ込めるよう発光部の回シを電極2でおおう形状が適
切である。
As is clear from the figure, the electrode 2 is formed between each light emitting part 30, and since this thickness is thicker than the transparent film 5, the light emitted from the white of one light emitting part is reflected by the second part of the electrode, and the electrode 2 is thicker than the transparent film 5. While the intensity increases, the contrast does not deteriorate because the light from the adjacent light emitting section is blocked. As can be seen from the plan view of FIG. 6, the appropriate shape of the electrode is such that the electrode 2 covers the circumference of the light emitting part so that the light of the light emitting part itself can be contained within its own area.

以」二のように、本発明は半導体基板上に選択的[pn
接合を形成し、このpn接合に電流を注入する電極を形
成するとともに、pn接合部および電極を含む半導体基
板表面の全面又はpn接合部の発光部以外に上記電極よ
りも厚さの薄い透明膜を形成したものであシ、発光出力
が大きく、発光部以外は光散乱が小さいので発光コント
ラストが非常に良く、しかも発光効率が高く、発光形状
が歪められないすぐれた光源を得ることができる。
As described above, the present invention provides selective [pn
In addition to forming an electrode for forming a junction and injecting current into this pn junction, a transparent film having a thickness thinner than the above electrode is provided on the entire surface of the semiconductor substrate including the pn junction and the electrode, or other than the light emitting part of the pn junction. It is possible to obtain an excellent light source with a large light emission output, low light scattering in areas other than the light emitting part, very good light emission contrast, high light emission efficiency, and no distortion of the light emission shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は従来の発光ダイオード光源の一
例を示す平面図および断面図、第2図は従来の発光ダイ
オード光源の他の例を示す一部断面図、第3図は本発明
による発光素子の原理説明図、第4図は本発明による発
光素子の実施例を示す断面図、第6図および第6図は本
発明による発光素子の他の実施例における断面図および
平面図である。 1・・・・・・半導体基板、2・・・・・・電極、3・
・・・・・pn接合、4・・・・・n型電極、5・・・
・・・透明膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
 1  図 第3図 第4図 第5図 第6図
Figures 1 (a) and (b) are a plan view and a cross-sectional view showing an example of a conventional light emitting diode light source, Figure 2 is a partial cross-sectional view showing another example of a conventional light emitting diode light source, and Figure 3 is a main view of the light source. 4 is a cross-sectional view showing an embodiment of the light-emitting device according to the present invention, and FIG. 6 is a cross-sectional view and a plan view of other embodiments of the light-emitting device according to the present invention. It is. 1... Semiconductor substrate, 2... Electrode, 3...
... pn junction, 4 ... n-type electrode, 5 ...
...transparent film. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 3 Figure 4 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上に選択的にpn接合を形成し、この
pn接合に電流を注入する電極が形成され、pn接合部
および電極を含む半導体基板表面全面またはpn接合部
の発光部以外に上記電極よりも厚さの薄い透明膜を形成
したことを特徴とする発光素子。
(1) A pn junction is selectively formed on the semiconductor substrate, and an electrode for injecting current into the pn junction is formed, and the above-mentioned A light emitting element characterized by forming a transparent film thinner than an electrode.
(2)発光波長をλ、透明膜の屈折率をnとしだと(但
しp−〇、1,2.・・・・・・)に設定したことを特
徴とする特許請求の範囲第1項記載の発光素子。
(2) Claim 1, characterized in that the emission wavelength is set to λ, and the refractive index of the transparent film is set to n (provided that p-〇, 1, 2, etc.) The light emitting device described.
(3)一枚の半導体基板上に一個のpn接合発光部を有
する特許請求の範囲第1項記載の発光素子。
(3) The light emitting device according to claim 1, which has one pn junction light emitting section on one semiconductor substrate.
(4)一枚の半導体基板上に複数個のpn接合発光部を
有する特許請求の範囲第1項記載の発光素子。
(4) The light emitting device according to claim 1, which has a plurality of pn junction light emitting parts on one semiconductor substrate.
JP56195203A 1981-12-03 1981-12-03 Light-emitting element Pending JPS5896782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195203A JPS5896782A (en) 1981-12-03 1981-12-03 Light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195203A JPS5896782A (en) 1981-12-03 1981-12-03 Light-emitting element

Publications (1)

Publication Number Publication Date
JPS5896782A true JPS5896782A (en) 1983-06-08

Family

ID=16337166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195203A Pending JPS5896782A (en) 1981-12-03 1981-12-03 Light-emitting element

Country Status (1)

Country Link
JP (1) JPS5896782A (en)

Similar Documents

Publication Publication Date Title
JP7029525B2 (en) Array substrate and its manufacturing method
JP4799341B2 (en) Lighting device
US7029156B2 (en) Light emitting apparatus and display
JP3688832B2 (en) Linear light source device, light guide member used therefor, and image reading device including a linear light source using the light guide member
US6219074B1 (en) Light-emitting device and recording device using the same
US10754191B2 (en) Display light source module having encapsulated LEDs and reflective recess with reflective patterns
JPH11506381A (en) Fingerprint sensor device
JPH10133026A (en) Illuminator having light transmission body
TW200427303A (en) Image reading device
US20190363227A1 (en) Light-emitting device and manufacturing method thereof
TWI829671B (en) Light-emitting device
JPH0521842A (en) Optical device and light emitting diode
US20050199887A1 (en) Light emitting device
JP4389529B2 (en) Surface illumination device and light guide plate
JP2003197973A (en) Light emitting diode and led display device
JPS5896782A (en) Light-emitting element
JPH0645656A (en) Light emitting device and optical fiber type photoelectric sensor with it
JPS58178575A (en) Photosemiconductor display device
JPS6273786A (en) Semiconductor light emitting device
JPS6335089U (en)
JPH01258481A (en) Led array
JPH06166213A (en) Led array
JP2843219B2 (en) Light emitting element array device
JPH09233263A (en) Color lighting device
JPH03169085A (en) Light emitting diode array