[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5846324B2 - Inion Koukan Makuno Saiseisenjiyouhou - Google Patents

Inion Koukan Makuno Saiseisenjiyouhou

Info

Publication number
JPS5846324B2
JPS5846324B2 JP49145350A JP14535074A JPS5846324B2 JP S5846324 B2 JPS5846324 B2 JP S5846324B2 JP 49145350 A JP49145350 A JP 49145350A JP 14535074 A JP14535074 A JP 14535074A JP S5846324 B2 JPS5846324 B2 JP S5846324B2
Authority
JP
Japan
Prior art keywords
anion exchange
exchange membrane
membrane
permselectivity
electrodialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49145350A
Other languages
Japanese (ja)
Other versions
JPS5171288A (en
Inventor
亮 江原
隆史 三羽
晃 山口
良三 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP49145350A priority Critical patent/JPS5846324B2/en
Publication of JPS5171288A publication Critical patent/JPS5171288A/en
Publication of JPS5846324B2 publication Critical patent/JPS5846324B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 本発明はいわゆる有機汚染をうけた陰イオン交換膜な再
生する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating anion exchange membranes that have suffered from so-called organic contamination.

更に詳しくは、有機陰イオンによる汚染をうけた陰イオ
ン交換膜を無機塩類溶液と接触させる事により再生させ
る方法に関するものである。
More specifically, the present invention relates to a method for regenerating an anion exchange membrane contaminated with organic anions by bringing it into contact with an inorganic salt solution.

従来イオン交換膜電気透析法に於て、陽イオン交換膜と
陰イオン交換膜とを交互に並べ直流電圧を印加して電気
透析をする場合、処理水中にフミン酸、アルキルベンゼ
ンスルホン酸などの如き分子量の大きい有機陰イオンが
含有されていると陰イオン交換膜が有機汚染を受けて、
陰イオン交換膜の電気抵抗が著しく増大し、その結果、
透析電圧が上昇して電気透析の連続運転が不可能になる
という欠点があることはよく知られている。
In the conventional ion exchange membrane electrodialysis method, when electrodialysis is performed by arranging cation exchange membranes and anion exchange membranes alternately and applying a DC voltage, molecular weight substances such as humic acid and alkylbenzenesulfonic acid are present in the treated water. If large organic anions are contained, the anion exchange membrane will be subject to organic contamination.
The electrical resistance of the anion exchange membrane increases significantly, resulting in
It is well known that the disadvantage is that the dialysis voltage increases, making continuous operation of electrodialysis impossible.

一方、イオン交換基をもたない中性隔膜を陰イオン交換
膜の代りに使用すれば有機汚染がなくなり処理液中に分
子量の大きい有機陰イオンが含有されている場合でも安
定した運転をすることができることが知られている。
On the other hand, if a neutral diaphragm without ion exchange groups is used instead of an anion exchange membrane, organic contamination will be eliminated and stable operation will be possible even when the processing liquid contains organic anions with large molecular weights. is known to be possible.

この問題に対して、今迄に(1)イミダゾール基を含む
多孔性の陰イオン交換膜と通常の陽イオン交換膜を組合
わせる電気透析法(特願昭48−91371号)が提案
され、又本発明者等は、(2)弱塩基性陰イオン交換膜
と通常の陽イオン交換膜とを組合わせる電気透析法を発
明した。
To address this problem, an electrodialysis method (Japanese Patent Application No. 91371/1983) has been proposed that combines (1) a porous anion exchange membrane containing imidazole groups with a normal cation exchange membrane; The present inventors have invented (2) an electrodialysis method that combines a weakly basic anion exchange membrane and a normal cation exchange membrane.

しかしながら、(1)及び(2)の方法に用いられる陰
イオン交換膜は、通常の陰イオン交換膜に比べればはる
かに優れた耐有機汚染性を示すけれども、次のような欠
点を有する。
However, although the anion exchange membranes used in methods (1) and (2) exhibit much better resistance to organic contamination than ordinary anion exchange membranes, they have the following drawbacks.

(A) (11で得られる陰イオン交換膜は膜を通し
ての濃度拡散が太きいために電流効率が低くなる。
(A) (The anion exchange membrane obtained in step 11 has a low current efficiency because the concentration diffusion through the membrane is large.

(2)で得られる陰イオン交換膜は輸率が小さいために
電流効率が低くなる。
The anion exchange membrane obtained in (2) has a small transport number and therefore has a low current efficiency.

(B) 長期間でみると、やはり有機汚染をうける傾
向にある。
(B) Over the long term, there is a tendency for organic pollution to occur.

即ち、有機汚染は次の様な順序で進行する。That is, organic pollution progresses in the following order.

■ まず、陰イオン交換膜の二価イオン選択透過性が減
少しはじめる。
■ First, the divalent ion selective permeability of the anion exchange membrane begins to decrease.

■ 陰イオン交換膜の二価イオン選択透過性が最小値ま
で減少する。
■ The divalent ion permselectivity of the anion exchange membrane decreases to a minimum value.

この段階から、電気透析槽の電圧が上昇しだす。From this stage, the voltage of the electrodialyzer begins to rise.

■ 膜抵抗が急上昇し、透析不能となる。■ Membrane resistance rises rapidly and dialysis becomes impossible.

今迄提案されて来た方法は、劣化プロセスの■の段階が
長くなる方法であり、長時間運転後には段階■、■へと
進行するものと思われる。
The methods that have been proposed so far are methods in which the stage ① of the deterioration process is prolonged, and it is thought that after long-term operation, the process progresses to stages ① and ②.

又、陰イオン交換膜の二価イオン選択透過性が減少する
と、稀釈液流中の硫酸イオン等の2価イオンの比率が増
加し液抵抗が増加するとともに、限界電流密度も低下す
る。
Furthermore, when the selective permselectivity of divalent ions of the anion exchange membrane decreases, the ratio of divalent ions such as sulfate ions in the diluent flow increases, liquid resistance increases, and the limiting current density also decreases.

従って、この二価イオン選択透過性の低落傾向はいずれ
重大な有機汚染へとつながるばかりでなく、限界電流密
度も低下し、電気透析槽が大きくなり、好ましくない。
Therefore, this tendency of decreasing selective permselectivity for divalent ions not only leads to serious organic contamination, but also reduces the limiting current density and increases the size of the electrodialysis tank, which is not desirable.

従って、この2価イオン選択透過性を回復させる方法を
確立する事が、より一層安全に電気透析槽に耐有機汚染
性を付与せしめうるという観点から望まれていた。
Therefore, it has been desired to establish a method for restoring this divalent ion permselectivity from the viewpoint of making it possible to more safely impart organic contamination resistance to the electrodialysis tank.

又、一方、近年、塩類溶液を脱塩するに際し、単に全塩
濃度を下げるだけでなく、生産された脱塩水中の各イオ
ンのバランスが重要視される傾向にある。
On the other hand, in recent years, when desalting a salt solution, there has been a tendency to emphasize not only the reduction of the total salt concentration but also the balance of each ion in the produced desalted water.

この様な要求にこたえ、かつ経済的に電気透析を行うた
めには、イオン交換膜のイオン選択透過性が適当であり
、かつその値が変化しないものであることが望ましい。
In order to meet these demands and perform electrodialysis economically, it is desirable that the ion exchange membrane have an appropriate ion selective permeability and that the value does not change.

この観点からも、陰イオン交換膜の2価イオン選択透過
性が長期間にわたり、徐々に低下してゆくということは
好ましくない。
From this point of view as well, it is not preferable that the selective permselectivity of divalent ions of the anion exchange membrane gradually decreases over a long period of time.

本発明者等はこれらの点について鋭意研究を進め、遂に
本発明の方法を開発するに至った。
The present inventors have conducted intensive research on these points and have finally developed the method of the present invention.

本発明の方法は有機陰イオンによる汚染をうけた陰イオ
ン交換膜を無機塩類水溶液と接触さす事により、膜抵抗
及び2価イオン選択透過係数を初期(1)状態に回復さ
せることが出来るという知見、特に電気透析処理を行う
かん水等の被処理水中に、有機性陰イオンで膜を汚染す
るもの、例えばドデシルベンゼンスルホン酸イオンカ含
まれている場合、該汚染性有機イオンのため、2価陰イ
オンの選択透過性は低下するが、その低下が成る範囲内
であれば、此の有機汚染された膜を無機塩水溶液に接触
させることで、容易に選択透過性を回復することができ
るという知見に基づくものである。
The method of the present invention is based on the knowledge that by bringing an anion exchange membrane contaminated with organic anions into contact with an aqueous inorganic salt solution, the membrane resistance and divalent ion permselectivity coefficient can be restored to the initial (1) state. In particular, if the water to be treated such as brine that undergoes electrodialysis treatment contains organic anions that contaminate the membrane, such as dodecylbenzenesulfonate ions, the contaminating organic ions may cause divalent anions to be removed. Although the permselectivity of the membrane decreases, as long as the decrease is within the range, the permselectivity can be easily restored by bringing the organically contaminated membrane into contact with an aqueous inorganic salt solution. It is based on

本発明の方法は、フミン酸、ドデシルベンゼンスルホン
酸、ナフタリントリスルホン酸ソーダの如き有機汚染性
陰イオンを含む塩類水溶液の電気透析法による脱塩にあ
たり、従来提案されていた方法の欠点、即ち適用される
陰イオン交換膜の塩分拡散係数が太きいあるいは陰イオ
ンの輸率が小さいといった欠点を改善し、更に長期的な
2価イオン選択係数の低下傾向を防止し、この様な有機
汚染性陰イオンを含む液の電気透析法による安定した脱
塩を可能ならしめるものである。
The method of the present invention addresses the drawbacks of conventionally proposed methods, namely, its application to desalination by electrodialysis of aqueous salt solutions containing organic contaminating anions such as humic acid, dodecylbenzenesulfonic acid, and sodium naphthalene trisulfonate. It improves the disadvantages of the anion exchange membrane, such as a large salt diffusion coefficient or a small anion transfer number, and furthermore prevents the long-term tendency of the divalent ion selectivity coefficient to decrease, and eliminates such organic contaminating anions. This enables stable desalination of ion-containing liquids by electrodialysis.

本発明の方法の対象となる陰イオン交換膜としては基本
的には従来提案されているいかなるタイプの陰イオン交
換膜でもよい。
The anion exchange membrane to be used in the method of the present invention may basically be any type of anion exchange membrane that has been proposed in the past.

但し、本発明の効果をより大きなものとするには、陰イ
オンの輸率が大きく、かつ塩分の拡散係数の小さいもの
が好ましい。
However, in order to further enhance the effects of the present invention, it is preferable to use a material having a large anion transport number and a small salt diffusion coefficient.

また、本発明の方法の実施にあたっては、電気透析槽を
解体して陰イオン交換膜をとり出し、これを塩類溶液に
浸漬するか、又は電気透析槽を解体せずに、稀釈流の方
に塩類溶液を循環させて洗浄してもよい。
In carrying out the method of the present invention, the electrodialysis tank may be disassembled and the anion exchange membrane taken out and immersed in a salt solution, or the electrodialysis tank may be placed in the dilution stream without being disassembled. Washing may be carried out by circulating a saline solution.

本発明に用いられる洗浄用の無機塩類は、水溶性のもの
であればどの様な無機塩でもよく、又、二種以上の無機
塩の混合物でもよい。
The inorganic salts for cleaning used in the present invention may be any water-soluble inorganic salts, or may be a mixture of two or more inorganic salts.

塩類水溶液の濃度は、膜の伸び率の変化を起こさないと
いう点からは、稀釈液の濃度に近い方が好ましいが、特
にこれによって制限をうけることはない。
The concentration of the aqueous salt solution is preferably close to the concentration of the diluting solution from the viewpoint of not causing a change in the elongation rate of the membrane, but this is not particularly limiting.

但し、塩類濃度と再生に要する時間との間には密接な関
係があり、濃度が高いほど再生時間は短かくなる。
However, there is a close relationship between salt concentration and the time required for regeneration, and the higher the concentration, the shorter the regeneration time.

従って、実用的な見地からは0.05規定以上のもので
ある。
Therefore, from a practical standpoint, it is more than 0.05 standard.

又再生をするインターバルは処理すべき液中の有機汚染
性陰イオンの濃度によって変動するが、電気透析中に下
記の硫酸イオン選択透過性を測定し、この値が低下して
きた時点で再生をすればよい。
The regeneration interval varies depending on the concentration of organic contaminating anions in the liquid to be treated, but the following sulfate ion selective permeability is measured during electrodialysis, and when this value decreases, regeneration is stopped. Bye.

硫酸イオン選択透過性: 尚、膜の使用開始時の上記選択透過性を 0 (Fo14)Bで示し、線膜を成る期間使用し、透次に
実施例により本発明の方法を更に詳しく説明する。
Sulfate ion selective permselectivity: The above-mentioned permselectivity at the beginning of use of the membrane is indicated by 0 (Fo14)B. .

実施例 1 有効通電面積1dmのカチオン交換膜(無化成工業製に
−101)及びアニオン交換膜(無化成工業製CA−1
)10対で電気透析装置を構成する。
Example 1 A cation exchange membrane (manufactured by Mukasei Kogyo -101) and an anion exchange membrane (manufactured by Mukasei Kogyo CA-1) with an effective current carrying area of 1 dm
) 10 pairs constitute an electrodialyzer.

0.5 ppmのドテシルベンゼンスルホン酸ソーダを
含む塩素イオン及硫酸イオンを含む11000ppのか
ん水をこの透析槽へ供給し、0.35A/amの電流密
度で脱塩し、稀釈側からTDS(全溶解塩類) 200
ppmの脱塩水を得る条件で運転を行った。
11,000 ppm of brine containing chloride and sulfate ions, including 0.5 ppm of sodium dotecylbenzenesulfonate, was supplied to this dialysis tank, desalted at a current density of 0.35 A/am, and TDS (total Dissolved salts) 200
The operation was carried out under conditions to obtain demineralized water of ppm.

この時の硫酸イオン選択透過係数FSO4の経時変化は
次の様であった。
At this time, the time-dependent change in the sulfate ion permselectivity coefficient FSO4 was as follows.

1 500時間時間遅転運転め、3.0規定の食塩水を透析
槽の稀釈側に30分間循環したのち、再び実施例 2 実施例1で用いたのと同じ透析槽を使用し、原水として
1.0 ppmのドデシルベンゼンスルホン酸ソーダを
含むTDS 1100ppmの都市下水処理水を供給
し0.35A/dmの電流密度で脱塩し、稀釈側よすT
DS 200 ppmの脱塩水をうる条件で運転を行
った。
1 After 500 hours of slow operation, 3.0N saline was circulated to the dilution side of the dialysis tank for 30 minutes, and then again Example 2 Using the same dialysis tank as used in Example 1, as raw water. TDS 1100 ppm treated municipal sewage water containing 1.0 ppm sodium dodecylbenzenesulfonate was supplied, desalted at a current density of 0.35 A/dm, and then diluted with TDS.
The operation was carried out under the condition that demineralized water with a DS of 200 ppm was obtained.

この時の硫酸イオン選択透過係数FSO4の経時変化は
次の様であった。
At this time, the time-dependent change in the sulfate ion permselectivity coefficient FSO4 was as follows.

1 3000時間后に運転をとめ、1.0規定の硫酸ナトリ
ウム溶液を透析槽の稀釈側に2時間循環したのち、再び
脱塩を開始したところFSO4値はI 0.95を示した。
After 13,000 hours, operation was stopped, and after circulating a 1.0N sodium sulfate solution to the dilution side of the dialysis tank for 2 hours, desalination was started again, and the FSO4 value showed I 0.95.

Claims (1)

【特許請求の範囲】 1 汚染性有機陰イオンを含むかん水等の電気透析にお
いて、陰イオン交換膜の硫酸イオン選択透過性(F S
O4、、が低下する過程で、線膜の有するI 残存選択透過性が、使用初期の選択透過性に対する比率
で、0.4以下に低下する以前に、線膜を少なくとも0
.05規定の無機塩水溶液と接触させることを特徴とす
る陰イオン交換膜の再生方法。
[Claims] 1. In electrodialysis of brine containing contaminant organic anions, the sulfate ion selective permeability (F S
In the process of decreasing O4, the membrane should be reduced to at least 0 before the residual I permselectivity of the membrane decreases to 0.4 or less as a ratio to the permselectivity at the initial stage of use.
.. 1. A method for regenerating an anion exchange membrane, the method comprising bringing it into contact with an aqueous solution of an inorganic salt according to the 05 standard.
JP49145350A 1974-12-18 1974-12-18 Inion Koukan Makuno Saiseisenjiyouhou Expired JPS5846324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49145350A JPS5846324B2 (en) 1974-12-18 1974-12-18 Inion Koukan Makuno Saiseisenjiyouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49145350A JPS5846324B2 (en) 1974-12-18 1974-12-18 Inion Koukan Makuno Saiseisenjiyouhou

Publications (2)

Publication Number Publication Date
JPS5171288A JPS5171288A (en) 1976-06-19
JPS5846324B2 true JPS5846324B2 (en) 1983-10-15

Family

ID=15383142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49145350A Expired JPS5846324B2 (en) 1974-12-18 1974-12-18 Inion Koukan Makuno Saiseisenjiyouhou

Country Status (1)

Country Link
JP (1) JPS5846324B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975418B2 (en) * 2006-11-27 2012-07-11 株式会社サンアクティス Cleaning solution for anion exchange membrane regeneration of electrodialysis machine

Also Published As

Publication number Publication date
JPS5171288A (en) 1976-06-19

Similar Documents

Publication Publication Date Title
US5948230A (en) Electrodialysis including filled cell electrodialysis (Electrodeionization)
US5316637A (en) Electrodeionization apparatus
US3933610A (en) Desalination process by improved multistage electrodialysis
JP4478996B2 (en) Treatment method of polarizing plate manufacturing waste liquid
JP2001206964A (en) Cation-exchange membrane capable of selectively permeating monovalent cation, and method for producing the same
JP4480251B2 (en) Disinfection of electric regenerative deionized water purifier
JPS5846324B2 (en) Inion Koukan Makuno Saiseisenjiyouhou
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JPH05220479A (en) Ultrapure water manufacturing system
JPS6252624B2 (en)
JPS637805B2 (en)
JP4431710B2 (en) ION CONDUCTIVE SPACER, METHOD FOR PRODUCING THE SAME, ELECTRIC DESALTING DEVICE
JP2003215810A (en) Method for recovering developer from photoresist developer waste liquid
SU1125203A1 (en) Method for preparing high purity water
SU833271A1 (en) Method of regeneration of ion-exchange membrane
US6074812A (en) Method for desalting and dewatering of silver halide emulsions by electrodialysis
JPS5933004B2 (en) Electrodialysis method
RU1166376C (en) Method of distilling salt water
JP4660890B2 (en) Operation method of electrodeionization equipment
JPS6349523B2 (en)
SU793598A1 (en) Water demineralization method
JPS6115885B2 (en)
JPS6330047B2 (en)
JP2001353490A (en) Production method of deionized water
JPH04284832A (en) Electrodialysis of inorganic salt-containing amphoteric surfactant solution